

 © 2018, IJCSE All Rights Reserved 154

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-9, Sept. 2018 E-ISSN: 2347-2693

Role of Software Composition in Aspect Oriented Programming

P.R. Sarode

1*
, R. N. Jugele

2

1
Inter Institutional Computer Centre, Nagpur University Campus, RTM Nagpur University, Nagpur, India

2
Department of Computer Science, Shri Shivaji Science College, Congress Nagar, Nagpur, India

*Corresponding Author: priya.s1011@gmail.com, Tel.: +91-9503869986

Available online at: www.ijcseonline.org

Accepted: 17/Sept/2018, Published: 30/Sept/2018

Abstract— Software composition is becoming more and more vital as innovation in software engineering shifts from the

development of individual components to their reuse and recombination in innovative ways. It is a key topic in computer

science and particularly programming language analysis. Software composition is the process of constructing software systems

from a set of software components. It aims at improving the reusability, customizability, and maintainability of large software

systems. The primary motivation for software composition is reuse. Generally, the composition can be defined as any

promising and expressive interaction between the complex software concept and a composition mechanism defines such an

interface. The more recently proposed programming approach known as Aspect-Oriented Programming illustrate the concept

of modularization i.e. managing software complexity and improving its reusability, understandability, extensibility. It provides

an alternative mechanism to solve the code tangling and scattering problems in the implementation of crosscutting concerns

using abstraction and composition mechanisms. This work considers different views of software composition and various

existing definitions of composition units with the corresponding composition mechanisms. Also, deliberated how software

composition is more efficiently reusable in aspect-oriented programming and mentioned the fundamental facts of software

composition implementation based on Aspect-Oriented programming paradigm.

Keywords— Software composition, composition mechanisms, object-oriented programming, aspect-oriented programming,

extension,paradigm.

I. INTRODUCTION

Software engineering and programming languages exist in

a shared relationship support. The most used design

processes break a system down into a set of small units. To

implement these units, programming languages provide

mechanisms to explain the abstraction and composition

mechanisms in order to implement the desired behavior [1].

A programming language coordinates well with a software

design when the provided abstraction and composition

mechanisms enable the developer to express the design

units. In the most general terms, the composition can be

defined as any possible and meaningful interaction between

the software constructs involved. A composition

mechanism defines such an interaction. There are many

different possible kinds of software constructs, with

corresponding composition mechanisms [2], [3], [4], [5],

[6], [7], [8], [9], [10], [11], [12], [13]. Simple type

definitions can be composed into compound types by type

composition [14], random pieces of code can be joined

together with glue and scripts [15], typed constructs can be

linked by message passing, e.g. direct method calls between

objects or port connections between architectural units [4],

[16] and so on. In this paper, section-II remark the different

views of software composition. In section-III, the existing

definitions of composition units and the corresponding

composition mechanisms are discussed. Section-IV of the

paper presents how software composition is more

efficiently reusable in Aspect-oriented programming as

compared to object-oriented programming paradigm and

signifies the key points of software composition

implementation based on Aspect-Oriented programming

(AOP) paradigm.

II. DIFFERENT VIEWS OF SOFTWARE COMPOSITION

In the inclusive as possible, considered all, the views of

software composition found in the literature that is, the

various perceptions (and definitions) of what composition

means in all the relevant software communities. In any

view of composition, the composition is performed on

software entities that are observed as meaningful units of

composition. Here, the focus is on units of composition that

define behavior, rather than constructs that define primitive

types or pure data structures. Composition mechanisms

compose units of the composition into larger pieces of

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 155

software, i.e. they compose pieces of behavior into larger

pieces of behavior. The outline of this section is the

different views of composition and briefly discuss the

generic nature of the associated units of composition and

composition mechanisms.

Programming View

 One view of software composition is that it is simply what

a programmer does when putting bits of code together into

a program or an application. In this view, any legitimate

programming language construct is a unit of composition;

and composition is simply joining the constructs together

using some other construct (e.g. sequencing) defined in the

programming language. This is called the ‘programming

view' of the composition. Meaningful units of composition

in the programming view include functions in functional

languages, procedures in imperative languages, classes [7],

aspects [6] in object-oriented and aspect-oriented

languages. Clearly, the ‘programming view' represents

programming in the small. To equate composition with this

view, however, is to overlook many issues that are

significant for software engineering, such as reuse and

systematic or automated construction.

Construction View

A higher-level view of the composition is the view that

software composition is "the process of constructing

applications by interconnecting software components

through their plugs" [18]. The primary motivation here is

systematic construction. This view is called the

‘construction view' of the composition. It is at a higher

level of abstraction than the ‘programming view': it

typically uses scripting languages [19] to connect pre-

existing program units together. The ‘construction view'

thus represents programming-in-the-large [20], as opposed

to programming-in-the-small. In the ‘construction view',

the units of the composition are referred to like

components, but these are only loosely defined as software

units with plugs, which are interaction or connection points.

Consequently, components may be any software units that

can be scripted together by glue. For example, components

may be modules glued by module interaction languages

[21], or Java Beans composed by [22], and so on.

CBD View

For Component-based Software Development (CBD)

[23], [24] composition is of the essence, since components,

by definition, are units of composition [45], [46]. For CBD,

software reuse is, of course, a fundamental objective, in

order to reduce production cost; however, in addition, CBD

also seeks to automate composition as much as possible, to

reduce time-to-market as well. To characterize components

accurately, [17] characterize them about a component

model [23], [24]. A component model defines what

components are (their syntax and semantics) and what

composition operators can be used to compose them. Thus

in [23], a software component is defined as "a software

element that conforms to a component model and can be

independently deployed and composed without

modification according to a composition standard". The

advent of CBD [23], [24], [8] brought about a sharper focus

on not only component models (different kinds of

components and composition mechanisms), but also

repositories of (pre-existing) components and component

reuse from such repositories. Thus, CBD is motivated by

systematic construction as well as reuse of (pre-existing)

third-party components. This view extends the

‘construction view’, by the additional emphasis on

component models as well as reuse of third-party

components. Software architectures also subscribe to the

‘CBD view’, in addition to the ‘construction view’, in the

sense that an Architecture Description Language (ADL)

[26], [27] could be considered to be a component model,

with architectural units as components, and port connection

as a composition mechanism for such components.

However, in contrast to the ‘CBD view’, software

architectures do not always assume or make use of third-

party components or repositories of such components, as

mentioned earlier. As components are independent

identities, every component has its own required and

provided services. When software systems are designed by

assembling the independent components the role of

composition becomes very crucial in delivering the

required system [49].

III. EXISTING DEFINITIONS OF SOFTWARE

COMPOSITION

In [17] the survey of composition mechanisms that are

defined in all three views, since it does not make much

sense to consider composition mechanisms that are only

unary in arity, our normal assumption is that composition

mechanisms are (at least) binary in arity. Composition

mechanisms in all three views fall into four general

categories:

i) Containment

ii) Extension

iii) Connection

iv) Coordination

In the following section definitions and explanation of each

category presents, using generic units of composition for

clarification and design [17] compare and contrast the

category with corresponding UML mechanisms.

Containment

Refers to putting units of behavior inside the definition of a

larger unit. This is illustrated in Fig. 1(a), where U3

contains U1 and U2. Containment is thus nested

definition. The behavior of the container unit is defined in

terms of that of the contained units, but the precise nature

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 156

of the containment differs from mechanism to mechanism.

Examples of containment are nested definitions of

functions, procedures, modules, and classes, as well as

object composition and object aggregation. Compared to

(standard) UML, our notion of containment covers more

composition mechanisms.

Figure. 1. Containment

In UML, containment is defined for classes only, there is

no notation for nested class definition, and the only forms

of containment are object aggregation and object

composition Fig. 1(b).

Extension

Refers to defining the behavior of a unit by extending that

of at least two other units of composition. This is extension

U1 U2 U3 class extension illustrated in Fig. 2(a).

Figure.2. Extension

Examples of extension include multiple inheritance in

object-oriented programming, aspect weaving [38] in

aspect-oriented programming. Multiple inheritance can be

defined as a composition mechanism that extends multiple

classes (e.g. U1 and U2 in Fig. 2(a)) into another class (U3)

that inherits from these classes. Aspect weaving can be

defined as a (binary) composition mechanism that extends a

class (say U1 in Fig. 2(a)) and an aspect (U2) into another

class (U3) that is the result of weaving U2 into U1.

(Certainly, U3 is just the new version of U1.) Other

extension mechanisms, namely aspect weaving, can only be

represented in UML as multiple inheritance if it is

acceptable to represent an aspect as a class. However, if

aspects are to be distinguished from classes, which are

intended to be, in aspect-oriented then it cannot define

aspect weaving as composition mechanisms in UML.

Connection

Refers to defining a behavior that is an interaction between

the behavior of multiple units. This is illustrated in Fig. 3.

The units either directly or indirectly invoking each other's

behavior affect this interaction. Connection is thus message

passing, and as such, it induces tight coupling between

units that send messages to each other.

Figure. 3. Connection

Coordination

Refers to defining a behavior that results from coordinating

the behavior of multiple units. This is illustrated in Fig. 4.

The coordination is performed by a communication channel

coordinator, which communicates with the units via a

control and/or a data channel. The units themselves do not

communicate directly with one another. Coordination thus

removes all coupling between the units, in contrast to

connection, which induces tight coupling through message

passing. Examples of coordination are data coordination

using tuple spaces [29], data coordination using data

connectors [30] for parallel processes or active

components, control coordination using orchestration [31]

for (web) services, and control coordination using

exogenous composition for encapsulated components.

Figure.4. Coordination

Tuple spaces are used in coordination languages to

coordinate parallel processes, by storing and sharing typed

data objects (tuples) between the processes. In contrast to

connection mechanisms, these processes communicate only

with the tuple space, but not directly or indirectly with each

other.

IV. SOFTWARE COMPOSITION IMPLEMENTATION

BASED ON AOP

Software engineering is a field of engineering that came

into existence owing to the various problems that

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 157

developers of software faced while developing software

project [48]. Software engineering and programming

languages exist in a mutual relationship support. The most

used design processes break a system down into a set of

small units. To implement these units, programming

languages provide mechanisms to define abstractions and

composition mechanisms in order to implement the desired

behavior [32]. A programming language coordinates well

with a software design when the provided abstraction and

composition mechanisms enable the developer to express

the design units. The most used abstraction mechanisms of

languages (such as procedures, functions, objects, classes)

are derived from the system functional decomposition and

can be grouped into a generalized procedure model [33].

However, many properties do not fit well into generalized

procedures such as exception handling, real-time

constraints, distribution, and concurrency control. They are

usually spread over into several system modules, affecting

performance and/or semantics systematically. When these

properties are implemented using an object-oriented or a

procedural language, their code is tangled with the basic

system functionality. It is hard to separate one concern

from another, see or analyze them as single units of

abstraction. This code tangling is responsible by part of the

complexity found in computer systems today. It increases

the dependencies among the functional modules, deviating

them from their original purposes, making them less

reusable and error-prone. This separation of concerns is a

fundamental issue in software engineering and it is used in

analysis, design, and implementation of computer systems.

However, the most used programming techniques do not

always present themselves in a satisfactory way regarding

this separation. Aspect-oriented programming allows

separation of these crosscutting concerns, in a natural and

clean way, using abstraction and composition mechanisms

to produce executable code. The aspect-oriented

programming main goal is to help the developer in the task

of clearly separate crosscutting concerns, using

mechanisms to abstract and compose them to produce the

desired system. The aspect-oriented programming extends

other programming techniques (object-oriented, structured,

functional etc.) that do not offer suitable abstractions to

deal with crosscutting [33]. AOP allows programmers to

have the advantage of modularization for cross cutting

concerns that are present in almost every part of software.

In OOPs like C++ or Java, class is considered as modular

unit. Similarly in AOP aspects provide the same

functionality to the cross cutting concerns which provides

functionality to more than one class [47]. An

implementation based on the aspect-oriented programming

paradigm is usually composed of:

a) A component language to program components (i.e.

classes);

b) One or more aspect languages to program aspects;

c) An aspect weaver to compose the programs written in

these languages;

d) Programs are written in the component language;

e) One or more programs written in the aspect language.

Components

Components (in AOP) are abstractions provided by a

language to implement systems basic functionality.

Procedures, function, classes, and objects are components

in aspect-oriented programming. They are originated from

functional decomposition. The language used to express

components could be an object-oriented, an imperative or a

functional one [34].

a) Aspects: Properties affecting several classes could not be

well-expressed using current notations and languages.

Aspects are expressed through code fragments that

spread over the system classes [35]. Some concerns that

are frequently aspects: concurrent objects

synchronization [36], distribution [37], exception

handling [38], coordination of multiple objects [39],

persistence, serialization, replication, security,

visualization, logging, tracing, load balance and fault

tolerance amongst others.

b) Component Language: The component language should

provide developers with mechanisms to write programs

implementing the basic requirements and do not predict

what is implemented in the aspects, this property is called

obliviousness [40]. Aspect-oriented programming is not

limited to object orientation, although, the most used

component languages are object-oriented ones, such as

Java, Smalltalk or C#.

c) Aspect language: The aspect language defines

mechanisms to implement crosscutting in a clear way,

providing constructions describe the aspect semantics

and behavior [33]. Some guidelines observed in the

specification of an AO language syntax, which must

relate to the component language syntax, the language

should be designed to specify the aspect in a concise and

compact way and the grammar should have elements to

allow composition of classes and aspects [41].

d) Aspect Weaver: The aspect weaver main responsibility

is to process aspect and component languages, in order to

produce the desired operation. To do that, it is essential

the join-point concept. A join-point is a well-defined

point in the execution or structure of a program. For

instance, in object-oriented programs join-points could

be method-calling, constructor calling, field read/write

operations etc. The representation of those points could

be generated in runtime using a reflective environment.

In this case, the aspect language is implemented through

meta-objects, activated at method invocations, using join-

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 158

points and aspects information to weave the arguments

[42]. An aspect-oriented system design requires

knowledge about what should be in classes and in

aspects, as well as characteristics shared in both.

Although aspect-oriented and object-oriented languages

have different abstraction and composition mechanisms,

they should use some common terms, allowing the

weaver to compose the different programs. The weaver

parses aspect programs and collects information about

the (join) points referenced by the program. Afterward, it

locates coordination points between the languages,

weaving the code to implement what is specified in them

[43]. An example of a weaver implementation is a pre-

processor that traverse the classes parsing tree, looking

for joint-points and inserting sentences declared in the

aspects. This weaving process could be static i.e. compile

time or dynamic i.e. load and runtime.

V. CONCLUSION

The main conclusion of the study and the aim of this paper

is to contribute to the understanding of software

composition, and eventually the existence of software

composition in aspect-oriented programming in a more

general context. To this extent, we have proposed and

illustrated a systematic approach to analyzing software

composition in a detailed and concrete manner. We have

mentioned the key points of software composition

implementation based on aspect-oriented programming.

VI. ABBREVIATIONS AND ACRONYMS

Following abbreviations and acronyms used in the given

paper listed below.

[1] AOP- Aspect Oriented Programming

[2] CBD- Component-based Software Development

[3] ADL- Architecture Description Language

[4] UML-Unified Modeling Language

ACKNOWLEDGMENT

We thank the Babasaheb Ambedkar Research and Training

Institute (BARTI), Pune for funding our research.

REFERENCES

[1] Christian Becker and Kurt Geihs. Quality of service - aspects of

distributed programs. In Int'l Workshop on Aspect-Oriented

Programming (ICSE 1998), April 1998.

[2] G. Bracha and W. Cook. Mixin-based inheritance. In Proc.

OOPSLA/ ECOOP 90, pages 303–311. ACM Press, 1990.

[3] O. Nierstrasz and D. Tsichritzis, editors. Object-Oriented

Software Composition. Prentice-Hall International, 1995.

[4] M. Shaw and D. Garlan. Software Architecture: Perspectives on

an Emerging Discipline. Prentice Hall, 1996.

[5] J. Sametinger. Software Engineering with Reusable

Components. Springer-Verlag, 1997.

[6] G. Kiczales et al. Aspect-oriented programming. In Proc.

ECOOP 97, pages 220–242. Springer-Verlag, 1997.

[7] C. Szyperski. Universe of composition. Software Development,

August 2002.

[8] C. Szyperski, D. Gruntz, and S. Murer. Component Software:

Beyond Object-Oriented Programming. Addison-Wesley,

second edition, 2002.

[9] G. Alonso et al. Web Services: Concepts, Architectures and

Applications. Springer-Verlag, 2004.

[10] S. Ducasse et al. Traits: A mechanism for fine-grained reuse.

ACM Trans. Prog. Lang. Syst., 28(2):331–388, 2006.

[11] U. Assman. Invasive Software Composition. Springer Verlag,

2003.

[12] C. Prehofer. Feature-oriented programming: A fresh look at

objects. In Proc. ECOOP’97, pages 419–443. Springer-Verlag,

2002.

[13] H. Ossher et al. Specifying subject-oriented composition.

Theory. Pract. Object Syst., 2(3):179–202, 1996.

[14] M. Buchi and W. Weck. Compound types for Java. In Proc.

OOPSLA 98, pages 362–373. ACM Press, 1998.

[15] J.-G. Schneider and O. Nierstrasz. Components, scripts and

glue. In Software Architectures – Advances and Applications,

pages 13–25. Springer-Verlag, 1999.

[16] L. Bass, P. Clements, and R. Kazman. Software Architecture in

Practice. Addison-Wesley, 2nd edition, 2003.

[17] Kung-Kiu Lau and Tauseef Rana School of Computer Science,

The University of Manchester, Manchester M13 9PL, UK, A

Taxonomy of Software Composition Mechanisms.

[18] O. Nierstrasz and L. Dami. Component-oriented software

technology. In [35], pages 3–28. Prentice-Hall, 1995.

[19] J.K. Ousterhout. Scripting: Higher-level programming for the

21
st
 century. Computer, 31(3):23–30, 1998.

[20] F. DeRemer and H.H. Kron. Programming-in-the-large versus

programming-in-the-small. IEEE Trans. Soft. Eng., 2(2):80–86,

1976.

[21] R. Prieto-Diaz and J.M. Neighbors. Module interconnection

languages. Journal of System and Software, 6(4):307–334,

1987.

[22] F. Achermann et al. Piccola – a small composition language. In

Formal Methods for Distributed Processing – A Survey of

Object-Oriented Approaches, pages 403–426. Cambridge

University Press, 2001

[23] G.T. Heineman and W.T. Councill, editors. Component-Based

Software Engineering: Putting the Pieces Together. Addison-

Wesley, 2001.

[24] K.-K. Lau and Z. Wang. Software component models. IEEE

Trans. On Soft. Eng., 33(10):709–724, 2007.

[25] M. Broy et al. What characterizes a software component?

Software – Concepts and Tools, 19(1):49–56, 1998.

[26] P.C. Clements. A survey of architecture description languages.

In 8
th
 Int. Workshop on Soft. Spec.and Design, pages 16–25.

ACM, 1996.

[27] N. Medvidovic and R. N. Taylor. A classification and

comparison framework for software architecture description

languages. IEEE Trans on Soft. Eng., 26(1):70–93, 2000.

[28] G. Kiczales et al. An overview of AspectJ. In Proc. ECOOP 01,

pages 327–353. Springer-Verlag, 2001.

[29] N. Carriero and D. Gelernter. Linda in context. Comm. ACM,

32(4):444–458, 1989.

[30] F. Arbab. Reo: a channel-based coordination model for

component composition. Math. Struct. in Comp. Sci.,

14(3):329–366, 2004.

[31] T. Erl. Service-Oriented Architecture: Concepts, Technology,

and Design.Prentice Hall, 2005.

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 159

[32] Christian Becker and Kurt Geihs. Quality of service - aspects of

distributed programs. In Int'l Workshop on Aspect-Oriented

Programming (ICSE 1998), April 1998.

[33] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris

Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.

Aspect-oriented programming. In Mehmet Aksit and Satoshi

Matsuoka, editors, 11th European Conf. Object-Oriented

Programming, volume 1241 of LNCS, pages 220–242. Springer

Verlag, 1997.

[34] B. Tekinerdogan and M. Aksit. Deriving design aspects from

canonical models. In Workshop on Aspect-Oriented

Programming (ECOOP 1998) [1].

[35] Krzystof Czarnecki and Ulrich W. Eisenecker. Generative

Programming: Methods, Tools, and Applications. Addison-

Wesley, Boston, 2000.

[36] John Dempsey and Vinny Cahill. Aspects of system support for

distributed computing. In Workshop on Aspect-Oriented

Programming (ECOOP 1997), June 1997.

[37] Cristina Videira Lopes. D: A Language Framework for

Distributed Programming. PhD thesis, College of Computer

Science, Northeastern University, 1997.

[38] H. Ossher and P. Tarr. Operation-level composition: A case in

(join) point. In Workshop on Aspect-Oriented Programming

(ECOOP 1998) [1].

[39] William Harrison and Harold Ossher. Subject-oriented

programming—a critique of pure objects. In Proc. 1993 Conf.

Object-Oriented Programming Systems, Languages, and

Applications, pages 411–428, Sep 1993.

[40] R. E. Filman and D. P. Friedman. Aspect-oriented programming

is quantification and obliviousness. In Workshop on Advanced

Separation of Concerns (OOPSLA 2000), October2000.

[41] Kai B¨ollert. On weaving aspects. In Int’l Workshop on Aspect-

Oriented Programming (ECOOP 1999), June 1999.

[42] Anurag Mendhekar, Gregor Kiczales, and John Lamping. RG:

A case study for aspect-oriented programming. Technical

Report SPL-97-009, Palo Alto Research Center, 1997.

[43] K. B¨ollert. Aspect-oriented programming case study: System

management application. In Workshop on Aspect-Oriented

Programming (ECOOP 1998) [1].

[44] C. Szyperski. Back to universe. Software Development,

September 2002.

[45] C. Szyperski. Universe of composition. Software Development,

August 2002.

[46] C. Szyperski, D. Gruntz, and S. Murer. Component Software:

Beyond Object-Oriented Programming. Addison-Wesley,

second edition, 2002.

[47] Jatin Arora, Jagandeep Singh Sidhu and Pavneet Kaur,

"Applying Dependency Injection Through AOP Programming

to Analyze the Performance of OS", International Journal of

Computer Sciences and Engineering, Vol.3, Issue.2, pp.45-50,

2015.

[48] Biswajit Saha, Debaprasad Mukherjee, "Analysis of

Applications of Object Orientation to Software Engineering,

Data Warehousing and Teaching Methodologies", International

Journal of Computer Sciences and Engineering, Vol.5, Issue.9,

pp.244-248, 2017.

[49] Maushumi Lahon and Uzzal Sharma, "The Intricacies of

Software Component Composition", International Journal of

Computer Sciences and Engineering, Vol.03, Issue.01, pp.111-

117, 2015.

Authors Profile

Priyanka Sarode awarded B.Sc. degree in

2006 and MCA degree in 2009 from

Rashtrasant Tukdoji Maharaj Nagpur

University, Nagpur. Currently she is

pursuing Ph.D. in Computer Science and a

research fellow at Inter Institutional

Computer Center, Rashtrasant Tukdoji Maharaj Nagpur

University, and Nagpur. Her research work is

acknowledged by BARTI, Pune. Her main research work

focuses on Programming languages, Aspect Oriented

Programming. Mail Id: priya.s1011@gmail.com Mobile

No. 950386998

Ravikant Jugele is a M.Sc. in Computer

Science from Marthwada University,

Aurangabad in 1993. He also completed Ph.

D. in Computer Science from Rashtrasant

Tukdoji Maharaj Nagpur University. He is

currently working as an Associate Professor

in Department of Computer Science, Shivaji Science

College, Congress nagar, Nagpur. Since 1995, his research

interests include Multimedia and Hypermedia, cloud

computing, Programming languages, Artificial Intelligence,

Deep Technology and so on. Mail Id:

rn_jugele@yahoo.com.

