
 © 2018, IJCSE All Rights Reserved 151

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-8, Aug 2018 E-ISSN: 2347-2693

Evaluating Techniques for Pre-Processing of Unstructured Text For Text

Classification

Susan Koshy

1*
, R. Padmajavalli

2

1
Bharathiar University, Coimbatore, Tamil Nadu, India

1
Department of Computer Science, St. Thomas College of Arts and Science, Chennai, India.

2
Department of Computer Applications, Bhaktavatsalam Memorial College for Women, Chennai, India

*Corresponding Author: susanabraham90@gmail.com

Available online at: www.ijcseonline.org

Accepted: 12/Aug/2018, Published: 31/Aug/2018

Abstract –The availability of digital information over the internet can be analyzed for knowledge discovery and intelligent

decision making. Text categorization is an important and extensively studied problem in machine learning. Text classification

or grouping of text into appropriate categories requires pre-processing techniques and machine learning algorithms. Pre-

processing or data cleaning involves removal of html characters, tokenization, stop words removal, stemming, lemmatization

and advanced processes such as parts of speech tagging followed by representation in appropriate form for machine learning.

This paper experimentally evaluates the impact of stemming and tokenization techniques on text classification on five text

datasets.

Keywords—Tokenisation, stemming, parts of speech tagging, document representation, vector space model

I. INTRODUCTION

The exponential increase in availability of digital information

like emails, journals, electronic-books, news and social media

can be analysed and useful information extracted. This

requires automated text classification and can be used for

solving business issues. The task of text classification is to

assign the text documents into one or more pre-defined

groups. Some of the applications are obtaining the sentiment

from social media, identifying spam and non-spam emails,

automatic tagging of customer queries and complaints and

classification of news articles into pre-defined topics. Pre-

processing is the first and most central step before text

categorization. The significance of preprocessing is due to

the fact that each type of text is highly unstructured and not

of uniform standard for example, social media data has

informal communication like typing errors, bad grammar,

usage of slang words, unwanted content like URLs address

and html tags. These have to be removed in order to find

patterns. This requires a lot of time before actual text

classification can be performed. The following steps are

performed as follows - first the documents for analysis are

retrieved. Next natural language processing is used to

convert raw text using structural, statistical and linguistic

techniques. Statistical pattern-matching and similarity

techniques are employed to classify documents to a specified

group or label. Finally machine learning algorithms are

applied and the classification model is evaluated for its

performance.

 The first section of this paper discusses related work, the

next section is the pre-processing of text and discusses basic

processing, stemming techniques in particular followed by

document representation. The next section is the

experimental evaluation of five text datasets using pre-

processing techniques followed by classification. The results

are tabulated followed by conclusion.

II. RELATED WORK

William B. Frakes and Christopher J Fox (2003) evaluated

the strength and similarity among four affix removal

stemming algorithms and were evaluated based on the

Hamming distance measure [1].

 Julie Beth Lovins in her paper “Development of a

Stemming Algorithm” in 1968 discussed important linguistic

issues in stemming and the variation in spelling of stems and

many viable programming solutions are proposed [2].

Chris D. Paice in “An Evaluation Method for Stemming

Algorithms” in 1994 describes a technique in which

stemming performance is evaluated against predefine

concept groups of words using three stemming algorithms

[5].

MF Porter in his paper “An Algorithm for Suffix Stripping”

in 1980 developed an algorithm for suffix stripping and it

performs slightly better than a much more elaborate system.

The removed suffix depends upon the form of the remaining

stem and considers the length of the syllable [6].

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 152

Leon Derczynski et al. in their paper “Twitter Part-of-Speech

Tagging for All: Overcoming Sparse and Noisy Data” in

2013 presented a detailed error analysis of existing taggers

when analysing Twitter text which is noisy, with linguistic

errors [9].

 Anjali Ganesh Jivani in her paper “A comparative study

of stemming algorithms" in 2011 has discussed different

methods of stemming algorithms and their comparisons and

has highlighted the advantages and disadvantages in their

applications [10].

Majumder, Prasenjit, et al. in the paper "YASS: Yet another

suffix stripper", in 2007 describe an technique which is

clustering-based to find out similar classes of root words and

their various other forms. This approach was compared with

Porter and Lovins stemmer and its performance was on par

[11].

III. PRE-PROCESSING TEXT

The text data needs to be cleaned before applying any

machine learning algorithms. The pre-processing of text

involves basic data cleaning like tokenization, removal of

html characters, stop words removal, stemming,

lemmatization and advanced processes such as parts of

speech tagging. The tokenized words are represented as term

vectors in order for machine learning algorithms to be

applied. It is important to choose representative words to

describe the meaning, and remove words that do not enable

to differentiate between the documents. The type of pre-

processing will depend on the problem and not all pre-

processing activities need to be done. For example

converting all the text to lower case cannot be applied always

because if “US” is the actual text which means United States

and if it is preprocessed to lower case it becomes “us” and

the meaning changes. Similarly while tokenizing all white

spaces if removed to get tokens will result in loss of

meaning.

A. Basic data cleaning or noise removal

Tokenization is the first step to break the stream of characters

into words called tokens. The tokenizer has to be customized

according to the need of the application because most

languages and particular domains have unusual specific

tokens that need to be recognized as terms e.g., “Tamil

Nadu”, “Uttar Pradesh”, “San Francisco” which have to be

treated as one word although there is a white space.

Figure 1 Text Pre-processing techniques

Raw text

Tokenization

Stop word removal, punctuation, white space removal

Parts of speech tagging

Stemming

Document representation (Bag of words, TF/IDF)

Feature selection Data ready for Machine learning algorithms

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 153

Removal of Stop-words: the commonly occurring words

(stop-words) should be removed. This can be done by

creating a long list of stop-words or predefined language

specific libraries available in programming languages such as

Python and R can be used.

Removal of Punctuations: Important punctuations have to be

retained while others need to be removed for example the full

stop after Dr is retained.

Split Attached Words: In social forums text data contain

informal words which may have to be split using simple

rules. Similarly slangs have to be converted using look up

dictionary.

The above are some of the methods to standardize the

documents from their raw form and appropriate methods are

available in standard programming languages such as

PYTHON and R to do the basic data cleaning.

B. Stemming

Stemming is the combining of the variant forms of a word

into a single representation called the stem or root. For

example, the words “combination”, “combined” and

“combining” could all be stemmed to “combine”. The stem

need not be a valid word, alternatively it must capture the

meaning of the word. Stemming helps to find morphological

variants of terms. Conflation can be done manually using

regular expressions or use programs called stemmers.

Stemming is a lexicon normalization step and required to

covert the high dimensional features that are different

representation of the same word into lower dimensional

feature. Stemming algorithms can be either when the affix is

removed or where there is a table or list which is referred [7].

Types of stemming

1. Affix removal algorithms use the approach of removing

suffixes and/or prefixes from terms resulting in a stem. These

algorithms occasionally transform the resultant stem. A

common example of an affix removal stemmer is removal of

plurals from terms [1]. A set of rules for such a stemmer

according to (Harman 1991) is as follows.

Example

If a word ends in "ies” it is replaced with “y” provided there

is no “e” or “a” before the “ies”

2. Successor variety stemmers developed by Hafer and Weiss

in 1974 uses a list of letters in a text corpus as the basis of

stemming.

Example

Test Word: CAPABLE

Corpus: ABLE, APE, CAPABILITY, CABLE,

CAPACITY, CAPS, CAP, COPE, PIPE,CAPABLE

Prefix Successor Variety Letters

C 2 A,O

CA 2 B,P

CAP 1 A

CAPA 2 B,C

CAPAB 2 I, L

CAPABL 1 L

CAPABLE 0 BLANK

If the prefix is ‘C’ the number of letters which follow it in

the corpus are listed in the successor variety which is 2

(ABLE, APE, CAPABILITY, CABLE, CAPACITY, CAPS,

CAP, COPE, PIPE, CAPABLE) that is A and O of which

‘A’ occurs maximum and hence ‘CA’ becomes the new

prefix. The steps are repeated till there are no more words in

corpus.

3. Table Lookup stemming stores a table of index terms and

their roots using a B Tree or Hash Table. The problem with

this approach is that it is domain dependent as each domain

has its own particular vocabulary . It also requires large

overhead storage and the computation is expensive.

Example

Term Stem

stemming stem

stemmed stem

stems stem

4.N-grams is a stemming reported by Adamson and Boreham

(1974) which is the method of conflating terms called the

shared digram method. A pair of consecutive letters is called

digram. Since trigrams, or n-grams could be used, it is

known as the n-gram method.

Example

computer => co om mp pu ut te er

unique digrams = co om mp pu ut te er (7 unique digrams for

the word ‘computer’)

Stemming algorithms

Figure 2 Stemming Algorithms

Stemming algorithm

Rule
Based

Statistical Mixed

Lovins

Porter

Paice/Husk

Dawson

N gram
YASS

GRAS

Inflectional

(Krovetz

Xerox)
Corpus based

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 154

1. Rule Based

Lovins stemmer is a rule based context sensitive stemmer

proposed in 1968. It is language independent and works on

the principle of storing a list of suffixes for matching the

words with the text document. It executes by searching a

lookup table having 294 endings, 29 conditions and 35 rules

of transformation. The disadvantage of this stemmer is over

stemming of words [2]. Table 1 is the output for raw text

when Lovins and Snowball stemmer are applied using

WEKA [12].

Table 1 Output of LOVINS stemmer and SNOWBALL

stemmer on sample text using WEKA

PlainText

LOVINS

stemmer SNOWBALL

wordtokenizer /ngram tokenizer

 'We are

admiring' admir 'We are admiring'

 'It is

awesome' awesom 'It is awesome'

 'You must

dispose' dispos 'You must dispose'

 'It is

irritating' irritit 'It is irritating'

 'I am loving' lov 'I am loving'

 'I am

placed' plac 'I am placed'

Porters stemming algorithm is one of the most popular

stemming methods proposed in 1980. It is based approach

that the suffixes in the English language about 1200 are made

up of a combination of smaller and simpler suffixes. There

are five steps and rules are applied at each step until one of

the conditions is satisfied [6]. Porter algorithm is made in

the assumption of the absence of a stem dictionary. The

program is given an explicit list of suffixes and with each

suffix the condition for it to be removed from a word to leave

a valid stem.

 An example of errors in stemming is as follows

SAND SANDER are conflated and the stem is SAND

WAND WANDER are conflated and the stem is WAND

In the above example suffix removal will alter the meaning

of the word and in which case it is not meaningful. The

success rate for suffix removal will not be 100% and if more

rules are added it will increase the performance in one area

of vocabulary but there will be equal degradation elsewhere.

Table 2 is the output for raw text when Porter stemmer is

implemented using Java.

Table 2 Text before and after using PORTER stemming

algorithm using JAVA

Plain Text

After Porter

Stemming

discovery discoveri

(KDT) kdt

knowledge knowledg

intelligent intellig

analysis analysi

Snowball Stemmer is used for stemming and developed by

M.F. Porter in 2001 to address the drawbacks of the porters

stemming algorithm. T can be used for languages other an

English.

Paice/Husk Stemmer is an iterative, rule based algorithm

with 120 rules which are ordered by the last letter of a suffix.

Every iteration step tries to locate a rule in order to delete or

replace an ending. It is simple and over stemming is its

disadvantage [5].

Dawson Stemmer and Lovins approach are alike and it

covers a an extensive list of almost 1200 suffixes. It is a

single pass stemmer and is swift. The suffixes are stored and

ordered by their length and last letter in the reverse order. It

is a very complex stemmer and is wanting in reusable

implementation.

2. Statistical

N-Gram Stemmer is a language independent method and

string-similarity technique is used to convert word inflation

to its stem. An n-gram is a set of n consecutive characters

extracted from a word. The stemmer has the disadvantage

that it requires a large amount of memory and storage for

creating and storing the n-grams and hence is not a very

practical approach [3].

YASS and GRAS: Yet another suffix stemmer(YASS) and

Graph based stemmer(GRAS) are statistical context free

algorithms. They are both language independent. In YASS

algorithm the string distance measure is used to check the

similarity between two words and if the distance is less it

shows that the words are similar. GRAS is modeled as a

graph and words are represented as nodes and edges connect

related nodes. It is computationally less expensive and

language independent. The usefulness of stemming depends

largely on the application need as there is a chance of over

stemming and under stemming.

3. Inflectional/Mixed stemming

This is another methodology to stemming and it involves

both the inflectional and modification of words to express

different meaning and derivational morphology analysis. In

inflectional stemming the variations of the word are related

to the language specific syntactic patterns like plural, gender,

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 155

case, and voice, tense and in derivational the word variants

are related to the part-of-speech (POS) of a sentence in which

the word occurs.

Krovetz Stemmer (KSTEM) was released in 1993 by Robert

Krovetz and is a linguistic based lexical validation stemmer.

It is based on inflectional property of words and the syntax of

languages, it is very complex in nature. This stemmer

transforming the plurals of a word to its singular form

converts the tense of a word from past to present and

removes the suffix ‘ing’ from words. This is done by

checking with a dictionary. These stemmers have the ability

to produce morphologically correct stems, handle exceptions

and process prefixes/ suffixes.

C. Advanced text pre-processing

Lemmatization is similar to stemming but is a more

organized procedure of obtaining the root form of the word

and makes use of vocabulary from dictionary, importance of

words and morphological analysis which is word structure

and grammar relations [4].

Parts of speech tagging are useful because of the enormous

information they provide about a word and its neighbours.

Knowledge of parts of speech, that is noun or verb will

indicate its neighbouring words. For example nouns are

preceded by determiners (‘The man’) and adjectives and

verbs are preceded by nouns (‘beautiful dress’). Parts of

speech are valuable information features for finding named

entities like people or organizations in text and other

information extraction tasks. There are training sets for POS

tagging namely the Brown Corpus and Penn TreeBank which

is commonly used in natural language processing. The tags

in Penn Tree Bank are given in Table 3.

Table 3 Partial List of Penn TreeBank

Tag Description Example

CC conjunction,

coordinating

and, or, but

DT determiner the, a, these

IN conjunction,

subordinating

or

preposition

of, on, under,

with

JJ adjective pretty, tough

JJR adjective,

comparative

prettier,

tougher

JJS adjective,

superlative

prettiest,

toughest

NN noun,

singular

lion, table,

banter

NNS noun, plural lions, tables,

ants

The following method is used in python programming

language to obtain the parts of speech for a given text using

the Natural Language Tool kit package. The raw text is first

tokenized and then POS tagging method is done.

Example syntax using python

>>>text=word_tokenize (“They refuse to permit us to obtain

the refuse permit”)

>>>nltk.pos_tag(text)

Output =

[(‘They’,‘PRP’),(‘refuse’,’VBP’),(‘to’,’TO’),(‘permit’,’VB’),

(‘us’,’PRP’),(‘to’,’TO’),(‘obtain’,

’VB’),(‘the’,’DT’),(‘refuse’,’NN’),(‘permit’,’NN’)]

This example uses the same word ‘refuse’ both as a noun and

verb and only through Parts of speech they can be identified.

The words refuse and permit both appear as a present tense

verb (VBP) and a noun (NN).Parts of speech tagging is

useful to identify sentiment in text for sentiment analysis.

After performing parts of speech tagging the data is of

the form (word, tag) and is an association between a word

and a part-of-speech tag. The program should assign a tag to

a word and the tag is the most likely part of speech in a given

context. This is similar to mapping from words to tags. The

Mapping has to be stored using an associative array or hash

array and in some programming languages as a dictionary.

IV. DOCUMENT REPRESENTATION

Bag-of-words and vector space model

When using machine learning we cannot work with text

directly and they have to be converted to numbers. Therefore

documents have to be converted to fixed-length vectors of

numbers. The bag of words model does not consider the

order of information in the words and focuses on the

occurrence of words in a document. Each word is assigned a

unique number. Then any document can be encoded as a

fixed-length vector with the length of the vocabulary of

known words. The value in each position in the vector can be

filled with the number or frequency of each word in the

encoded document. An alternative to word frequencies is

called Term frequency –Inverse document frequency. Term

Frequency summarizes how often a given word appears

within a document as in Table 4. Inverse Document

Frequency scales words that appear often across documents.

TF-IDF highlight words that are more interesting, e.g.

frequent in a document but not across documents. The bag of

words model uses all words in a document as features and

the dimension of the feature space will be the number of

words present in the document. In some methods weights are

given to the features one when a word is present and zero if

the word is not present in the document [8].

 A measure for determining the importance of a word(t)

in a document(d) on the basis of how often it appeared in the

document and a given collection of documents are term

frequency(tf) and inverse document frequency(idf). The

logic for this measure is that if a word appears frequently in a

document, it is given a high score. But if a word appears in

many other documents, it is not a unique identifier and

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 156

therefore we should assign a lower score to that word. tf(t,d)

is the number of times each word appeared in each

document. Inverse document frequency determines the

amount of information a word provides. It identifies if a term

is common or rare across all documents. It is the log of the

inverse fraction of the documents that contain a word

obtained by the division of the total number of documents

containing the word

|}:{1|
log),(

dtDd

N
dtidf


 (1)

where N is the number of documents in the corpus N=|D| and
{ } is the number of documents where the term is

present.

),(*),(),,(DtidfdttfDdtidfTf  (2)

A high weight in tf-idf is obtained by a high word frequency

in the document and a low document frequency of the word

in the whole collection of documents. The weights filter out

common words. Since the ratio inside the idf's log function is

always more than or equal to 1, the value of idf and tf-idf is

larger than or equal to 0 when the word occurs many times in

a document.

Example

Assume a document containing 100 words in which a

word ‘mouse’ appears 3 times. The term frequency (i.e., tf)

for ‘mouse’ is (3 / 100) = 0.03. If there are 5000 documents

and the word ‘mouse’ appears in a 5 of these. Then, the

inverse document frequency (i.e., idf) is calculated as log

(5000 / 5) = 3. Therefore, the Tf-idf weight is the product of

these quantities: 0.03 *3 = 0.09.

Table 4 Term document matrix

Features/terms

D
o

cu
m

en
ts

 t1 t2 t3 t4 t5 … tn

d1 1 0 0 0 1

0

d2 1 1 0 1 1

0

d3 0 0 1 0 1

0

d4 0 0 1 1 0

1

d5 0 1 0 0 0

1

…

dm 1 0 0 0 1 1

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 157

Table 5 Comparison of classification results on text datasets for different stemmers and different tokenizers

Eval

Metric Stemmer

Movie review

D1

Hotel Review

D2

Food review

D3

Twitter review

D4

Amazon

D5

J48 classifiers

Tokenizers (Word tokenizer, alphabetic tokenizer, N Gram tokenizer

WT AT N T WT AT N T WT AT N T WT AT N T WT AT N T

CC

Null 92.52 89.77 92.66 95.85 95.65 96.95 49.94 49.94 49.94 60.69 60.69 60.69 67.62 67.62 67.62

Iterative 92.06 89.31 92.48 96.6 95.95 96.45 49.94 49.94 49.94 60.69 60.69 60.69 67.62 67.62 67.62

Lovins 91.92 89.2 92.59 95.8 96.05 96.55 49.94 49.94 49.94 60.69 60.69 60.69 67.62 67.62 67.62

Snow 92.52 89.77 92.66 95.85 95.65 96.95 49.94 49.94 49.94 60.69 60.69 60.69 67.62 67.62 67.62

KS

Null 0.632 0.44 0.642 0.917 0.913 0.939 0 0 0 0 0 0 0 0 0

Iterative 0.601 0.396 0.631 0.932 0.919 0.929 0 0 0 0 0 0 0 0 0

Lovins 0.595 0.396 0.639 0.916 0.921 0.931 0 0 0 0 0 0 0 0 0

Snow 0.632 0.44 0.642 0.917 0.913 0.939 0 0 0 0 0 0 0 0 0

MAE

Null 0.137 0.182 0.133 0.068 0.074 0.052 0.402 0.402 0.402 0.346 0.346 0.346 0.198 0.198 0.198

Iterative 0.144 0.19 0.135 0.059 0.071 0.062 0.402 0.402 0.402 0.346 0.346 0.346 0.198 0.198 0.198

Lovins 0.146 0.191 0.133 0.073 0.068 0.06 0.402 0.402 0.402 0.346 0.346 0.346 0.198 0.198 0.198

Snow 0.137 0.182 0.133 0.068 0.074 0.052 0.402 0.402 0.402 0.346 0.346 0.346 0.198 0.198 0.198

RMSE

Null 0.261 0.301 0.258 0.185 0.192 0.161 0.449 0.449 0.449 0.416 0.416 0.416 0.315 0.315 0.315

Iterative 0.268 0.308 0.26 0.171 0.189 0.176 0.449 0.449 0.449 0.416 0.416 0.416 0.315 0.315 0.315

Lovins 0.271 0.309 0.258 0.191 0.184 0.173 0.449 0.449 0.449 0.416 0.416 0.416 0.315 0.315 0.315

Snow 0.261 0.301 0.258 0.185 0.192 0.161 0.449 0.449 0.449 0.416 0.416 0.416 0.315 0.315 0.315

Table 6 Comparison of classification results on text datasets using Instance based K nearest classifier IBK

 IBK Classifier

Evalation metrics

Movie

review(D1)

Hotel

reviews(D2)

Food

reviews(D3)

Twitter

reviews(D4)

Amazon

reviews(D5)

Correctly Clas(CC) 100 100 99.84 99.93 99.92

Kappa Statistic(KS) 1 1 0.99 0.99 0.99

Mean Abs Err(MAE) 0.0005 0.0005 0.0014 0.0007 0.0006

Rt Mean Sq

Err(RMSE) 0.0005 0.0005 0.0236 0.0161 0.0146

Table 7 List of text datasets

Text datasets

No of

instances

Movie reviews(D1) 2834

Hotel reviews(D2) 2000

Food reviews(D3) 4998

Twitter reviews(D4) 8918

Amazon product

reviews(D5) 10261

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 158

V. EXPERIMENTATION AND RESULTS

 The experiments were performed using WEKA [15] an open

source software issued under the GNU General Public

License. Text reviews of movies, hotel, food, twitter product

reviews and amazon product reviews have been used for

experimental evaluation. The five text datasets have been

obtained from various online sources are given in Table 7

[13] [14]. The datasets are in CSV file format. The dataset is

loaded and class attribute assigned. Filtered classifier is

chosen for classification and J48 classifier is used. A string

to word vector unsupervised attribute filter was chosen and

four stemmers including null stemmer which is a dummy

stemmer are applied. The four stemmers are Iterated

LOVINS (ITLovins), LOVINS, Null stemmer and

SNOWBALL. In addition for each stemmer three tokenizers

were chosen for analysis namely Alphabetic Tokenizer(AT),

N Gram tokenizer(NG) and Word Tokenizer(WT). In all 120

evaluations were done. Evaluation metrics chosen for

comparison were Correctly classified instances (CC), Kappa

Statistics(KS), Mean Absolute error (MAE) and Root Mean

Squared error (RMSE).

 Kappa statistics should be close to 1 and root mean

squared error and mean squared error should be close to 0 for

a good classifier.

 The movie reviews and hotel reviews datasets having

2834 and 2000 instances respectively have been negligibly

been influenced by the stemmer and tokenizer when

classification is performed.

 Datasets with larger number of instances namely food

reviews, twitter product reviews and amazon product reviews

do not exhibit any change in classification metrics for the J48

classifier for different stemmers or different tokenizers as can

be seen in Table 5. Fig 3 to 6 is the graphical representation

of Table 5. The correctly classified instances are high for

only first two small datasets when the J48 classifier is used.

Similarly they have exhibited high kappa statistic and low

errors. The reason can point to the fact that they contain

fewer instances. When IBK classifier(Instance based K

nearest neighbor) is used, the evaluation metrics is

uniformly improved for all the five datasets irrespective of

stemmer or tokenizer for pre-processing, as given in Table 6

and Fig 7. All the evaluation metrics namely correctly

classified instances, kappa statistic have increased and the

mean absolute error and root mean squared error have

decreased when IBK classifier is used.

`

Figure 3 Correctly classified instances for J48 classifier

(Table 5)

Figure 4 Kappa statistics for J48 classifier (Table 5)

0

20

40

60

80

100

120

0

20

40

60

80

100

120

W

T

A

T

N

T

W

T

A

T

N

T

W

T

A

T

N

T

W

T

A

T

N

T

W

T

A

T

N

T

D1 D2 D3 D4 D5

CC Null CC Iterative CC Lovins CC Snow

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W

T

A

T

N

T

W

T

A

T

N

T

W

T

A

T

N

T

W

T

A

T

N

T

W

T

A

T

N

T

D1 D2 D3 D4 D5

KS Null KS Iterative KS Lovins KS Snow

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 159

Figure 5 Mean Absolute errors for J48 classifier (Table 5)

Figure 6 Root Mean Square Error for J48 classifier (Table 5)

Figure 7 All the evaluation metrics for IBK classifier (Table

6)

VI. CONCLUSION

The purpose of text pre-processing is to clean

unstructured raw text and structuring it into a form for

machine learning algorithms to be applied. The impact of

different stemming and tokenistion techniques on text

classification has been evaluated in this paper. Stemming and

tokenisation enable to reduce the words to their root form

and in turn the dimension of the dataset.

In this paper five text datasets were used to compare

the effect of different stemmers and tokenizers on the

evaluation metrics of text classification.. Datasets with

larger number instances namely food reviews, twitter product

reviews and amazon product reviews do not have a huge

impact on classification metrics for the J48 classifier for

different stemmers or different tokenizers. When IBK

classifier (Instance based K nearest neighbor) is used the

performance is uniformly improved for all the five datasets

irrespective of stemmer or tokenizer used. This also validates

previous study that the choice of stemmer does not affect

classification [16].

REFERENCES

[1] Frakes William B. “Strength and similarity of affix removal

stemming algorithms”. ACM SIGIR Forum, Volume 37, No. 1.

2003, 26-30.

[2] J. B. Lovins, “Development of a stemming algorithm,”

Mechanical Translation and Computer Linguistic., vol.11, no.1/2,

pp. 22-31, 1968.

[3] Mayfield James and McNamee Paul. “Single Ngram stemming”.

Proceedings of the 26th annual international ACM SIGIR

conference on Research and development in information retrieval.

2003, 415-416.

[4] Mladenic Dunja. “Automatic word lemmatization”. Proceedings

B of the 5th International Multi- Conference Information Society

IS. 2002, 153-159.

[5] Paice Chris D. “An evaluation method for stemming algorithms”.

Proceedings of the 17th annual international ACM SIGIR

conference on Research and development in information retrieval.

1994, 42- 50.

[6] Porter M.F. “An algorithm for suffix stripping”. Program. 1980;

14, 130-137. Porter M.F. “Snowball: A language for stemming

algorithms”. 2001.

[7] Hull David A. and Grefenstette Gregory. “A detailed analysis of

English stemming algorithms”. Rank Xerox ResearchCenter

Technical Report. 1996. (2002) The IEEE website. [Online].

Available: http://www.ieee.org/

[8] Han, Jiawei, Jian Pei, and Micheline Kamber. Data mining:

concepts and techniques. Elsevier, 2011

[9] Derczynski, Leon, et al. "Twitter part-of-speech tagging for all:

Overcoming sparse and noisy data." Proceedings of the

International Conference Recent Advances in Natural Language

Processing RANLP 2013. 2013.

[10] Jivani, Anjali Ganesh. "A comparative study of stemming

algorithms." Int. J. Comp. Tech. Appl 2.6 (2011): 1930-1938.

[11] Majumder, Prasenjit, et al. "YASS: Yet another suffix

stripper." ACM transactions on information systems (TOIS) 25.4

(2007): 18.

[12] Eibe Frank, Mark A. Hall, and Ian H. Witten (2016). The WEKA

Workbench. Online Appendix for "Data Mining: Practical

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

W

T

A

T

N

T

W

T

A

T

N

T

W

T

A

T

N

T

W

T

A

T

N

T

W

T

A

T

N

T

D1 D2 D3 D4 D5

MAE Null MAE Iterative MAE Lovins MAE Snow

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

W

T

A

T

N

T

W

T

A

T

N

T

W

T

A

T

N

T

W

T

A

T

N

T

W

T

A

T

N

T

D1 D2 D3 D4 D5

RMSE Null RMSE Iterative RMSE Lovins RMSE Snow

0

0.2

0.4

0.6

0.8

1

1.2

99.75

99.8

99.85

99.9

99.95

100

100.05

CC KS MAE RMSE

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 160

Machine Learning Tools and Techniques", Morgan Kaufmann,

Fourth Edition, 2016.

[13] https://www.kaggle.com/ranjitha1/hotel-reviews-city-

chennai/version/2#

[14] https://www.kaggle.com/uciml/sms-spam-collection-dataset/data

[15] https://sourceforge.net/projects/weka/

[16] Pomikálek, J., & Rehurek, R. (2007). The Influence of

preprocessing parameters on text categorization. International

Journal of Applied Science, Engineering and Technology, 1, 430-

434.

Authors Profile

Susan Koshy currently pursuing Ph.D at

Bharathiar University, Coimabatore and working

as Assistant Professor at St.Thomas College of

Arts and Science, Chennai, India since 2005.

Dr. R.Padmajavalli Associate Professor, Department of

Computer Applications, Bhaktavatsalam Memorial College

for Women, Chennai, India

