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Abstract –The availability of digital information over the internet can be analyzed for knowledge discovery and intelligent 

decision making. Text categorization is an important and extensively studied problem in machine learning. Text classification 

or grouping of text into appropriate categories requires pre-processing techniques and machine learning algorithms. Pre-

processing or data cleaning involves removal of html characters, tokenization, stop words removal, stemming, lemmatization 

and advanced processes such as parts of speech tagging followed by representation in appropriate form for machine learning. 

This paper experimentally evaluates the impact of stemming and tokenization techniques on text classification on five text 

datasets.  
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I.  INTRODUCTION 

  

The exponential increase in availability of digital information 

like emails, journals, electronic-books, news and social media 

can be analysed and useful information extracted. This 

requires automated text classification and can be used for 

solving business issues. The task of text classification is to 

assign the text documents into one or more pre-defined 

groups. Some of the applications are obtaining the sentiment 

from social media, identifying spam and non-spam emails, 

automatic tagging of customer queries and complaints and 

classification of news articles into pre-defined topics. Pre-

processing is the first and most central step before text 

categorization. The significance of preprocessing is due to 

the fact that each type of text is highly unstructured and not 

of uniform standard for example, social media data has 

informal communication like typing errors, bad grammar, 

usage of slang words, unwanted content like URLs address 

and html tags. These have to be removed in order to find 

patterns. This requires a lot of time before actual text 

classification can be performed. The following steps are 

performed as follows - first the documents for analysis are 

retrieved. Next natural language processing is used to 

convert raw text using structural, statistical and linguistic 

techniques. Statistical pattern-matching and similarity 

techniques are employed to classify documents to a specified 

group or label. Finally machine learning algorithms are 

applied and the classification model is evaluated for its 

performance. 

      The first section of this paper discusses related work, the 

next section is the pre-processing of text and discusses basic 

processing, stemming techniques in particular followed by 

document representation. The next section is the 

experimental evaluation of five text datasets using pre-

processing techniques followed by classification. The results 

are tabulated followed by conclusion.  

 

II. RELATED WORK 

 

William B. Frakes and Christopher J Fox (2003)   evaluated 

the strength and similarity among four affix removal 

stemming algorithms and were evaluated based on the 

Hamming distance measure [1]. 

        Julie Beth Lovins in her paper “Development of a 

Stemming Algorithm” in 1968 discussed important linguistic 

issues in stemming and the variation in spelling of stems and 

many viable programming solutions are proposed [2]. 

Chris D. Paice in “An Evaluation Method for Stemming 

Algorithms” in 1994 describes a technique in which 

stemming performance is evaluated against predefine 

concept groups of words using three stemming algorithms 

[5]. 

MF Porter in his paper “An Algorithm for Suffix Stripping” 

in 1980 developed an algorithm for suffix stripping and  it 

performs slightly better than a much more elaborate system. 

The removed suffix depends upon the form of the remaining 

stem and considers the length of the syllable [6]. 
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Leon Derczynski et al. in their paper “Twitter Part-of-Speech 

Tagging for All: Overcoming Sparse and Noisy Data” in 

2013 presented a detailed error analysis of existing taggers 

when analysing Twitter text which is noisy, with linguistic 

errors [9].  

      Anjali Ganesh Jivani in her paper “A comparative study 

of stemming algorithms" in 2011 has discussed different 

methods of stemming algorithms and their comparisons and 

has highlighted the advantages and disadvantages in their 

applications [10]. 

Majumder, Prasenjit, et al. in the paper "YASS: Yet another 

suffix stripper", in 2007 describe an technique which is 

clustering-based to find out similar classes of root words and 

their various other forms. This approach was compared with 

Porter and Lovins stemmer and its performance was on par 

[11]. 

 

III. PRE-PROCESSING TEXT 

 

The text data needs to be cleaned before applying any 

machine learning algorithms. The pre-processing of text 

involves basic data cleaning like tokenization, removal of 

html characters, stop words removal, stemming, 

lemmatization and advanced processes such as parts of 

speech tagging.  The tokenized words are represented as term 

vectors in order for machine learning algorithms to be 

applied. It is important to choose representative words to 

describe the meaning, and remove words that do not enable 

to differentiate between the documents. The type of pre-

processing will depend on the problem and not all pre-

processing activities need to be done. For example 

converting all the text to lower case cannot be applied always 

because if “US” is the actual text which means United States 

and if it is preprocessed to lower case it becomes “us” and 

the meaning changes. Similarly while tokenizing all white 

spaces if removed to get tokens will result in loss of 

meaning.  

 

A. Basic data cleaning or noise removal 

Tokenization is the first step to break the stream of characters 

into words called tokens. The tokenizer has to be customized 

according to the need of the application because most 

languages and particular domains have unusual specific 

tokens that need to be recognized as terms e.g., “Tamil 

Nadu”, “Uttar Pradesh”, “San Francisco” which have to be 

treated as one word although there is a white space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Text Pre-processing techniques 
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Removal of Stop-words: the commonly occurring words 

(stop-words) should be removed. This can be done by 

creating a long list of stop-words or predefined language 

specific libraries available in programming languages such as 

Python and R can be used. 

 

Removal of Punctuations: Important punctuations have to be 

retained while others need to be removed for example the full 

stop after Dr is retained. 

 

Split Attached Words: In social forums text data contain 

informal words which may have to be split using simple 

rules. Similarly slangs have to be converted using look up 

dictionary. 

The above are some of the methods to standardize the 

documents from their raw form and appropriate methods are 

available in standard programming languages such as 

PYTHON and R to do the basic data cleaning.  

 

B. Stemming 

Stemming is the combining of the variant forms of a word 

into a single representation called the stem or root. For 

example, the words “combination”, “combined” and 

“combining” could all be stemmed to “combine”. The stem 

need not be a valid word, alternatively it must capture the 

meaning of the word. Stemming helps to find morphological 

variants of terms. Conflation can be done manually using 

regular expressions or use programs called stemmers. 

Stemming is a lexicon normalization step and required to 

covert the high dimensional features that are different 

representation of the same word into lower dimensional 

feature. Stemming algorithms can be either when the affix is 

removed or where there is a table or list which is referred [7].  

 

Types of stemming 

1. Affix removal algorithms use the approach of removing 

suffixes and/or prefixes from terms resulting in a stem. These 

algorithms occasionally transform the resultant stem. A 

common example of an affix removal stemmer is removal of 

plurals from terms [1]. A set of rules for such a stemmer 

according to (Harman 1991) is as follows. 

 

Example 

If a word ends in "ies” it is replaced with “y” provided there 

is no “e” or “a” before the “ies” 

 

2. Successor variety stemmers developed by Hafer and Weiss 

in 1974 uses a list of letters in a text corpus as the basis of 

stemming. 

 

Example 

Test Word: CAPABLE 

Corpus:    ABLE, APE, CAPABILITY, CABLE, 

CAPACITY, CAPS, CAP, COPE, PIPE,CAPABLE 

Prefix    Successor Variety     Letters 

----------------------------------------------- 

C                   2              A,O  

CA                  2              B,P  

CAP                 1              A  

CAPA                2              B,C  

CAPAB              2              I, L 

CAPABL              1              L  

CAPABLE            0             BLANK   

If the prefix is ‘C’ the number of letters which follow it in 

the corpus are listed in the successor variety which is 2 

(ABLE, APE, CAPABILITY, CABLE, CAPACITY, CAPS, 

CAP, COPE, PIPE, CAPABLE) that is A and O of which 

‘A’ occurs maximum and hence ‘CA’ becomes the new 

prefix. The steps are repeated till there are no more words in 

corpus. 

 

3. Table Lookup stemming stores a table of index terms and 

their roots using a B Tree or Hash Table. The problem with 

this approach  is that it is domain dependent as each domain 

has its own particular vocabulary . It also requires large 

overhead storage and the computation is expensive. 

 

Example 

Term        Stem 

--------------------------- 

stemming  stem 

stemmed   stem 

stems      stem 

4.N-grams is a stemming reported by Adamson and Boreham 

(1974) which is the method of  conflating terms called the 

shared digram method. A pair of consecutive letters is called 

digram. Since trigrams, or n-grams could be used, it is 

known as the n-gram method.  

Example 

computer => co om mp pu ut te er 

unique digrams = co om mp pu ut te er (7 unique digrams for 

the word ‘computer’) 

 

Stemming algorithms 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Stemming Algorithms 
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1. Rule Based 

Lovins stemmer is a rule based context sensitive stemmer 

proposed in 1968. It is language independent and works on 

the principle of storing a list of suffixes for matching the 

words with the text document. It executes by searching a 

lookup table having 294 endings, 29 conditions and 35 rules 

of transformation. The disadvantage of this stemmer is over 

stemming of words [2]. Table 1 is the output for raw text 

when Lovins and Snowball stemmer are applied using 

WEKA [12]. 

 

Table 1 Output of LOVINS stemmer and SNOWBALL 

stemmer on sample text using WEKA 

 

PlainText 

LOVINS 

stemmer SNOWBALL 

wordtokenizer /ngram tokenizer 

 'We are 

admiring' admir  'We are admiring' 

 'It is 

awesome' awesom  'It is awesome' 

 'You must 

dispose' dispos  'You must dispose' 

 'It is 

irritating' irritit  'It is irritating' 

 'I am loving' lov  'I am loving' 

 'I am 

placed' plac  'I am placed' 

 

Porters stemming algorithm is one of the most popular 

stemming methods proposed in 1980.  It is based approach 

that the suffixes in the English language about 1200 are made 

up of a combination of smaller and simpler suffixes. There 

are five steps and rules are applied at each step until one of 

the conditions is satisfied [6].  Porter algorithm is made in 

the assumption of the absence of a stem dictionary. The 

program is given an explicit list of suffixes and with each 

suffix the condition for it to be removed from a word to leave 

a valid stem. 

 

 An example of errors in stemming is as follows 

SAND  SANDER are conflated and the stem is SAND    

WAND WANDER are conflated and the stem is WAND 

 

In the above example suffix removal will alter the meaning 

of the word and in which case it is not meaningful. The 

success rate for suffix removal will not be 100% and if more 

rules are added it will increase the performance in one area 

of vocabulary but there will be equal degradation elsewhere. 

Table 2 is the output for raw text when Porter stemmer is 

implemented using Java. 

 

 

Table 2 Text before and after using PORTER stemming 

algorithm using JAVA 

 

Plain Text 

After Porter 

Stemming 

discovery discoveri 

(KDT) kdt 

knowledge knowledg 

intelligent intellig 

analysis analysi 

 

Snowball Stemmer is used for stemming and developed by 

M.F. Porter in 2001 to address the drawbacks of the porters 

stemming algorithm. T can be used for languages other an 

English. 

Paice/Husk Stemmer is an iterative, rule based algorithm 

with 120 rules which are ordered by the last letter of a suffix. 

Every iteration step tries to locate a rule in order to delete or 

replace an ending. It is  simple and over stemming is its 

disadvantage [5].  

Dawson Stemmer and Lovins approach are alike and  it 

covers a an extensive list of almost 1200 suffixes. It is a 

single pass stemmer and is swift. The suffixes are stored and 

ordered by their length and last letter in the reverse order. It 

is a very complex stemmer and is wanting in reusable 

implementation. 

 

2. Statistical  

N-Gram Stemmer is a language independent method and 

string-similarity technique is used to convert word inflation 

to its stem. An n-gram is a set of n consecutive characters 

extracted from a word. The stemmer has the disadvantage 

that it requires a large amount of memory and storage for 

creating and storing the n-grams and hence is not a very 

practical approach [3]. 

YASS and GRAS: Yet another suffix stemmer(YASS) and 

Graph based stemmer(GRAS) are statistical context free 

algorithms. They are both language independent. In YASS 

algorithm the string distance measure is used to check the 

similarity between two words and if the distance is less it 

shows that the words are similar. GRAS is modeled as a 

graph and words are represented as nodes and edges connect 

related nodes. It is computationally less expensive and 

language independent. The usefulness of stemming depends 

largely on the application need as there is a chance of over 

stemming and under stemming.  

 

3. Inflectional/Mixed stemming 

This is another methodology to stemming and it involves 

both the inflectional and modification of words to express 

different meaning and derivational morphology analysis. In 

inflectional stemming the variations of the word are related 

to the language specific syntactic patterns like plural, gender, 
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case, and voice, tense and in derivational the word variants 

are related to the part-of-speech (POS) of a sentence in which 

the word occurs. 

Krovetz Stemmer (KSTEM) was released in 1993 by Robert 

Krovetz  and is a linguistic based  lexical validation stemmer. 

It is based on inflectional property of words and the syntax of 

languages, it is very complex  in nature.  This stemmer 

transforming the plurals of a word to its singular form 

converts the tense of a word from past to present and 

removes the suffix ‘ing’ from words. This is done by 

checking with a dictionary. These stemmers have the ability 

to produce morphologically correct stems, handle exceptions 

and process  prefixes/ suffixes.  

 

C. Advanced text pre-processing 

Lemmatization is similar to stemming but is a more 

organized procedure of obtaining the root form of the word 

and makes use of vocabulary from dictionary, importance of 

words and morphological analysis which is word structure 

and grammar relations [4]. 

Parts of speech tagging are useful because of the enormous 

information they provide about a word and its neighbours. 

Knowledge of parts of speech, that is noun or verb will 

indicate its neighbouring words. For example nouns are 

preceded by determiners (‘The man’) and adjectives and 

verbs are preceded by nouns (‘beautiful dress’). Parts of 

speech are valuable information features for finding named 

entities like people or organizations in text and other 

information extraction tasks. There are training sets for POS 

tagging namely the Brown Corpus and Penn TreeBank which 

is commonly used in natural language processing.  The tags 

in Penn Tree Bank are given in Table 3. 

 

Table 3 Partial List of Penn TreeBank 

Tag Description Example 

CC conjunction, 

coordinating 

and, or, but 

DT determiner the, a, these  

IN conjunction, 

subordinating 

or 

preposition 

of, on, under, 

with  

JJ adjective pretty, tough 

JJR adjective, 

comparative 

prettier, 

tougher 

JJS adjective, 

superlative 

prettiest, 

toughest  

NN noun, 

singular 

lion, table, 

banter  

NNS noun, plural lions, tables, 

ants  

 

The following method is used in python programming 

language to obtain the parts of speech for a given text using 

the Natural Language Tool kit package. The raw text is first 

tokenized and then POS tagging method is done. 

Example syntax using python 

>>>text=word_tokenize (“They refuse to permit us to obtain 

the refuse permit”) 

>>>nltk.pos_tag(text) 

Output = 

[(‘They’,‘PRP’),(‘refuse’,’VBP’),(‘to’,’TO’),(‘permit’,’VB’),

(‘us’,’PRP’),(‘to’,’TO’),(‘obtain’, 

’VB’),(‘the’,’DT’),(‘refuse’,’NN’),(‘permit’,’NN’)] 

This example uses the same word ‘refuse’ both as a noun and 

verb and only through Parts of speech they can be identified. 

The words refuse and permit both appear as a present tense 

verb (VBP) and a noun (NN).Parts of speech tagging is 

useful to identify sentiment in text for sentiment analysis.  

After performing parts of speech tagging the data is of 

the form (word, tag) and is an association between a word 

and a part-of-speech tag.  The program should assign a tag to 

a word and the tag is the most likely part of speech in a given 

context. This is similar to mapping from words to tags. The 

Mapping has to be stored using an associative array or hash 

array and in some programming languages as a dictionary. 

 

IV. DOCUMENT REPRESENTATION 

 

Bag-of-words and vector space model  

When using machine learning we cannot work with text 

directly and they have to be converted to numbers. Therefore 

documents have to be converted to fixed-length vectors of 

numbers. The bag of words model does not consider the 

order of information in the words and focuses on the 

occurrence of words in a document. Each word is assigned a 

unique number. Then any document can be encoded as a 

fixed-length vector with the length of the vocabulary of 

known words. The value in each position in the vector can be 

filled with the number or frequency of each word in the 

encoded document. An alternative to word frequencies is 

called Term frequency –Inverse document frequency. Term 

Frequency summarizes how often a given word appears 

within a document as in Table 4. Inverse Document 

Frequency scales words that appear often across documents. 

TF-IDF highlight words that are more interesting, e.g. 

frequent in a document but not across documents. The bag of 

words model uses all words in a document as features and 

the dimension of the feature space will be the number of 

words present in the document. In some methods weights are 

given to the features one when a word is present and zero if 

the word is not present in the document [8]. 

          A measure for determining the importance of a word(t) 

in a document(d) on the basis of how often it appeared in the 

document and a given collection of documents are term 

frequency(tf)  and inverse document frequency(idf). The 

logic for this measure is that if a word appears frequently in a 

document, it is given a high score. But if a word appears in 

many other documents, it is not a unique identifier and 
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therefore we should assign a lower score to that word. tf(t,d) 

is the number of times each word appeared in each 

document. Inverse document frequency determines the 

amount of information a word provides. It identifies if a term 

is common or rare across all documents. It is the log of the 

inverse fraction of the documents that contain a word 

obtained by the division of the total number of documents 

containing the word 

 

|}:{1|
log),(

dtDd

N
dtidf


      (1)                                                              

 

where N is the number of documents in the corpus N=|D| and 
{       } is the number of documents where the term is 

present. 

),(*),(),,( DtidfdttfDdtidfTf     (2) 

A high weight in tf-idf is obtained by a high word frequency 

in the document and a low document frequency of the word 

in the whole collection of documents. The weights filter out 

common words. Since the ratio inside the idf's log function is 

always more than or equal to 1, the value of idf and tf-idf is 

larger than or equal to 0 when the word occurs many times in 

a document.  

Example  

Assume a document containing 100 words in which a  

word ‘mouse’ appears 3 times. The term frequency (i.e., tf) 

for ‘mouse’ is (3 / 100) = 0.03. If there are 5000 documents 

and the word ‘mouse’ appears in a 5 of these. Then, the 

inverse document frequency (i.e., idf) is calculated as log 

(5000 / 5) = 3. Therefore, the Tf-idf weight is the product of 

these quantities: 0.03 *3 = 0.09. 

 

Table 4 Term document matrix 

 

Features/terms 

D
o

cu
m

en
ts

 

  t1 t2 t3 t4 t5 … tn  

d1 1 0 0 0 1 

 

0 

d2 1 1 0 1 1 

 

0 

d3 0 0 1 0 1 

 

0 

d4 0 0 1 1 0 

 

1 

d5 0 1 0 0 0 

 

1 

… 

      

  

dm 1 0 0 0 1   1 
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Table 5 Comparison of classification results on text datasets for different stemmers  and different tokenizers 
 

Eval 

Metric Stemmer 

Movie review 

D1 

Hotel Review 

D2 

Food review  

D3 

Twitter review 

D4 

Amazon   

D5 

J48 classifiers 

Tokenizers (Word tokenizer, alphabetic tokenizer, N Gram tokenizer 

WT AT N T WT AT N T WT AT N T WT AT N T WT AT N T 

CC 

Null 92.52 89.77 92.66 95.85 95.65 96.95 49.94 49.94 49.94 60.69 60.69 60.69 67.62 67.62 67.62 

Iterative 92.06 89.31 92.48 96.6 95.95 96.45 49.94 49.94 49.94 60.69 60.69 60.69 67.62 67.62 67.62 

Lovins 91.92 89.2 92.59 95.8 96.05 96.55 49.94 49.94 49.94 60.69 60.69 60.69 67.62 67.62 67.62 

Snow 92.52 89.77 92.66 95.85 95.65 96.95 49.94 49.94 49.94 60.69 60.69 60.69 67.62 67.62 67.62 

KS 

Null 0.632 0.44 0.642 0.917 0.913 0.939 0 0 0 0 0 0 0 0 0 

Iterative 0.601 0.396 0.631 0.932 0.919 0.929 0 0 0 0 0 0 0 0 0 

Lovins 0.595 0.396 0.639 0.916 0.921 0.931 0 0 0 0 0 0 0 0 0 

Snow 0.632 0.44 0.642 0.917 0.913 0.939 0 0 0 0 0 0 0 0 0 

MAE 

Null 0.137 0.182 0.133 0.068 0.074 0.052 0.402 0.402 0.402 0.346 0.346 0.346 0.198 0.198 0.198 

Iterative 0.144 0.19 0.135 0.059 0.071 0.062 0.402 0.402 0.402 0.346 0.346 0.346 0.198 0.198 0.198 

Lovins 0.146 0.191 0.133 0.073 0.068 0.06 0.402 0.402 0.402 0.346 0.346 0.346 0.198 0.198 0.198 

Snow 0.137 0.182 0.133 0.068 0.074 0.052 0.402 0.402 0.402 0.346 0.346 0.346 0.198 0.198 0.198 

RMSE 

Null 0.261 0.301 0.258 0.185 0.192 0.161 0.449 0.449 0.449 0.416 0.416 0.416 0.315 0.315 0.315 

Iterative 0.268 0.308 0.26 0.171 0.189 0.176 0.449 0.449 0.449 0.416 0.416 0.416 0.315 0.315 0.315 

Lovins 0.271 0.309 0.258 0.191 0.184 0.173 0.449 0.449 0.449 0.416 0.416 0.416 0.315 0.315 0.315 

Snow 0.261 0.301 0.258 0.185 0.192 0.161 0.449 0.449 0.449 0.416 0.416 0.416 0.315 0.315 0.315 

 

 

Table 6 Comparison of classification results on text datasets using Instance based K nearest classifier IBK 

 

  IBK Classifier  

Evalation metrics 

Movie 

review(D1) 

Hotel 

reviews(D2) 

Food 

reviews(D3) 

Twitter 

reviews(D4) 

Amazon 

reviews(D5) 

Correctly Clas(CC) 100 100 99.84 99.93 99.92 

Kappa Statistic(KS) 1 1 0.99 0.99 0.99 

Mean Abs Err(MAE) 0.0005 0.0005 0.0014 0.0007 0.0006 

Rt Mean Sq 

Err(RMSE) 0.0005 0.0005 0.0236 0.0161 0.0146 

    

 

Table 7 List of text datasets 

 

Text datasets 

No of 

instances 

Movie reviews(D1) 2834 

Hotel reviews(D2) 2000 

Food reviews(D3) 4998 

Twitter reviews(D4) 8918 

Amazon product 

reviews(D5) 10261 
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V. EXPERIMENTATION AND RESULTS 

 

 The experiments were performed using WEKA [15] an open 

source software issued under the GNU General Public 

License. Text reviews of movies, hotel, food, twitter product 

reviews and amazon product reviews have been used for 

experimental evaluation. The five text datasets have been 

obtained from various online sources are given in Table 7 

[13] [14].  The datasets are in CSV file format. The dataset is 

loaded and class attribute assigned. Filtered classifier is 

chosen for classification and J48 classifier is used. A string 

to word vector unsupervised attribute filter was chosen and 

four stemmers including null stemmer which is a dummy 

stemmer are applied. The four stemmers are Iterated 

LOVINS (ITLovins), LOVINS, Null stemmer and 

SNOWBALL. In addition for each stemmer three tokenizers 

were chosen for analysis namely Alphabetic Tokenizer(AT), 

N Gram tokenizer(NG) and Word Tokenizer(WT). In all 120 

evaluations were done.  Evaluation metrics chosen for 

comparison were Correctly classified instances (CC), Kappa 

Statistics(KS), Mean Absolute error (MAE) and Root Mean 

Squared error (RMSE).  

 

       Kappa statistics should be close to 1 and root mean 

squared error and mean squared error should be close to 0 for 

a good classifier. 

      The movie reviews and hotel reviews datasets having 

2834 and 2000 instances respectively have been negligibly 

been influenced by the stemmer and tokenizer when 

classification is performed.  

 

       Datasets with larger number of instances namely food 

reviews, twitter product reviews and amazon product reviews 

do not exhibit any change in classification metrics for the J48 

classifier for different stemmers or different tokenizers as can 

be seen in Table 5.  Fig 3 to 6 is the graphical representation 

of Table 5. The correctly classified instances are high for 

only first two small datasets when the J48 classifier is used. 

Similarly they have exhibited high kappa statistic and low 

errors. The reason can point to the fact that they contain 

fewer instances.  When IBK classifier( Instance based K 

nearest neighbor)  is used, the evaluation metrics is 

uniformly improved for all the five datasets irrespective of 

stemmer or tokenizer for pre-processing, as given in Table 6 

and Fig 7. All the evaluation metrics namely correctly 

classified instances, kappa statistic have increased and the 

mean absolute error and root mean squared error have 

decreased when IBK classifier is used. 

 

`

 
 

Figure 3 Correctly classified instances for J48 classifier 

(Table 5)     

 

 

 
Figure 4 Kappa statistics for J48 classifier (Table 5) 
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Figure 5 Mean Absolute errors for J48 classifier (Table 5) 

 

 
Figure 6 Root Mean Square Error for J48 classifier (Table 5)

 
Figure 7 All the evaluation metrics for IBK classifier (Table 

6) 

 

VI. CONCLUSION  

 

The purpose of text pre-processing is to clean 

unstructured raw text and structuring it into a form for 

machine learning algorithms to be applied. The impact of 

different stemming and tokenistion techniques on text 

classification has been evaluated in this paper. Stemming and 

tokenisation enable to reduce the words to their root form 

and in turn the dimension of the dataset. 

In this paper five text datasets were used to compare 

the effect of different stemmers and tokenizers on the 

evaluation metrics of text classification..  Datasets with 

larger number instances namely food reviews, twitter product 

reviews and amazon product reviews do not have a huge 

impact on classification metrics for the J48 classifier for 

different stemmers or different tokenizers. When IBK 

classifier (Instance based K nearest neighbor) is used the 

performance is uniformly improved for all the five datasets 

irrespective of stemmer or tokenizer used. This also validates 

previous study that the choice of stemmer does not affect 

classification [16]. 
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