
 © 2016, IJCSE All Rights Reserved 133

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-4, Issue-11 E-ISSN: 2347-2693

Improvement of Time Complexity and Space on Optimal Binary Search Trees

using post dynamic Programming Methodology and Data Preprocessing

S.Hrushikesava Raju
1*

, M.Nagabhusana Rao
2

1
Research Scholar, Regd.No:PP.CSE.0158, Rayalaseema University,Kurnool,A.P.

2
Professor, Department of CSE, K L University, Vijayawada, A.P.

hkesavaraju@gmail.com, mnraosir@gmail.com

Available online at: www.ijcseonline.org

Received: Oct/29/2016 Revised: Nov/10/2016 Accepted: Nov/24/2016 Published: Nov/31/2016

Abstract- There are various methods of handling Optimal Binary search trees in order to improve the performance. One of the

methods is Dynamic programming which incurs O(n
3
) time complexity to store involved computations in a table. The data

mining technique called Data Preprocessing is used in order to remove noise early in the dataset and enhances consistency of

the given data. The post dynamic computing is applied using knowledge of dynamic programming principle which starts with

only required data and computes only the necessary attributes required to construct Optimal Binary Search Tree with time

complexity O(n) if there are n identifiers / integers / any complex objects. This approach avoids computing all necessary table

attributes. Hence, the complexity or cost of post dynamic computing using Dynamic Programming is proven to be less than

O(n
3
) or even less than specified in some cases with experimental results.

Keywords— Optimal Binary Search Tree (OBST), Data Preprocessing, Post computing, Dynamic Programming, Time

Complexity

I. Introduction

Optimal Binary search Tree is a variety of binary trees in

which each node stores maximum of two children and it

stores strings as identifiers within it or integers or any

complex object as nodes of this binary tree. There were many

methods such as greedy, recursion, memorizing are useful to

do this work. One of those methods is that randomly drawing

all possible binary trees and finds a particular binary tree

whose cost is low and considers that result is an OBST. The

name optimal binary search tree is titled because of simple

reason that is finding a key in a tree incurs least number of

comparisons. In this method, the optimal binary search tree is

chosen in the possible binary trees which involve minimum

cost for searching a key in the tree. There are also Greedy,

Memorizing, 0/1 knapsack problem, multiple chain

multiplication used but they are not efficient because they are

all use strategy recursion and another drawback is solutions

are not helpful to compute larger problem solution. Dynamic

programming is a popular and efficient method to construct

binary search tree by following principles such as saving sub

problem solutions, reusing sub problem solutions to

construct solution for larger problems, and also it avoid using

of recursion strategy. Dynamic programming unnecessarily

stores all computations in memory and involves O(n
3
)

complexity and it is applied on any data that is irrelevant or

in improper manner. Hence, A data mining technique named

data preprocessing is used to sort or clean the given

sequence. Also, a technique is proposed titled Data Post

computing using Dynamic Programming concept is

performed that only computes required attributes which are

required to construct optimal binary search trees. This second

step leads to compute some more low level attributes in order

to compute that particular attribute.

II. Related Work

There are many methods involved to construct the optimal

Binary search trees (OBST). First approach [4,8,9] called

randomization which constructs many binary search trees in

order to find out an OBST that has minimum cost. The cost

can be calculated by multiplying the key and frequency of

that node. This approach has a drawback that wastage of time

in computing unnecessary trees in addition to correct tree.

Second approach named Computing OBST using sets[6]

arranges elements in a tree using recursive approach in which

computing optimal substructures and overlapping sub-

problems is became expensive(exponential nature) in terms

of computing same sub-problems again and again. This issue

is sorted in Using Dynamic Programming by a temporary

array in a bottom up manner.

Third approach is Greedy recursive approach [7, 8] which

initially finds root through best heuristic using recursion and

it applies to remaining elements for computing sub trees.

This leads sometimes not a OBST although root of each sub

tree is optimal.

To overcome these flaws, Dynamic programming[8,9] is

introduced which split the given problem into small

instances, proposed algorithm applied to all, later integrate

them into a large solution for the given problem. The

mailto:hkesavaraju@gmail.com
mailto:mnraosir@gmail.com

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 134

advantage of dynamic programming is flexibility in

integrating the sub problems and each solution takes a space

in memory and solution is obtained using recurrence

formulas. But still, some refinement is possible on this work

that is refinement of DP algorithm is required which reduce

the unnecessary computations. This reduces space in a table

in storing the elements as well as computations done in less

time compared to other techniques. This work can be done in

the proposed work where detailed steps are given.

The techniques are summarized in the following table.

Technique Advantage Disadvantage

Randomization Simple, easy and

mandatory task

Takes more time in

giving right tree with

minimum cost

Using sets Optimal sub-

structures

Expensive in avoiding

overlapping sub-

problems

Greedy Guarantee the

optimal in each

case

Using Recursion cause

Traditional

Dynamic

Programming

Giving a tree

optimally

Leads many Unnecessary

computations

Proposed

Dynamic

Programming(Po

st DP)

Gives a tree

optimally with

little time

complexity

NIL

III. Proposed Work

 Consider the given data elements are as a1,a2,a3, ….,

an-1,and an. These labels denote the keywords in the given

data. Suppose the raw data is given, which can be classified

into the text keywords, individual characters, and numeric

data. For numeric data, it is easy to construct binary search

tree by using rules such as left node element should be less

than root node and right sub tree element should be greater

than root element and this procedure is repeated until last

element in the given data is processed.

For alphabets, it is also easy to construct binary search trees

by using same logic but left sub tree element is alphabetically

comes before the root element, the right sub tree element is

alphabetically comes after the root element, and this

procedure is applied till last character is processed.

For text keywords to make as an OBST, there are predefined

procedures also called algorithms which pick the root node

first by a notation tij which is the last level calculation that

helps to pick the root node which can be indexed by the rank

value calculated using DP_OBST algorithm. From this

notation tij, root can be picked using the rank r which takes ar

element in the given data. The sub trees in the next low level

are taken based on this rank r. The first level sub trees are tir-1

(left sub tree) and trj (right sub tree). The second level nodes

can be estimated from tir-1 and trj. The rank of entry (i,r-1=k)

is r1 assume. The sub trees of this are tir1-1(left sub tree) and

right sub tree tr1k (right sub tree). Assume the rank of first

level right sub tree is r2. The sub trees of tr=ij are tir2-1 and tr2j.

This is repeated until all elements in the given data are taken

a place in the tree.

Based on above data preprocessing flowchart, binary search

tree is constructed for numeric, character(alphabet) data

separately. Optimal binary search trees is constructed for

textual keywords for searching quickly compared to

traditional optimal binary search trees which consume more

space and take more time for building optimal binary search

trees.

The following are the procedures to process the data and

construct the OBST from the category of data like numeric,

individual characters (alphabets), and text words.

The following is the flowchart which demonstrates the

OBST in bottom up fashion from last level to initial level

which reduce unnecessary computations.

Table 1: details of each technique used for OBST

Declare variables based on type of data

check type

of data

eliminate

duplication
separate data into integer data

and character data

eliminate

duplication

eliminate duplication in both types

produce data set with unique keys

End

Flow Graph 1: Data Preprocessing Steps

numeric

alphanumeric

string

Start

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 135

IV. Experimental Results

The results are taken by considering some real sample

example scenarios.

Example: Take a set (do, if, int, while),

Let p(1: 4) = (3, 3, 1, 1) and q(0: 4) = (2, 3, 1, 1, 1).

The following table shows the comparison between

traditional Dynamic Programming and Proposed Dynamic

Programming using Data Preprocessing and Post Computing

from bottom up manner.

Technique Space Time

Traditional Dynamic

Programming

45 *

sizeof(data)

O(15*3)=45

Proposed Dynamic

Programming using Data

preprocessing and post

computing in bottom up

manner

4 *

sizeof(data)

O(4 * 3 + 5 for

initial variables

+ some

intermediate

variables but

not all

variables) < 45

The following table shows the calculations using traditional

Dynamic Programming

j 0 1 2 3 4

i

0

w00 = 2

c00 = 0

r00 = 0

w11 = 3

c11 = 0

r11 = 0

w22 = 1

c22 = 0

r22 = 0

w33 = 1

c33 = 0

r33 = 0

w44 = 1

c44 = 0

r44 = 0

1

w01 = 8

c01 = 8

r01 = 1

w12 = 7

c12 = 7

r12 = 2

w23 = 3

c23 = 3

r23 = 3

w34 = 3

c34 = 3

r34 = 4

2

w02 = 12

c02 = 19

r02 = 1

w13 = 9

c13 = 12

r13 = 2

w24 = 5

c24 = 8

r24 = 3

3

w03 = 14

c03 = 25

r03 = 2

w14 = 11

c14 = 19

r14 = 2

4

w04 = 19

c04 = 32

r04 = 2

From above table, only bolded entries are required to

construct OBST. There are some attributes need to be

computed in calculating the required attribute. In this way,

computing of some unnecessary attributes are going be

avoided using Proposed Dynamic Programming using Data

Preprocessing and bottom up post computing method.

By observing a simple example, the complexity is more. If

you the data set is large, huge number of entries to be

computed in a dynamic programming table which not only

leads to occupying space and also huge time. To avoid this

overhead, proposed technique named Modified Dynamic

programming using Data Preprocessing and attribute post

computing in bottom up fashion from last level to first level

depending on required attributes.

The following is also a graph that shows efficiency of the

traditional and proposed Techniques:

 Start

Take the initial weights, costs, and ranks are zero

Call rank of last level computation because which helps

to pick root node

Call the calculation of weight and cost of only related

entries (i,j)

Construct OBST based on the ranks returned. The nodes

of a tree are taken (i,r-1) and (r,j) knowledge if the root

entry is (i,j) = r and is recursively applied

End

Fig. 1: Procedure for constructing OBST using Dynamic

Programming knowledge

Fig.2: Efficiency of Traditional and Proposed

Techniques

Time &

space

Type of Technique

Traditional
Dynamic

Programming

Proposed Post Dynamic
Programming using Data

preprocessing

Table 2: Performance details comparison using

traditional and proposed techniques

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 136

V. Conclusion

This approach is very useful early in removing the

redundancy in the dataset and later as saving space and time

in terms of not to compute many unnecessary attributes using

Post Dynamic Programming Approach. The results are

described through examples specified in which unnecessary

space is removed and also minimized the time to construct

optimal binary search tree. This approach may be extended in

future using either backtracking or any other advanced

designed algorithm to get better time efficiency.

References

[1]. Micheline Kamber, Hei,“Data Mining: Concepts and

Techniques”, Second Edition, The Morgan Kaufmann

Series, ISBN 13: 978-1-55860-901-3,ISBN 10: 1-55860-

901-6.

[2]. Data Preprocessing Techniques for Data Mining,

iasri.res.in/ebook/win_school_aa/notes/Data_Preprocessing.

pdf

[3]. Nguyen Hung Son, Data cleaning and data preprocessing,

www.mimuw.edu.pl/~son/datamining/DM/4-preprocess.pdf

[4]. Andy Mirzaian , DYNAMIC PROGRAMMING:

OPTIMALSTATIC BINARY SEARCH TREES, http://

www.cse.yorku.ca/~andy/courses/3101/lecture-notes

/OptBST.pdf

[5]. ROLF KARLSSON, ALGORITHM THEORY,HTTP://FILEADMIN.

CS.LTH.SE/CS/PERSONAL/ROLF_KARLSSON/LECT5.PDF

[6]. DYNAMIC PROGRAMMING | SET 24 (OPTIMAL BINARY SEARCH

TREE), HTTP://WWW.GEEKSFORGEEKS.ORG/DYNAMIC-

program ming-set-24-optimal-binary-search-tree/

[7]. http://www.sciencedirect.com/science/article

/pii/ 0020019081901435

[8]. E.Horotiwz, S.Sahni, Dinesh Mehta,“Fundamentals of data

structures in C++” , Second Edition.

[9]. Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekharan,

http://vitconference.com/vit_mca/images/resources/

DAOA/Fundamentals-of-Computer-Algorithms-

By-Ellis-Horowitz-1984.pdf

[10]. Dynamic Programming- Optimal Binary Search Trees,

http://www.radford.edu/~nokie/classes/360/dp-opt-bst.html

[11]. Dynamic Programming, http://www.cs.utsa.edu/~bylander

/ cs3343 /chapter8handout.pdf

[12]. optimal binary search trees, https://en.wikipedia.org/wiki/

Optimal_binary _search _tree

[13]. Data Preprocessing, http://www.cs.ccsu.edu/~markov

/ccsu_courses/ datamining-3.html

[14]. Data processing techniques for data mining,

http://iasri.res.in/ebook/win_school_aa/notes/ Data_

Preprocessing.pdf

[15]. Data Mining: Data and Preprocessing, http://Staffwww

.itn.liu.se/~aidvi/courses/06/dm/ lectures/lec2.pdf

[16]. “Data Preprocessing in Data Mining” by, ISBN :

9783319102474 & 9783319102467.

[17]. Salvadar Garcia, Julian Luengo, Francisco Hurrera ,

http://www.enggjournals.com/ijcse/doc/IJCSE16-

08-01-009.pdf

[18]. Efficient construction of Optimal Binary Search Trees using

Data Preprocessing to improve Quality and Attribute Post

computing to save Space and time through modified

Dynamic Programming Technique,

http://www.ijcse.net/issue.php?file=vol05issue1,40-46.

[19]. Application of data preprocessing on given data and

efficient construction of OBSTs using post dynamic

Programming, http://journals.indexcopernicus.com/issue.

php?id=737&id_issue=882666

About Authors:

Mr. S. HrushiKesava Raju, working as a

Professor in the Dept. of CSE, SIETK,

Narayanavanam Road, Puttur. He is

pursuing Ph.D from Rayalaseema

University. His areas of interest are Data

Mining, Data Structures, and Networks.

Dr. M.Nagabhushana Rao, working as

Professor in the Dept. of CSE, K L

University, Vijayawada,A.P. He had

completed Ph.D from S.V. University in

the area of Data mining. He is presently

guiding many scholars in various

disciplines.

