
 © 2019, IJCSE All Rights Reserved 127

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-9, Sept 2019 E-ISSN: 2347-2693

Progressive Web Applications: Architectural Structure and Service

Worker Asset Caching

Arush Agarwal
1*

, Akhil Dixit
2

1Electronics and Communication, Netaji Subhas University of Technology, Dwarka, Delhi

2Electronics and Communication, Delhi Technological University, Bawana, Delhi

*Corresponding Author: Agarwal.arush98@gmail.com

DOI: https://doi.org/10.26438/ijcse/v7i9.127139 | Available online at: www.ijcseonline.org

Accepted: 09/Sept/2019, Published: 30/Sept/2019

Abstract—Progressive Web Application has emerged to be the top contender to alternative native application development.

Despite the fact that the development practices for traditional applications have matured and become systemic by providing

templates, cross platform development still remains a prominent topic. Developing an application with different architectural

structure is redundant and comparing these on different platforms becomes demanding. PWA provides a solution to these

problems by having to write a single codebase and providing similar features to all platforms with browser support. In this

research paper we analyse the foundations of PWA, its features and core functionalities. A detailed investigation of the

architectural structure of a PWA application and its benefit over its counterparts has been viewed. A case study analysing web

applications on different platform is carried out.

Keywords—Progressive Web Applications, Web View, Native Applications, Performance Testing, Service Worker

I. INTRODUCTION

Traditionally the mobile application development is performed by writing non re-usable native codes for different platforms.

This often leads to creating different teams for the production of same application and due to the hardware differences between

operating systems, the features also vary vastly. The web applications were truly a welcoming step towards a unified

application development that would run and perform on the web browser of the device. Due to this a single code in html and

JavaScript allowed to be fed through all the major electronics devices such as smartphones, personal computers and smart

watches. But the major lag behind the unpopularity of these unifying web designs was that they could not give the user the

satisfaction and amount of experience that traditional native applications provided. These native operating systems such as

Android, IOS, and Blackberry market had applications that were developed specifically to their standards and hardware

requirements. Due to this the working of the software was optimum with the user possessing maximum functionalities of the

device. As it is with the advent of new technology, Progressive Web App emerged as an optimal solution to provide the user

with a native application like experience, and offer the advantage of web applications
[1][2][3]

. PWA acts as a unifying technology

that seeks to interconnect the traditional and modern features of development. Technologies such as ―React Native‖ also try to

overcome the bridge between cross platform development but still a truly unifying mode for the interconnection of application

with the device is possible only by using Progressive Web Apps. This research paper provides a background to the architectural

structure by discussing the implementation by different organizations. Moreover a comparative case study and future

development is presented in this paper.

II. BACKGROUND

Progressive Web Apps is a new software and architectural development methodology which seeks to unify cross platform

application development. PWA acts as a hybrid of the traditional web pages and mobile applications. It provides features of

both the application styles by providing fast reload, smooth animations, junk free scrolling and seamless navigation even on

low power network. It provides the user with an app like experience by providing home icon, and functionalities like push

notifications which pop up on the screen. PWA are quite secured and can be used in corporates to reduce the cost of

development of application for different platforms. Progressive web Applications are responsive in nature and can fit modern

devices screen size, with the advent of service worker class these applications provide offline support and connectivity

independency by caching the pages. Throughout the app development, HTTPS protocol is used which establishes a secure

connection. A web app can be called a progressive web app if it possesses the manifest file and service worker file. Manifest

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 128

file provides the app with an app icon for an app like experience. Service worker is responsible for providing the provision of

an application like features such as push notifications services and offline functionality by using back-ground synchronization.

Thus, when offline, service worker synchronizes the background data and serve it to the user until a network is connected
[2][4]

.

The most important advantages that PWA have are, fast loading and a very low application size.

The analysis of Flipkart application showed: Flipkart android app size:11 Mb ; flipkart lite the PWA version: 250 KB. These

applications due to their smaller sizes can even work in 2G or slow connectivity with relative ease.

III. ARCHITECTURE

Progressive Web App uses modern web technologies to deliver fast, engaging, and reliable mobile web experiences that are

optimum for end user. PWAs evolve from pages in browser tabs to immersive apps by utilizing HTML and JavaScript and

enhancing it to provide a first class native like experience for the user. Overall PWA represents a traditional webpage with

added functionalities which are provided by the service worker class. The architecture behind PWA consists of application

shell which then utilises service worker for progressive capabilities.

A. Application Shell

Certain local resources that the web app needs to create for an overall frame of the user interface, which it further populates

using JavaScript are loaded onto the shell for extended offline capability. The shell of the functionality is loaded and displayed

to the user and then the rest of the interface is dynamically loaded
[5], [6]

. The purpose of this shell is to instantly load the

contents of the application. One main advantage of using this architecture is that app shell is not loaded every time the user

visits. Some initial HTML is always in the hands of user when the device is not connected to the internet, thus offering the user

with instant as well reliable performance. The app is filled with dynamic content afterwards whenever the user requests it. It is

the App shell that provides the progressive web app the features of the native apps.

An app shell typically includes HTML, JavaScript, CSS, and also might contain static resources that provide the structure for

the application. However, it does not include the actual content specific information for the page. In other words, the app shell

contains the parts of the page that change infrequently and can be cached so that they can be loaded instantly from the cache on

repeated visits.
[7]

 Generally, this includes the pieces of UI common across a few different pages of site headers, toolbars and

footers. Due to this we can compose everything other than the primary content of the page. Some static web apps, where the

page content does not change at all, consists entirely of an offline app shell
[4],[8]

.

B. Service Worker

The application shell contains the static resources but the availability of these resources are made available by the service

worker. The caching and the storage functionalities allow to precache certain resources for faster loading, this is essentially the

creation of application shell
[14]

.The service worker provides application the ability to intercept and handle network requests,

including managing multiple caches, minimizing data traffic, and saving offline user-generated data until online again
[1] [11]

.

The service worker performs its functions without the need for having an open web page or user interaction. This enables new

services such as Push Messaging or capturing user actions while offline and delivering them while online. Push Notifications

provides the user with time to time updates- increasing user engagement with the app
[12],[13]

.

So a service worker runs the application shell by:

The basic user interface elements developed using HTML, CSS and JS are displayed when the user first logs on. The service

worker responsible for controlling the future navigation of the app is registered by the page on the initial web visits. A new

service worker instance is created and an install event is triggered. The service worker responds to this install event. Cache is

then added with the app shell once the installation of service worker is done. Future navigation on the website can thus be

controlled afterwards by the service worker which is installed.

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 129

Fig. 1. Service Worker Life Cycle

2) The application screen and view is populated once the app shell content is uploaded and the app requests the same

content. The complete rendered page consists of the app shell as well as new dynamic content. There is a fetch event inside the

service worker. Every time a request is made this fetch event is triggered. Every time there is no event being fired the service

worker goes into idle state. The service worker will remain in this idle state unless an event is fired. If remains idle for a long

period of time the service worker gets automatically stopped and can be recovered on the occurrence of the fetch event.

3) It intercepts HTTPS requests so that application can decide what gets loaded from the cache, local data storage or the

network. As the service worker runs independently from the rest of the application it provides link onto the underlying

operating system. It responds to events from the OS, including push messages.

IV. CROSS PLATFORM APPLICATION DEVELOPMENT

As PWA consists of traditional HTML, CSS and JS, with the added characteristic of service worker. The typical web page can

be displayed over any browser and hence website load up on smartphones, tablet, consoles, computers and watches. Hybrid

applications such as react native does allow building upon android and ios devices but these can then cannot be used in

websites or over other devices
[15]

. The emergence of PWA and its framework provides a true experience over all platforms. The

cross platform development can be divided upon two categories:

1. Generative Approach: The main aim is to provide a native app for each supported platform. This native application has

been generated from a single code base can be further differentiated. Two approaches are present- Model-driven approaches

rely on a platform-independent model from which apps are generated. Typically, they employ a usually textual and, or possible

alternatively, graphical and Domain Specific Language (DSL) to describe an app, Transpilers take (usually native) code written

for one platform and transform it to native code for another platform.

2. Runtime environments: This approach does not generate new application for each platform. Hence instead of code running

directly onto the OS or the platform, the run time behaves as a bridge between the application and OS. This environment in our

case of PWA are web browsers or web view. In runtime environments the strategy for the rendering of the screen in the

different modes is provided to the client side devices. web apps that work offline. Also, by pre-caching your site‘s critical static

assets (or app shell, if your site is a single page application), you can give your users the experience of an almost instant page

load on subsequent visits to your site.

V. ASSET CACHING WITH SERVICE WORKER

Service worker is a script that browser runs in the back-ground and has whatsoever no relation with web pages or the DOM,

and provide out of the box features. Proxying network requests, push notifications and background sync are some of the

features provided by service worker. Service workers ensure that the user has a good offline experience.

To allow authors to manage their content caches for offline use, the Service Worker API provide the Cache API that open and

manipulate Cache objects. The Cache API was created to allow Service Workers to have a deeper and fine-grained control over

the caching of resources. Through the Cache API, a Service Worker can decide to cache resources for offline consumption and

retrieve them later. With resources, we mean complete responses from URL, like HTML pages, CSS, JavaScript files, images,

JSON, and any other resource that can be consumed by your web pages or web apps.

In this section, we outline a few common patterns for caching resources: on service worker install, on user inter-action, and on

network response.

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 130

Fig. 2. Service Worker Life Cycle

A. On install - caching the application shell

The service worker‘s "install" event is a strategic time to cache static assets. This is often referred to as " precaching", since

you are caching content ahead of the service worker being used. This is distinct from runtime caching, which saves files to the

cache when they are returned from a network re-quest, after the service worker has been installed and activated.

Caching the application shell on install ensures that the service worker has access to all shell assets (if any assets fail to cache,

the service worker installation is aborted).

The main reasons for doing this is that it gives developers control over the cache, meaning they can determine when and how

long a file is cached as well as serve it to the browser without going to the network, meaning it can be used to create

B. On Activate- remove outdated resources

It‘s important to remove outdated resources to conserve space on users‘ devices. Old caches are deleted in the active event to

ensure that caches are deleted before the new service worker has taken over the page (in case the new service worker activation

fails, we don‘t want to remove the existing service workers caches). To remove outdated caches, an array of caches is created

that are currently in use and delete all other caches.

C. On Fetch-

Whenever a fetch request is made, a fetch event is fired. In this event, caching strategies are implemented. The service worker

working as a middle man, all the requests go through the service workers. From here on we decide whether we want that

request to go to the network or to the cache. One of the examples of the strategy could be where the request is intercepted by

the service worker and the request is made to the cache if the cache doesn‘t return a valid response then the request is fired to

the network.

This approach works best for resources that frequently update, such as a user‘s inbox or article contents, since it is hard to

make all files cached static in the service workers. Also, there could be the possibility that the user might not be visiting each

and every page of your app then polluting their cache by installing so many files and slowing down the phone is of no use.

Instead, we could keep caching the pages as per the user visit the pages. And this is known as the Dynamic cache or cache on

demand.

It is important as :

1. Clean Code – The code should not end up looking like the complete application with several pages is being cached.

2. Clean Cache – The cache will only have those pages which the user visits. Hence, it does not pollute the users cache and

only caches the user current application demand.

VI. CACHING STRATEGIES

To serve content from the cache and make the app avail-able offline, it needs to intercept network requests and respond with

the files stored in the cache. All the caching strategies are to be implemented in the fetch event. Some of the caching strategies

are-

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 131

A. Cache only

The cache only strategy is useful for static sites which update infrequently, in this technique, we cache all the static resources

needed and then all requests are served from the cache. It is cached in the install event, so the application uses the data saved in

it. The response will look like a connection error if a match isn‘t found in the cache. This is suited for serving the resources for

the App Shell and other static content that is only updated when the application version is updated.

When to use- This is used when the app needs access to only static-assets.

Fig. 3. Cache only

B. Network Only

Fig. 4. Network Only

The client makes the request, the service worker intercepts it and makes the request to the network. This is the correct approach

for things that can‘t be performed offline, such as analytics pings and non-GET requests.

When to use- When assets or data have no offline equivalent or saved information.

C. Cache with Network fallback

User makes the request, where the request is intercepted by the service worker and the request is made to the cache; if the

cache doesn‘t return a valid response then the request is fired to the network. If application is on an offline-first, this is how it

handles the majority of requests. Other patterns will be exceptions based on the incoming request. This gives PWA the "Cache

only" behaviour for data in the cache and the "Network only" behaviour for anything not cached (which includes all non-GET

requests, as they cannot be cached).

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 132

Fig. 5. Cache with Network fallback

When to use- If it is an offline first application

Fig. 6. Network with cache fallback

D. Network with cache fallback

First, the service worker makes a request to the network, if the request is successful then it proceeds else it falls back to the

cache. If the resources are updated frequently, and they are not of the same version of the site (for example, articles, avatars,

social media timelines, game leader boards), then this can be a good approach. Handling network requests this way means the

online user get the most up-to-date content, and offline users get an older cached version.

However, this method has flaws. If the user has an intermittent or slow connection they‘ll have to wait for the network to fail

before they get content from the cache. This can take an extremely long time and hence proves to be extremely frustrating.

Here we first send the request to the network using fetch(), and only if it fails do we look for a response in the cache.

When to use- When you are building something that changes very often like a post page or a game leader board. When the

priority is the latest data, this strategy is used.

E. Cache, then Network

This is also a good approach for resources that update frequently. This approach will get content on the screen as fast as

possible, but still displays up-to-date content once it arrives. This requires the page to make two requests: one to the cache, and

one to the network. The idea is to show the cached data first, then update the page when/if the network data arrives.

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 133

Fig. 7. Cache, then network

We are sending a request to the network and the cache. The cache will most likely respond first and, if the network data has not

already been received, we update the page with the data in the response. When the network responds we update the page again

with the latest information.

When to use- When it is needed to develop something that does not change very often and the old data is not very different

from newer one. For example, if you load a page of blog posts from the cache and then add new posts to the top of the page as

they are fetched from the network. The application can switch to this strategy if the priority is -speed and then the fetching the

latest data.

F. Generic Fallback

When both the requests fail, one to the cache and other to the network, it displays a generic fallback so that the user won‘t

experience a blank screen or some unknown errors. This technique is ideal for secondary imagery such as avatars, failed POST

requests, "Unavailable while offline" page.

VII. CASE STUDY

Progressiveness of a Web App was analysed by performing a case study on web apps on market leaders of their field like

Instagram, Swiggy, Tinder, Twitter, and Pinterest. We have analysed their performance on various fronts like installation size,

performance analysis, caching techniques used and offline compatibilities. We then cumulated the results which can help

developers to decide how to develop their PWAs.

A. Installation Size

Installation size is one of the biggest factors which led to the boom of PWAs. Where their native counterparts occupy space in

several MBs, these PWAs have sizes in KBs solving the problem of insufficient storage space in mobiles.

Below are the comparison among sizes of native apps, mobile PWAs and the newly came in market, desktop PWAs showing

the mammoth difference between their sizes. Data is taken for all the 5 apps taken into study.

From the results, we can infer that PWAs (mobile or desktop) are a great option if storage space is a limitation barrier in your

system, and you don‘t want to compromise on performance.

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 134

TABLE I

INSTALLATION SIZE

 Native App Mobile PWA Desktop PWA

Swiggy 42.68MB 209KB Doesn‘t Exist

Pinterest 63.48MB 205KB Doesn‘t Exist

Instagram 69.15MB 520KB

Twitter 59.19MB 209KB Doesn‘t Exist

Tinder 94.93 274KB 575KB

B. Performance

Performance analysis was done using testing tools like Lighthouse, WebPageTest, and PageSpeed Insights to check the

performance of app on various factors like Load Time, First Byte, Rendering Time Starting, Speed Index, First Contentful

Paint, and First Meaningful Paint Tinder

An initial test was performed on Lighthouse tool which is provided by Google to test the progressiveness of a web application.

The tool on performing the tests give a score based on the following metrics which are Performance, Accessibility, Best

Practice, and Progressive Web App score, and SEO. On performing Lighthouse test on the Tinder Application following score

was obtained for the app.

Fig. 8. Lighthouse performance score for application

The application obtained a performance score of 44 which depicts that the application was loaded slower as compared to the

basic standards. The performance score was given to the app on the basis of the various metrics:

1. First Contentful Paint: First Contentful Paint (FCP) measures the time from navigation to the time when the browser

renders the first bit of content from the DOM. This is an important milestone for users because it provides feedback that the

page is actually loading.

2. Speed Index: Speed Index is a page load performance metric that shows you how quickly the contents of a page are visibly

populated. The lower the score, the better.

3. Time to Interactive: The Time to Interactive (TTI) metric measures how long it takes a page to become interactive.

"Interactive" is defined as the point where the page has dis-played useful content, which is measured with First Contentful

Paint and event handlers are registered for most visible page elements.

4. First Meaningful Paint: First Meaningful Paint measures when the primary content of a page is visible. The lower your

First Meaningful Paint score, the faster that the page appears to display its primary content.

5. First CPU Idle: First CPU Idle marks the first time at which the page‘s main thread is quiet enough to handle input.

6. Max Potential First Input Delay: First Input Delay (FID) measures the time from when a user first interacts with your site

to the time when the browser is actually able to respond to that interaction.

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 135

Fig. 9. Performance metrics of PWA

We have also analysed the same PWA using another testing tool WebPageTest to confirm our results that we got from

LightHouse. This was done to ensure that our observations were not from only one source and were crosschecked from another

testing tool. The outputs that we got from Web-Page Test were in alignment with our previous observations, thus,

strengthening our results.

Serve offline page. This cache is persistent and independent from browser cache or network status. Caching resources makes

the app content load faster on most network conditions.

It chooses to use SW-PreCache, a node module for generating the service worker and to precache static data that is not going to

change. This is being used along with the sw-toolbox library for runtime caching. It is integrated with the build process, so a

new service worker is generated after each build since Webpack generates dynamic chunk names, build process writes new

chunk names directly to the SW-Precache loads template.

Network First cache strategy for API calls and CacheFirst, then Network strategy for the static assets are being used to cache

assets.

2) Pinterest: Pinterest use the Workbox libraries for gen-eating and managing their Service Workers. They define a precache

for the initial bundles loaded by the application shell (web pack‘s runtime, vendor and entry Chunks) too. As Pinterest is a site

with a global presence, supporting multiple languages, they also generate a per-locale Service Worker configuration, so they

can precache locale bundles. Pinterest also use web pack‘s named chunks to precache top-level async route bundles.

They decided to cache it in the application shell, which required some management of when to invalidate the app shell (logout,

user information updates from settings etc.). Each request response has an ‗appVersion‗ — if the app version changes, they

unregister the Service Worker, register the new one then on the next route change they do a full page reload.

Pinterest cache any JavaScript or CSS bundles using a cache-first, then network strategy and also cache their user-interface (the

application shell).

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 136

Fig. 10. Performance Analysis in WebPageTest

We can see the outputs that we got from WebPageTest were in alignment with our previous observations, thus, strengthening

our results. Although some names were different like first byte and first contentful paint means same and also, first CPU idle

and fully loaded document time, but all in all, they mean the same thing and have approximately equal values.

Similar performance analysis was performed for each of the remaining subject PWAs, results of which are tabulated in Table

II.

C. Caching Mechanics and Offline Compatibilities

In this section, we have performed various tests to check how these PWAs have implemented the service worker caching using

caching API. Precaching static data, response to offline (whether they respond with a 200 response or not), caching strategy

implemented to fetch data, etc. were some of the factors on which analysis were done.

1) Swiggy: Swiggy PWA serves a response from cache even when the user is offline. Although, Service Workers caches

JavaScript bundles, custom fonts, images, and also

2)

Fig. 11. Code Snippet for Cache falling back to network

3) Instagram: Instagram has used a totally different approach for caching assets in service worker. It has neither pre-cached

any static files nor cached any dynamic files, although it has used disk and memory caching for images, JavaScript and CSS

bundles. Due to this, it does not serve a response when the app is in offline stage. It has however, cached login credentials in

cache storage. This strategy works for Instagram, in the sense that, it has to always show new data to the user.

The strategy used by Instagram is Network Only since no Service Worker Cache exists here.

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 137

TABLE II

PERFORMANCE ANALYSIS

First Contentful

Paint

First Meaningful

Paint

Speed

Index

First CPU

Idle

Time to

Interactive First Input Delay

Swiggy 2.6s 2.6s 3.3s 5.0s 5.6s .09s

Pinterest 3.4s 4.2s 6.1s 6.6s 7.6s .120s

Instagram 3.1 5.3 6.5 6.5 8.3 .180s

Twitter 4.8s 5.8s 9.7s 8.7s 9.4s .240s

Tinder 2.2s 4.9s 4.8s 7.9s 10.4s 1.14s

4) Twitter: Twitter adopted an incremental approach to leveraging service workers for offline and network resilience,

starting with a custom offline page presented whenever a net-work connection wasn‘t available. Lastly, they added support for

offline caching of their application shell. Repeat visits are nearly instant thanks to service worker caching of current views,

feed updates, notifications, messages and settings as they transitioned to offline caching of static resources like CSS, images

and JavaScript bundles.

Using web pack, the app‘s scripts are broken up into granular pieces and loaded on demand. This means when available, a

Service Worker will precache additional resources and allow instant future navigations to other screens.

Twitter PWA uses Cache first, for its application shell data and for dynamic data, it used Network Only strategy much like

Instagram.

5) Tinder: Tinder PWA pre caches the application shell, so as to serve a response whenever a user goes offline. This cache

is persistent and is not dependent on the type of browser.

Tinder uses the Workbox Webpack plugin for caching both their Application Shell and their core static assets like their main,

vendor, manifest bundles and CSS. This enables network resilience for repeat visits and ensures that the application starts-up

more quickly when a user returns for subsequent visits.

Tinder caches any of its static data using Cache First, with Network Fallback strategy and for dynamic data, it uses Network

Only strategy. In the user engagement as well as they have provided the user with less loading time by adopting the

progressive web architectural pattern. The industry is investing resources into progressive web apps (PWA) but the lack of

academic involve-mint denotes a significant knowledge gap but at the same time provides research potential.

However, the massive interest by practitioners mandates further research. We have therefore sketched future developments and

suggested a research agenda. We suggested a balanced approach of experimental and qualitative work. While we hope to

encourage other researchers as well, our interest in the topic undoubtedly has been sparked.

The list below provides suggestions for further research of the same subject:

1. Continue the development of technical implementations for comparison and evaluation purposes against established

development approaches.

2. Search for better strategies for caching and provide better responses when user is offline.

3. Study how initial bundles of JS, CSS and HTML could be disintegrated for faster loading.

4. Deepen the analysis on how performance can be improved further.

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 138

TABLE III

COMPARISON OF CACHING STRATEGIES AND OFFLINE COMPATIBILITY

 Caching Strategy Offline Compatibility

Swiggy Network First for Dynamic data, Yes (appshell)

 CacheFirst, then Network for

 static data

Instagram Network Only No

Pinterest CacheFirst, then Network for all Yes (appshell)

 types of data.

Tinder CacheFirst, then Network for Yes (appshell)

 static data,

 Network Only for dynamic data.

Twitter CacheFirst, then Network for Yes

 static data,

Network Only for dynamic data.

VIII. CONCLUSION AND FUTURE SCOPE

Progressive Web Applications holds a strong future in the app development industry. Apps which the user does not use too

often occupy a large part of memory. It is convenient to develop a progressive web application as there would be no need to

install and save to memory. Therefore, PWA‘s will provide cost savings by reducing the amount of memory required. Several

big companies have started to see increase

REFERENCES

[1] I. Malavolta, G. Procaccianti, P. Noorland, and P.Vukmirovi, ―Assessing the Impact of Service Workers on the Energy

Efficiency of Progressive Web Apps,‖ pp. 52–62, 2017.

[2] I. Malavolta, ―Beyond Native Apps: Web Technologies to the Rescue! (Keynote).‖ ACM Mobile!‘16, Amsterdam,

Netherlands, pp. 5–6, 2016.

[3] T. Leadership and W. Paper, ―Native, web or hybrid mobile-app development.‖

[4] S. K. Gudla, J. K. Sahoo, A. Singh, J. Bose, and N. Ahamed, ―A Systematic Framework to Optimize Launch Times of

Web Apps,‖ in International World Wide Web Conference Committee (IW3C2), published under Creative Commons CC

BY 4.0 License. , 2017, pp. 785–786.

[5] I. Malavolta, G. Procaccianti, P. Noorland, and P. Vukmirovi, ―Assessing the Impact of Service Workers on the Energy

Efficiency of Progressive Web Apps,‖ 2017.

[6] A. I. Wasserman, ―Software Engineering Issues for Mobile Application Development,‖ in FoSER 2010, 2010, pp. 397–

400.

[7] H. Takabi, J. B. D. Joshi, and G.-J. Ahn, ―Security and Privacy Challenges in Cloud Computing Environments,‖ IEEE

Secure. Priv. Mag., vol. 8, no. 6, pp. 24–31, 2010.

[8] N. Koch, P. Fraternali, and M. (Eds.), ―Lecture Notes in Computer Science: Web Engineering,‖ in 4th International

Conference, ICWE 2004 Munich, Germany, July 26-30, 2004 Proceedings, 2004.

[9] G. S. T. Koziokas, Panagiotis T., Nikolaos D. Tselikas, ―Usability Testing of Mobile Applications: Web vs. . . Hybrid

Apps,‖ in PCI 2017, September 28–30, 2017, pp. 9–10.

[10] H. Muccini, D. Informatica, A. Di Francesco, D. In-formatica, P. Esposito, and D. Informatica, ―Software Testing of

Mobile Applications: Challenges and Future Research Directions,‖ pp. 29–35, 2012.

[11] I. Malavolta, S. Ruberto, T. Soru, and V. Terragni, ―End Users ‘ Perception of Hybrid Mobile Apps in the Google Play

Store,‖ in Mobile Services (MS), 2015 IEEE International Conference on , 2015.

[12] Ian Warren ; Andrew Meads ; Satish Srirama ; Thi-ranjith Weerasinghe ; Carlos Paniagua, ―Push Notification Mechanisms

for Pervasive Smartphone Applications,‖ IEEE Pervasive Compute. , vol. 13, no. 2, pp. 61–71, 2014.

[13] Satish Narayana Srirama, ―Mobile web and cloud services enabling Internet of Things,‖ CSI Trans. ICT, vol. 5, no. 1, pp.

109–117, 2017.

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 139

[14] K. Behl, G. Raj, ―Architectural Pattern of Progressive Web and Background Synchronization‖, in the International

Conference on Advances in Computing and Communication Engineering (ICACCE-2018) Paris, France, pp. 366-371,

2018.

[15] T. A. Majchrzak, A.B. Hansen, T.M. Grønli, ―ProgressiveWeb Apps: the Definite Approach to Cross-Platform

Development?‖ In the Proceedings of the 51st Hawaii International Conference on System Sciences, pp. 5735-5744, 2018.

Authors Profile:

Mr. Arush Agarwal is currently pursuing his Bachelor of Engineering(undergraduation) from Netaji Subhas

University Of Technology, Delhi. Currently in his final year he has published 4 research papers and has done

extensive research work in his field. He currently majors in Electronics and Communication with.

 Mr. Akhil Dixit is currently pursuing his Bachelor Of Technology in Electronics and Communication from

Delhi Technological University, Bawana. Currently in his final year he has published 4 research papers in the

domain of Machine Learning and Softwares. Having advent interest in computer vision and imageprocessing,

he is currently working on the research work on the same.

