
 © 2016, IJCSE All Rights Reserved 129

International Journal of Computer Sciences and Engineering Open Access

 Research Paper Volume-4, Issue-11 E-ISSN: 2347-2693

A Hybrid Heuristic Algorithm to Enhance Load balancing in

Cloud Environment

V Ravi Teja Kanakala*, K.P avan Kumar, S. Kavitha

Available online at: www.ijcseonline.org

Received: Oct/29/2016 Revised: Nov/10/2016 Accepted: Nov/24/2016 Published: Nov/31/2016

Abstract- Cloud computing, an internet based technology which provides virtualized computer resources over the internet. Distribution

of the dynamic workload among the computer resources in the cloud evenly in such a way that no single node is overloaded or under loaded

is called Load Balancing. An efficient load balancer will increase the performance of cloud, maximizes the cloud services and also increases

the resource utilization. Today increasing the performance of a cloud depends on many factors, among them Load Balancing is one of the

main factors. In this paper we propose a load balancing algorithm which is a variant to the Weight Least Connection (WLC) algorithm. The

proposed algorithm shows better results in several aspects like accurate calculation of work load on a resource, distributing the work load on

the service nodes efficiently, enhancing the response time and minimizing the overall task execution time.

Keywords: Cloud computing, Virtualized computer resources, Dynamic workload, Load balancer, Load balancing algorithm, Least

Connection (LC) algorithm, Power consumption.

I. Introduction

A Cloud is a pool of virtualized computer resources that are

dynamically scalable. The computer resources in the cloud

will be allocated for executing high-scale computational

tasks which is called Load balancing. A Load balancing

algorithm is said to be an enhanced and effective algorithm

if it shows better performance among other load balancing

techniques in multiple aspects while executing a task like

reducing the average execution time, enhancing the

responsive time, reducing the power consumption, reducing

the communication costs, executing the tasks with high

priority more efficiently etc. All the above listed areas show

their impact while balancing the work load in a cloud

environment. There are many algorithms proposed for

balancing the load in a cloud but still no algorithm is able to

perform well in all the above listed aspects i.e. if an

algorithm performs well in enhancing the responsive time of

a cloud then the cost of communication or the power

consumption will be increased in return due to increase in

the usage of resources. Similarly if an algorithm executes a

task with high priority first then it will affect the waiting

time and responsive time of the cloud. Load Balancing is

one of the main challenges that cloud computing is facing

today. Efficient load balancing in a cloud will solve the

maximum performance related problems. Load balancing

can be done using static and dynamic methods but in cloud

computing environment most cases are with dynamic

workload because the data regarding the service nodes

should updated frequently. So, dynamic load balancing

algorithms best suits for cloud environment. In static load

balancing techniques while assigning connections to the

service nodes the load balancer will not consider the

previous performance by the node [1]. The allotment of the

connections will be purely based on the fixed information

about the capacity of the node like processing power,

storage capacity and memory availability etc. The problem

with static load balancing is if there is a change occurs in the

information collected by a node before assigning a

connection then we cannot adapt the dynamic changes

during runtime [3]. But in the case of dynamic load

balancing algorithm the load balancer can adapt the changes

frequently even at the runtime of the service node [1].

II. Related Work:

Existing Load Balancing Algorithms

Least Connection (LC) Algorithm:

In the basic Least Connection algorithm the load will be

calculated based on the number of connections the resource

is having with the clients which is an inefficient way of

calculating the workload of a node and is far away from

accuracy and not preferable [5]. It will also not check the

node’s capabilities like Processing power, Disk space

availability, and memory etc before allocating task. The

principle idea of Least Connection algorithm can be shown

mathematically. Suppose there are a group of resource nodes

R= {R0, R1, R2… Rn}. The number of connections which the

resource node Ri currently having can be

represented as C(Ri) where (i=0,1,2,3,…n-1). The

sum of all the connections of all the Resource

nodes in the cluster can be represented as

Csum=C(Ri) where (i=0,1,2,3….n-1). To get the newly

arrived connection a Resource node Rnew should satisfy the

condition (1).

 = min  

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 130

 where (i = 0,1,2,3,……n-1) (1)

Weight Least Connection (WLC) Algorithm:

Improving the Least Connection (LC) algorithm there were

several algorithms proposed. One of them was Weighted

Least Connection (WLC) algorithm. In Weighted Least

Connection (WLC) algorithm each and every resource node

will be assigned a fixed performance weight depending on

its capacity like processing power, idle rate, size of memory

and I/O available etc. Resource node Rnew to get a new

connection then it should satisfy the condition (2).

 = min 

 

 where (i = 0,1,2,3,……n-1) and W(Ri)≠0. (2)

Since Csum can be considered as constant the above equation

can be derived as

 = min 

 

 where (i = 0,1,2,3,……n-1) and W(Ri)≠0. (3)

The above condition means that when a new connection

arrives in the ready queue for execution then it will be

assigned to the resource node Rnew with higher weights and

minimum number of connections.

Problem while calculating the Weight

In Weighted Least Connection (WLC) algorithm a fixed

performance weight of resource node is assigned based on

its capacity which is not an efficient method because the

weight of a node will not be static and constant it will vary

frequently. The fixed weights of resource nodes will not

reflect the actual load because every connection existing

with a service node will not last for the same amount of time

[6]. Some connections may be short and some may have

long connectivity depending upon their load severity.

Calculation of accurate weight of Resource node and

scheduling the connection to its favorite resource node is

very important to perfectly balance the load in the dynamic

environment like cloud. If we get the accurate weights of

each and every resource node it will be simple and easy to

map a connection to suitable resource that can execute the

tasks in a connection faster.

Existing Heuristic Algorithms for Scheduling Independent

Tasks in Dynamic Environment:

Min-Min Algorithm: In this technique the minimum

completion time of each and every task on the cluster of

resources will be calculated and the resource on which the

task has minimum completion time will be its favorite

resource. Among all the tasks the task with minimum

completion time will be selected first and will be allocated

the resource. In this technique smaller tasks will be given

high preference [7].

Max-Min Algorithm: In this technique the minimum

completion time of each and every task on the cluster of

resources will be calculated and the resource on which the

task has minimum completion time will be its favorite

resource. Among all the tasks the task with maximum

completion time will be selected first and will be allocated

the resource. In this technique larger tasks will be given high

preference. The first few steps in Max-Min algorithm is

similar to the Min-Min algorithm but while selecting the

task preference will be given to the task with maximum

completion time [4].

Problem of priority assignment between smaller and larger

tasks:

In Min-Min algorithm the smaller tasks are being assigned

their favorite resources first but while coming to the case of

large tasks they were not having the choice of acquiring

their favorite resources [4]. So, in Min-Min algorithm larger

tasks were facing problems in resource selection which will

affect the total make span of larger tasks [8]. Now,

considering the Max-Min algorithm larger tasks are being

assigned their favorite resources which was a problem to the

smaller tasks for waiting in the queue until the larger tasks

are executed.

III. Proposed Algorithm:

We propose a hybrid heuristic algorithm that overcomes the

above addressed problems in WLC and Min-Min, Max-Min

algorithms. Assume a cluster of cloud resources

R={R0,R1,R2,……Rn} and a set of connections

C={C0,C1,C2…..Cn} waiting in the ready queue for execution,

each resource node will have some capacity to execute the
tasks. Let us consider the current capacity of executing tasks

as weight of the resource node. Calculation of the accurate

weight of resource nodes was the issue in the above

described algorithms. In Least Connection algorithm (LC),

the number of connections is considered as weight of the

resource node which is not correct. In Weighted Least

Connection (WLC) algorithm, fixed performance weights

are considered which does not suit for dynamic

environments like cloud. In this proposed algorithm we

considered a set of multiple factors for calculating the

weight of resource node such as Total number of Existing

Connections (TOC), current idle rate of the node (IR),

execution cost per instruction (), Current Complexity Rate

(CR). All this data will be updated in a queue frequently

after assigning every connection to nodes. The weight of the

resource node can be calculated as the below

W(Ri) = (TOC,IR,,CR)

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 131

where (i=0,1,2,3,….n-1)

W(Ri) = P1 * TOC(Ri) + P2 * IR(Ri) + P3 * (Ri) + P4 * CR(Ri)

(4)

Where Pi is the varying parameter for the applied factors of

the resource node and Ri represents the current Resource

node where (i=0,1,2,3,….n-1). Along with the weight of

Resource nodes we also need to calculate the weight of the

connections in ready queue for assigning them to the

resources that are more suitable and can handle their

complexity more efficiently. While calculating the Weight

of a connection we consider factors like Total Number of

Instructions in the connection (TOI), Complexity of

Instructions (COI), Arrival time of connection in the ready

queue (AT) and also the Living Time of the connection in

the ready queue (LT) which means if the connection is not

assigned to any of the resource node within the Living time

it will be moved into dead state. The Weight of the

connection can be represented by the function (5).

L(Ci) = (TOI,COI,AT,LT)

where (i=0,1,2,3,….n-1)

W(Ci) = Pk * (TOI(Ci) + COI(Ci) + AT(Ci) + LT(Ci)) (5)

Where Pk is the constant parameter for the applied factors of

the resource node and Ri represents the current Resource

node where (i=0,1,2,3,….n-1). The above calculated set of

data about the Weight of Resource nodes Ri and Weight of

connections Ci will be implemented in queues. After the

assignment of each connection to node the queues will be

updated each time. By updating the queues the weights of

Resource nodes will be more accurate and will help in

balancing the load more efficiently. Getting accurate load

value alone is not sufficient for efficient load balancing. We

also need not map the tasks to the resources which can

handle the task complexity efficiently and which can reduce

the execution time, response time etc. So, we need to

schedule data in such a way that will not create load

imbalance in the system and should not require frequent

migration of tasks from one resource to other for balancing

the load.

Calculate the average weight of all the unassigned

connections W(Cavg) in the ready queue and make it a

threshold point. Consider the connections with weights

greater than the threshold value as larger tasks and the

weights less than the threshold value as smaller tasks. If the

connection waiting in the ready queue is smaller task i.e.

having lesser weight than the average threshold value

W(Cavg) then apply Min-Min algorithm, then the connection

with minimum execution time will be given priority and it

will be allocated its favorite resource node. If the connection

waiting in the ready queue is larger task i.e. having more

weight than the average threshold value W(Cavg) then apply

Max-Min algorithm, then the connection with maximum

execution time will be given priority and it will be allocated

its favorite resource node. Each time when you assign a new

connection to a resource node we need to update all the

queues maintaining the details about the weights of

connections and resources. Before assigning the next

connection the average weight of all the unassigned

connections W(Cavg) must be calculated again because after

the assignment of a connection in the previous step it will be

deleted from the ready queue and there will a change in the

average weight of connections. So, we need to calculate

W(Cavg) of the remaining connections in the ready queue

after every assignment.

W(Cavg) =

where (i=0,1,2,3,….n-1) (6)

IV. The Proposed algorithm is as shown below:

Step 1: Start

Step 2: Consider a cluster of resource nodes Ri and the set of connections Ci.

Step 3: Calculate the weight value of resource nodes as describe above W(Ri) and store it in a

 Queue.

W(Ri) = P1 * TOC(Ri) + P2 * IR(Ri) + P3 * (Ri) + P4 * CR(Ri)

Step 4: Calculate the accurate Load value of connections L(Ci) and store it in a Queue.

W(Ci) = Pk * (TOI(Ci) + COI(Ci) + AT(Ci) + LT(Ci))

Step 5: Calculate the average weight of all the unassigned connections in the Ready queue

W(Cavg) =

Step 6: Now compare the next connection in the ready queue with the average weight of

All the Connections W(Cavg).
 if W(Ci) < W(Cavg)

 {

 apply Min-Min algorithm;

 Select the task with minimum execution time required;

 Allot its favorite resource;

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 132

 }

 if W(Ci) > W(Cavg)

 {

 apply Max-Min algorithm;

 Select the task with maximum execution time required;

 Allot its favorite resource;

 }

Step 7: Update the queues maintaining the weights of resources and connections after

 every assignment of a connection.

Step 8: Calculate the average weight of all the unassigned connections W(Cavg) after

 every assignment of a connection (step 5).

Step 9: If the Queue of connections is not empty repeat step 3 else step 10

Step 10: End

V. Future Work:

In future we will implement the above proposed algorithm using

the simulation tool Cloud Sim and provide the results. In the above

proposed algorithm lot of communication happens between the

connections in the ready queue, Resource nodes and the load

balancer. This will increase the total communication cost which

will be a drawback for the system. In future we will try to reduce

the communication cost without degrading the performance

VI. Conclusion:

The proper assumption of the weight of a resource node in a

dynamic environment like cloud computing is little bit complex. In

this algorithm multiple factors of Resource node are taken into

account for getting accurate value for the weight of Resource node.

Similarly, before allotting connection complete requirements of

that connection are analyzed. The goal of this algorithm is to

distribute the workload efficiently among the resource nodes which

can be achieved by the proper calculation of the weights of

Resource node. With proper assignment of connections to the

resource nodes the overall task execution time will be minimized

and the response time will also be enhanced. In the above

algorithm we proposed a technique to satisfy all the above

mentioned requirements.

VII. References

[1]. Xiaona Ren, Rongheng Lin,Hua Zou, “A Dynamic Load

Balancing Strategy For Cloud Computing Platform Based

On Exponential Smoothing Forecast”, IEEE ccis2011, pp-

220-225, 2011.

[2]. Li-Hui Yang, Sheng-Sheng YuA, “Variable Weighted

Least-Connection Algorithm For Multimedia

Transmission”, Journal of Shanghai University, Volume 7,

Issue 3, pp 256-260, 2003.

[3]. Shanti swaroop moharana, rajadeepan d. Ramesh, digamber

powar, “Analysis Of Load Balancers In Cloud Computing”,

International Journal of Computer Science and Engineering

(IJCSE) ISSN 2278-9960 Vol. 2, Issue 2, May 2013.

[4]. E. Kartal Tabak, B. Barla Cambazoglu, Cevdet Aykanat,
“Improving the Performance of Independent Task

Assignment Heuristics MinMin, MaxMin and Sufferage”,

IEEE Transactions On Parallel And Distributed Systems,

VOL. 25, NO. 5, MAY 2014.

[5]. Ra´ul Alonso-Calvo, Jose Crespo, “On distributing load in

cloud computing: A real application for very-large image

datasets” Procedia Computer Science 1, Elsevier, 2669–

2677, 2012.

[6]. Kousik Dasgupta, Brototi Mandal, Paramartha Dutta,

Jyotsna Kumar Mondal, Santanu Dam, “A Genetic

Algorithm (GA) based Load Balancing Strategy for Cloud

Computing”, Procedia Technology 10, Elsevier, 340 – 347,

2013.

[7]. O.H. Ibarra and C.E. Kim, “Heuristic Algorithms for

Scheduling Independent Tasks on Nonidentical

Processors,” J. ACM, vol. 24, no. 2, pp. 280-289, 1977.

[8]. S. Parsa and R. Entezari-Maleki, “RASA - A New Grid

Task Scheduling Algorithm,” Int’l J. Digital Content

Technology and Its Applications, vol. 3, no. 4, pp. 91-99,

2009.

Authors Profile

Mr.V Raviteja Kanakala pursed B.Tech from JNTUK University,
Kakinada in 2011 and M.Tech from VIT University, Vellore in
year 2013. He is currently working as Assistant Professor in
Department of Computer Science & Engineering, Pragati
Engineering College, Surampalem since 2016. He is a life member
of CSI since 2015. He has published more than 5 research papers in
reputed international journals indexed in Sopus and conferences
including IEEE and it’s also available online. His main research
work focuses on Load balancing in Cloud Computing and IOT. He
has 3 years of teaching experience.

Mr.K Pavan Kumar pursed B.Tech from JNTUK University,
Kakinada in 2009 and M.Tech from JNTUK University, Kakinada
in year 2016. He is currently working as Assistant Professor in
Department of Computer Science & Engineering, Pragati
Engineering College, Surampalem since 2016. His main research
work focuses on Cloud Computing.

Mrs.S Kavitha pursed B.Tech from JNTUH University, Hyderabad
in 2003 and M.Tech from JNTUK University, Kakinada in year
2009. She is currently working as Assistant Professor in
Department of Computer Science & Engineering, Pragati
Engineering College, Surampalem since 2016. Her main research
work focuses on Cloud Computing. She has 13 years of teaching
experience.

