

 © 2016, IJCSE All Rights Reserved 118

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Review Paper Volume-4, Issue-4 E-ISSN: 2347-2693

Proposed Quality Paradigm for End User Development

Archana Srivastava
 1*

, S.K.Singh
2
 and Syed Qamar Abbas

3

1*
 PhD Student, Amity University Lucknow
2*

 Professor, Amity University Lucknow
3*

Professor & Director, Ambalika Institute of Management & Technology, Lucknow

www.ijcseonline.org

Received: Mar/26/2016 Revised: Apr/04/2016 Accepted: Apr/22/2016 Published: Apr/30/ 2016

Abstract— The IT industry across the globe has rapidly evolved in recent times. The evolution has been primarily driven by factors

like changing regulation policies, progression in information technology, globalization, changing customer demands and business

needs, collaborations, mergers & acquisitions. Due to changing demands and business needs of end users, End User computing

strategy can be expected to have a positive influence on end user behaviour. End users were significantly more satisfied with

applications they can develop themselves. This paper review the concept of end user development, commonly used end user

development methodologies and mentions some end user development software. It also proposes the EUD qualities that if inbuilt into

the system will enhance the end users inclination towards the software hence will increase the end user satisfaction.

Keywords- End User Computing (EUC), End User Development (EUD), End User Programming(EUP), End User Software Engineering

(EUSE), ubiquity, Programming-by-example, script based creation, block Programming

1. INTRODUCTION

End-User Development (EUD) is defined as a set of

methods, techniques, and tools that allow users of software

Systems, who are acting as non-professional software

developers, at some point to create, modify or extend a

software artifact [1]. End users have specific goals in their

own domains, which are not related to software development.

The end users that we consider here are people who have

some basic technological knowledge but are not professional

programmers.

End users usually do not have training in professionals

programming languages, formal development processes, or

modeling and diagramming notations. Moreover, end users

often lack the time or motivation to learn these traditional

techniques, since end users usually write code in order to

achieve a short- or medium-term goal rather than to create a

durable software asset that will produce a continuing revenue

stream. Consequently, supporting EUD requires providing

appropriate tools, social structures, and development

processes that are highly usable, quickly learned, and easily

integrated into domain practice.

EUD overlaps with two similar concepts, end-user

programming and end-user software engineering. End-user

programming (EUP) enables end users to create their own

programs. This subset of EUD is the most mature from a

research and practice perspective, so we focus a later section

of this article on that portion of EUD. The difference

between EUP and EUD is that EUD methods, techniques,

and tools span the entire software development lifecycle,

including modifying and extending software, not just the

"create" phase.

End-user programming (EUP) can be considered as a way of

“programming to achieve the result of a program, rather than

the program itself". In EUP, the developer's goal is to

actually use the program; this contrasts with professional

programming, where the goal is to create a program for other

people to use, often in exchange for monetary compensation.

The other related concept overlapping with EUD is end-user

software engineering (EUSE). EUSE is a relatively new

subset of EUD that began about a decade ago. It aims to

address the problem of end users software quality by looking

beyond the “create” part of software development. EUP is

the “create” part, EUSE involves systematic and disciplined

activities that address the software quality such as

reusability, efficiency, usability etc. Its emphasis is on the

quality of the software end users create, modify, or extend;

thus its research focuses on methods, techniques, and tools

that promote the quality of such software. This area has

arisen because of the ample evidence that the programs end

users create are filled with expensive errors

The strongest advantage the end-user developer has is their

domain expertise. Because they are domain experts, they see

no need for requirements gathering. Tradeoffs in

functionality are more readily resolved due to the extensive

domain knowledge and first-hand observations of systems

limitations. This allows changes to be made faster and to be

more readily accepted. Another advantage is that previous

solutions can be leveraged to initiate or add needed

functionality for new solutions. Most end-user development

solutions are created in less than a week, and experience long

term use by their team or organization [2].

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(118-122) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 119

2. COMMONLY USED END USER

DEVELOPMENT METHODOLOGIES

The objective of the end-user programming methods is to

bridge the gap between usage and programming of an

application [3,4] and often these methods focus more on

reusing of legacy software than creating new software

components or source code. For example, the simplicity,

support for immediate feedback and avoidance of misleading

appearances are important in end-user programming tools

[4,7,8]. The following briefly introduces end-user

programming approaches taken from [4,7,8]:

a) Programming-by-example— it includes using a

particular instance of execution, input-output relations,

or existing programs as basis for creating new programs

[11]. For example, modification of a working example

speeds up development as it provides stronger

scaffolding than writing code from scratch [5].

b) Visual programming— it is concerned with replacing

the textual programming notation with a graphical one

with blocks and connectors [11]. Visual programming

concepts and tools assist the user to create small

applications on top of their things [6].

c) Script-based creation— this approach makes

programming easier and more natural for users who

want customized applications and are capable of doing

basic programming without having to set up e.g., C++

or Java environments [11]. Script languages sacrifice

execution efficiency and provide an interpreted

development environment, a higher abstraction level for

programming than typical system programming

languages, and weaker typing than system

programming languages [7].

d) Repository-based creation of applications— it Supports

the reuse of software components. For example, the [8]

presents an end-user programming approach for Web

applications that consist of a (i) Pattern library, (ii)

Pattern language, and (iii) Command language. The

Pattern library contains patterns (e.g., for dates, times,

phone numbers, email addresses, and URLs), parsers

(e.g., an HTML parser), and wrappers for Web sites

such as Google or Amazon. The library patterns can be

glued together with a pattern language called text

constraints, which uses relational operators such as

before, after, in, and contains to describe a set of

regions in a page.

e) Tailoring of applications— can be based on

customization that modifies the parameters of

components; integration that creates or modifies

assemblies of components; and extension that creates

new components by writing program code. The direct

activation technique also belongs to this category and

requires that the tailoring functionality is accessible

from the use context when the need for tailoring occurs

[9].

f) Block Programming (Tempel, 2013): It is a paradigm in

which each block is a basic software component, which

can be part of another software component. LogoBlocks

(Begel, 1996) is one of the origins of this paradigm. It is

derived from Logo, and was the inspiration for many

block programming environments. Programmers

assemble their program using these blocks (McCaffrey,

2006).

g) Mashups: It uses modern web technologies to collect

information from the web and assemble it in a new

single location (Grammel and Storey, 2008).

h) Domain Specific Language (DSL): Systems are written

for a specific domain and thus are easy to use by

domain experts (Fowler, 2010), (van Deursen, et al.,

2000). However, they are expensive to develop and are

limited by their functionality. Even though it is easier to

develop graphical tools for these languages, some of

these systems still require training regarding the syntax.

Other systems expose control structures in graphical

tools.

i) Form-Based Systems: They are another name for

spreadsheets. They are the most used form of end-users

development (Blackwell, 2006). Spreadsheets enable

end-users to instantly review the results in the

corresponding cells by writing simple queries.

j) Scenario Based Creation: It provides scenario-driven

business service assembly software environment that

uses encapsulated, iconographic building blocks, each

representing a discrete web service component to be

executed within a business service to logically depict

service processes as well as complex relationships

between these processes, their audiences, and means of

deployment.

3. COMMON END USER DEVELOPMENT

ASPECTS

Enhancing user-participation in the initial design process of

IT-systems is one step towards better capturing user

requirements. Research is done on providing domain-

specific, possibly graphical modeling languages that users

find easy to express their requirements in. Such modeling

languages are considered an important means to bridge the

‘communicational gap’ between the technical view of the

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(118-122) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 120

software professionals and the domain-expert view of the

end-users [13].

All end-users perform different programming tasks; there

exist a vast, heterogeneous pool of end-users who are likely

to benefit from a diversity of tools to support their

programming activities. Developing such tools efficiently

requires a better characterization of what features are valued

by each end-user sub-population. What quality attributes will

be needed by specific end-users.

Despite the potential benefits to an organization of user

development of applications there are many risks associated

with it that may lead to potentially dysfunctional

consequences for the organization’s activities. These risks

result from a potential decrease in quality and control as

individuals who have little or no formal information systems

training increasingly take responsibility for developing and

implementing systems of their own making [17].

4. CATEGORY OF END USERS

a) Pure End Users: The end users are the individuals who

use the software product after it has been fully

developed and marketed.

b) End Users who write Macros: Macros are useful if end

users want to create their own custom macros. These

macros can be to perform specific actions, apply custom

formatting and much more. Web macros give web

browser users ways to “program” tedious tasks,

allowing those tasks to be repeated more quickly and

reliably than when performed by hand.

c) End Users using domain specific language: Some

domain-specific languages expand over time to include

full-featured programming tools, which further

complicates the question of whether a language is

domain-specific or not. domain-specific languages

which are embedded into user applications and which

are (1) used to execute code that is written by users of

the application, (2) dynamically generated by the

application, or (3) both.

d) End Users who develop web applications: The ubiquity

of the World Wide Web and the resultant ease of

publishing content to a huge audience has been an

important element in the expanding skills and

expectations of computer users. Today most web pages

are built by end users simply to present information or

for creation of interactive web sites or web applications

such as online forms, surveys, and databases still

require considerable skill in programming and web

technology.

e) End users who customize: Customization is doing some

modification over an existing Application of form as

per the client requirement.

f) Software professionals: A software professional is a

licensed professional engineer who is schooled and

skilled in the application of engineering discipline for

the creation of software. A software programmer

creates the codes that make a program run.

5. COMMONLY USED END USER

DEVELOPMENT SOFTWARES

a) WebML [Ceri, 2000] : WebML offers the developer a

full scale modeling language that can be used to model

a web application end-to-end (content, page flow,

database interaction, etc.). Once the model is defined,

an application can be generated.

b) Spreadsheets, Spreadsheets are so far the greatest

success story of practical application of end-user

programming. From the success of the first spreadsheet,

VisiCalc, which was published in 1979, spreadsheets

have further evolved and spread to be used by millions

of users daily.

c) Database Management Systems, A database

management program allows end users to enter, update,

store, format, and print reports containing information

that is stored as a series of records that share a common

format in a database.

d) HANDS [18], is a programming environment for

children developed within the Natural Programming

Project, where usability is the prime design focus.

e) The FreEvolve platform [12], provides an API for

integrating tailoring functionality with software

components that allows non-programmers to tailor an

application by reassembling components at run-time

visually [9].

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(118-122) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 121

f) ToonTalk , a programming system which is itself a

video game, uses a radically different programming

model as well as a radical user interface. The crucial

problem of generalizing examples gets solved in a

simple, almost obvious way -- if you remove detail

from a program, it becomes more general.

g) Template-based generation tools [Turau, 2002][Zdun,

2002]: It present more lightweight approaches to using

models and templates to construct applications, where

the developer designs a set of templates that are

employed when creating the content of the pages

flowing back to the users.

h) Atsushi Sugiura's Internet Scrapbook automates

assembling Web pages from other Web sources, and he

also explores Web browsers on small handheld devices.

i) WebSheets [Wolber, 2002], and FlashLight [Rode and

Rosson, 2003]: It allow users to develop web

applications without writing code. Some of these

studies—e.g., CLICK [Rode, 2005]—are web-based,

and so users do not need to install anything to start

developing.

j) FlashLight [Rode and Rosson, 2003]: It is a Flash-based

development environment, introduced the useful

concept of programming at runtime.

6. PROPOSED QUALITY PARAMETERS FOR END

USER SATISFACTION

End User Satisfaction can be defined as meeting or fulfilling

the requirements of the end user. EUD can be seen as an

important contribution to create a user-friendly information

society where people will be able to easily access

information specific to their current context and to their

cognitive and physical abilities or disabilities. People will

have access to adapt IT-systems to their individual

requirements and the design of IT-systems can be made more

socially acceptable by collaboratively involving all actors.

Apart from empowering individuals to take part in design

processes, EUD can also support communities by letting

them share experience on how to adapt IT-systems. In

particular, communities might share EUD artifacts by way of

repositories for reusable and potentially domain-specific

components. These repositories will help people in choosing

and assembling components appropriate for their

requirements by making available the explanations,

recommendations and critique of their peers [13].

By incorporating EUD features in the software customers are

getting a general purpose software which they can further

customize as per their requirements as users are the domain

expert of their own areas. End users were significantly more

satisfied with applications they had developed themselves

and which possess following quality parameters as per their

requirements:

1. Features related to coding

• Content

• Accuracy of codes

• Timeliness

• Creating throw away codes

• Creating reusable codes

• Sharing reusable code

• Easily understandable codes

2. Verification & Validation of codes

• Inbuilt feedback about the correctness

• Testable codes

• Tools for analyzing by debugging

• Error detection tools

3. User Friendly Interfaces

• Availability of online help

Self – efficacy: High sense of control over the environment

• Perceived ease of use: Apart from extrinsic

motivation intrinsic motivation

(enjoyment) should be present.

• Ease of Use & Feedback

• Inbuilt System Assistance for EUP

4. Reliability Features in End User programs

• Testing

• Verification & Validation

5. Identify Risk involved in End user development

• Version control

• Change Control

• Data Integrity Control

• Availability Control

6. Code revision related features

• Flexible codes

• Scalability features

• Ease of Maintenance

7. End User Computing Capability

• High Computing Capability of End Users

• Less End User Training & learning Time

Constraint

8. Security Issues

• Security features in codes for more control

by end users

• Authentication features

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(118-122) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 122

All the above mentioned features will enhance the end users

inclination towards the software hence will increase the end

user satisfaction.

7. CONCLUSION

In today’s volatile economic conditions, the demands from

stakeholders to deliver more value with lesser costs have

been escalating every day. All organizations want high level

quality products which help increase their business value.

The Internet of Things is likely to increase the already large

population of end user programmers. The growing number of

“smart” devices and possible features suggests that niche

programmer communities could potentially form around

specific interests and projects. We expect that these

communities, like current open source and maker

communities, will include programmers of varying skill

levels, motivated by the desire to improve products that they

use [8].

REFERENCES

[1] H. Lieberman, F. Patern`o, and V.Wulf, Eds., End-User

Development, HumanComputer Interaction Series,

Springer,NewYork, NY, USA, 2006.

[2] McKendric, J. (2012). “Employees: We’ll Build our own

Technology Solutions, Thank You”. zdnet.com

[3] Mørch, A.I. Tailoring tools for system development. JEUC

1998, 10, 22–29.

[4] Mørch, A.I.; Stevens, G.; Won, M.; Klann, M.; Dittrich, Y.;

Wulf, V. Component-based technologies for end-user

development. CACM 2004, 47, 59–62.

[5] Hartmann, B.; Wu, L.; Collins, K.; Klemmer, S.R. Programming

by a Sample: Rapidly Creating Web Applications with d.mix. In

Proceedings of the 20th Annual ACM Symposium on User

Interface Software and Technology, Newport, RI, USA, 7–10

October 2007; pp. 241–250.

[6] Kovatsch, M.; Weiss, M.; Guinard, D. Embedding Internet

Technology for Home Automation. In Proceedings of IEEE

Conference on Emerging Technologies and Factory Automation

(ETFA), Bilbao, Spain, 13–16 September 2010; pp. 1–8.

[7] Ousterhout, J.K. Scripting: Higher level programming for the

21st century. Computer 1998, 31, 23–30.

[8] Miller, R.C. End User Programming for Web Users. In

Proceedings of the End User Development Workshop at CHI

Conference, Ft. Lauderdale, FL, USA, 5–10 April 2003.

[9] Won, M.; Stiemerling, O.; Wulf, V. Component-based

approaches to Tailorable systems. In End User Development;

Lieberman, H., Paternò, F., Wulf, V., Eds.; Springer: Dordrecht,

The Netherlands, 2006; Volume 9, pp. 115–141.

[10] Honkola, J.; Laine, H.; Brown, R.; Tyrkko, O. Smart-M3

Information Sharing Platform. In Proceedings of the IEEE

Symposium on Computers and Communications (ISCC),

Riccione, Italy, 22–25 June 2010; pp. 1041–1046.

[11] Kotkaluoto, S.; Leino, J.; Oulasvirta, A.; Peltonen, P.; Räihä,

K.J.; Törmä, S. Review of Service Composition Interfaces;

University of Tampere: Tampere, Finland, 2009.

[12] Stiemerling, O. Component-Based Tailorability; University of

Bonn: Bonn, Germany, 2000.

[13] EUD-Net’s Roadmap to End-User Development, Markus

Klann Fraunhofer Institute for Applied Information Technology

(FhG/FIT).

[14] Ruby on Rails. http://www.rubyonrails.org, accessed August

2008.

[15] Turau, V. 2002. A Framework for Automatic Generation of

Web-based Data Entry Applications Based on XML.

Proceedings of the 2002 ACM symposium on Applied

computing. Madrid, Spain, pp. 1121--1126.

 [16] Shah, S.K. Motivation, governance, and the viability of hybrid

forms in open source software development. Management

Science 52, 7 (2006), 1000–1014.

[17] Cale, E. G. (1994). Quality issues for end-user developed

software. Journal of Systems Management(January), 36-39.

[18] John F. Pane, Brad A. Myers, and Leah B. Miller. “Using HCI

Techniques to Design a More Usable Programming System”,

Proceedings of IEEE 2002 Symposia on Human Centric

Computing Languages and Environments (HCC 2002), pp

198—206, Arlington, VA, September 3-6, 2002.

Authors Profile

Ms. Archana Srivastava has done M.Sc(Maths), MCA, M.Tech(IT)

and is working as Asst. Professor in Amity Institute of information

Technology, Amity University, Lucknow, India. She is persuing

Ph.D. in software engineering. She has 20 years of teaching

experience. Her Area of interest includes Software Engineering,

Software Project Management, and Software Testing & Quality

Assurance.
.

Dr.(Prof) S.K.Singh is a Professor and Programme Director in

Amity Institute of Information Technology, Amity University,

Lucknow, India. He has done M.Sc(Maths), MCA, M.Tech(IT)

and PhD in Applied Computer Science. He has more than 22

years of teaching experience. Till date he has published over 25

research papers in various renowned national and international

journals.

Dr. Syed Qamar Abbas completed his Master of Science (MS)

from BITS Pilani. His PhD was on computer-oriented study on

Queueing models. He has more than 30 years of teaching and

research experience in the field of Computer Science and

Information Technology. Currently, he is Director of Ambalika

Institute of Management and Technology, Lucknow. He is

actively involved in academic and research work. Till date he

has published over 60 research papers in various renowned

national and international journals.

