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Abstract— In this article, we deal with a problem of generalized elasto-thermo-diffusion interaction inside an isotropic hollow 

cylinder in the context of three-phase-lag model. Initially the medium is in rest and undisturbed so that all the state functions 

are assumed to be zero. Employing Laplace transform as a tool, the governing equations have been expressed in transformed 

domain, which are then solved by Galerkin finite element technique. The inversion of the transformed solution is carried out by 

applying a method of Bellman et al. The stresses, temperature, displacement, concentration and chemical potential are 

computed numerically and presented graphically in a number of figures for copper material. A comparative study for different 

theories (three-phase-lag model, Green-Naghdi model with energy dissipation and Lord-Shulman model) are presented. The 

results corresponding to thermoelastic medium (in absence of diffusion) are also carried out in a particular case. The significant 

points are highlighted. 

 

Keywords—Thermoelastic diffusion, Three-phase-lag model, Green-Naghdi model, Lord-Shulman model, Galerkin finite 

element method. 

 

LIST OF SYMBOLS 

u  Displacement vector 

  Thermodynamic temperature 

,   Lame's constants 

  Constant mass density of the medium 

T  Temperature 

0T  Uniform reference temperature 

C  Mass concentration 

K  Thermal conductivity 

D  Diffusion coefficient 

Ec  Specific heat 

P  Chemical potential 

ij  Components of stress tensor 

,c d  Measures of thermo-diffusion effect and 
 diffusion effect 

1 2,   Material constants 

 

 

I. INTRODUCTION 

 

The topic 'thermoelastic diffusion' also termed as 

'elasto-thermo-diffusion' in an elastic solid is one of the  

 

transport process that have extensive applications in the field 

of geophysics, in the extraction of oil from oil deposits and 

other industrial applications. The thermodiffusion process 

also helps the investigation in the field associated with the 

advancement of microelectronics, many problem of satellites, 

returning space vehicles, and landing on water or land. 

 

For the first time, the theory of thermoelastic diffusion using 

the coupled thermoelastic model was developed by Nowacki 

[1-4]. In this coupled theory the heat propagation is assumed 

to be infinitely large velocity. This contradicts physical 

observations. In order to overcome the paradox of infinite 

speed of thermal wave inherent in classical coupled 

thermoelasticity theory, the subject 'Generalized 

Thermoelasticity' is developed. Lord and Shulman [5] 

formulated the generalized thermoelasticity theory. In which 

the conventional Fourier's law is replaced by a modified law 

of heat conduction including both the heat flux and its time 

derivative. This theory is referred to as extended 

thermoelasticity theory (ETE) or L-S theory. The heat 

equation associated with this a hyperbolic one and hence, 

automatically eliminates the paradox of infinite speeds of 

propagation inherent in the coupled theory of 

thermoelasticity. 

 

Sherief et al. [6] investigated the theory of generalized 

thermoelastic diffusion with one relaxation time, which allow 
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the finite speeds of propagation of waves inside the medium. 

Sherief and Salah [7] investigated the problem of a 

thermoelastic half space in the context of generalized 

thermoelastic diffusion with one relaxation time. Aouadi [8] 

proved the uniqueness and reciprocity theorems for the 

equations of generalized thermoelastic diffusion problem, in 

an isotropic media using Laplace transformation method. He 

also studied the effect of diffusion in an infinitely long solid 

cylinder [9] and in an infinite elastic body with spherical 

cavity [10]. Problem related to two-temperature thermoelastic 

diffusion have been investigated by Bhattacharya and 

Kanoria [11]. Recently problems related to generalized 

thermoelasticity under the effect of diffusion have been 

discussed by many researchers [12-14]. 

 

Green-Naghdi [15-17] developed three models for 

generalized thermoelasticity of homogeneous isotropic 

material which is labeled as I, II, III. An important feature of 

GN-III theory is that it accommodates dissipation of thermal 

energy due to the presence of thermal damping term. A 

theorem on uniqueness of solutions in the context of a 

linearized version of this theory has been established by 

Chandrasekharish [18].  

 

The most relevant development in thermoelasticity theory is 

three-phase-lag model which was developed by 

Roychoudhuri [21]. In this model the Fourier's law of heat 

conduction is replaced by an approximation to a modified 

form with the introduction of different phase lags for the 

heat flux vector, temperature gradient and for the thermal 

displacement gradient. According to this model, 
*( , ) ( , ) ( , ) ,q Tq P t K P t K P t             

 
 where 

 is the temperature gradient at a point P of the material 

at time Tt  , q is the heat flux vector at the point P of the 

material at time qt  ,  ( )  is the thermal 

displacement gradient, *K is the additional material constant 

and K is the thermal conductivity of the material. Three-

phase-lag model is very useful in the problems of nuclear 

bonding, exothermic catalytic reactions, photon-electron 

interactions, photon-scattering. Quintanilla and Racke [22] 

have discussed the stability of solutions in three-phase-lag 

effect. Kar and Kanoria [23] have studied thermoelastic 

response in a fiber reinforced thin annular disc with three-

phase-lag effect. Kanoria et al. [24] dealt with the problem 

of magneto-thermoelastic  response in a transversely 

isotropic hollow cylinder under thermal shock with three-

phase-lag effect. Pal and Kanoria [25] applied finite element 

method to study magneto-thermoelastic wave in a 

transversely isotropic hollow cylinder under three phase-lag 

model. Problem related to two-temperature elasto-

thermodiffusive response in an isotropic shell with three-

phase-lag model has been solved by Kanoria et al. [26]. 

Some qualitative analysis using three-phase-lag model have 

been established by Said [27], Biswas et al. [28].  

 

The main object of the present contribution is to present 

thermo-diffusive interaction in an isotropic hollow cylinder 

under three-phase-lag model, Green-Naghdi III (GN-III) 

model and Lord-Shulman model. The governing equations 

of the theory of thermoelastic diffusion are obtained in 

Laplace transform domain which are then solved by 

Galerkin finite element method.  The inversion of the 

transformed solution is carried out by applying a method of 

Bellman et al.[29]. A complete and comprehensive analysis 

of the results have been presented for three-phase-lag model, 

GN-III and Lord-Shulman model in presence of diffusion 

(WD)  as well as in absence of diffusion (WOD). The 

significant points arising out from our analysis are 

highlighted. 

 

II. FORMULATION OF THE PROBLEM: 

 

We shall consider a homogeneous isotropic thermoelastic 

hollow cylinder of inner radius a and outer radius b  in an 

undisturbed state at initial temperature 
0T . We use the 

cylindrical coordinate system ( , , )r z with z  axis 

coincident with the axis of cylinder. Due to axial symmetry, 

the problem is one dimensional with all the considered 

functions depending on the radial distance r  and the time t . 

The outer surface of the cylinder is taken to be traction free 

and is subjected to a time dependent thermal shock and 

chemical shocks.  

If [ ( , ),0,0]u u r t be the displacement vector, then the 

strain vector e  has components ,rr

u
e

r





,
u

e
r

   

0.zz rz r ze e e e      

 Therefore, basic equation for the problem is considered as 

1 22 [ ] ,ij ij ije e T C              , 1,2,3.i j     (1) 

In cylindrical coordinates the equation of motion in the 

absence of body forces is 
2

2

1
( ) .rr

rr

u

r r t



  

 
  

 
                      (2) 

Now, the generalized heat conduction equation in the 

context of three-phase-lag model is 

 

2 2 2

2
2

0 1 02

1
1 .

2

T

q q E

K T T K T

c T T e cT C
t t

 

   

      

  
    

  

          (3) 

The equation of mass diffusion is 
2 2 0 2

2 .D e Dc T C C Dd C                     (4) 

The chemical potential is given by, 

2 .P e dC cT                               (5) 
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Due to cylindrical symmetry, the 

stress-strain-temperature-concentration relations take the 

form 

1 2( 2 ) ,rr

u u
T C

r r
     


    


              (6) 

1 2( 2 ) ,
u u

T C
r r

     


    


              (7) 

where K 
is the additional material constant, T  and q are 

the phase lag of temperature gradient and the phase-lag of 

heat flux respectively. 
0 is the diffusion relaxation time; C  

is the mass concentration such that , ;i i C   j is the 

flow of the diffusing mass vector. 

Also
2

2

1
r

r r r

  
   

  
 

 and ,K K      where   is the phase lag of thermal 

displacement gradient.  

1 (3 2 ) ,t     2 (3 2 ) ;c     t is the 

coefficient of linear thermal expansion of the material, c is 

the coefficient of linear diffusion expansion.  

Using (6) and (7), the equation of motion has the form: 

1 2( 2 ) .
e T C

u
r r r

    
  

   
  

                (8) 

 

Special cases: 

(1) When 0,T  0q   and 0  , then .K
    

Thus Eq. (3) becomes 
2 2

0 1 0( ),EK T T c T T e cT C          

which is third model of Green-Naghdi admitting damped 

thermoelastic wave equation with diffusion. 

(2) When 
20T q   , 0K  , 0  , this theory 

reduce to L-S theory. 

 

 Now it is convenient to change the preceding equations into 

the dimensionless form. To do this, the dimensionless 

parameters are introduced as, 

0 0

0

, , , , ( , , , ) ( , , , ),q T q T

r b Gt T G
R S t

a a a T a
                    

 

2 2

1 0 1 0 1 0

( 2 ) ( 2 ) 1
, , , ( , ) ( , ).R rrU u G C C

a T T T
 

   
   

   

 
    

 

Using these non-dimensional variables and omitting primes, 

Eqs. (8), (3), (4), (6), (7) and (5) become 
2 2

2 2 2

1
,

U U U U C

R R R R t R R

    
    

    
                (9) 

 

2
2 2 2 2 2

2

2
2

12

( )

1
1 ,

2

T K T T K

q q

C C C C
t t

e C
t t

  

    

  
     

  

  
    

  

          (10) 

2 2 0 2

1 2 3( ) ,e C C C C                       (11) 

2 ,R

U U
c C

R R
 


   


                        (12) 

2 ,
U U

c C
R R

 


   


                          (13) 

3 1 ,P e C                                (14) 

where 

2 2

1 22 2 2

1 2 2

2

0 1
3 22

2

( 2 ) ( 2 )
, , , ,

( 2 )
, , .

( 2 ) ( 2 )

T K

E E

E

K K c G
C C

c G a c G D

Td
c

c

    
 

    

   
 

     

  
   


  

 

 

The mechanical, thermal and chemical boundary conditions 

are given by, 

0R                    on    1,R S  (dimensionless) 

0                       on                1;R   0,t   

( )bH t
R








       on         ;R S 0,t   

0P                      on                1;R   0,t   

( )b

P
P H t

R





       on        ;R S 0.t   

All the state functions are assumed to be zero, as the medium 

initially is at rest and undisturbed. Here the terms ( )bH t  

and ( )bP H t are heat flux and mass flux applied to the outer 

boundary of the cylinder R S , where ( )H t  is the 

Heaviside unit-step function. 

 

III. METHOD OF SOLUTION  
Let 

 
0

( , ), ( , ), ( , ) ( , ), ( , ), ( , ) ,sU R s R s C R s U R R C R e d     


    
Re( ) 0s                                         

(15) 

denote the Laplace transformation of ,U  and 

C respectively. On taking the Laplace transform, Eqs. (9)- 

(14) become: 
2

2

2 2

1
,

U U U C
s U

R R R R R R

   
    

   
              (16) 

2

3 12

1
,

U U
a C

R R R R R

 
  
    

      
     

         (17) 
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3 2 2

13 2 2 3 2

2
0

2 3 2

2 1 1

1
(1 ) ,

U U U U

R R R R R R R R R

C C
s s C

R R R

 


  

     
      

     

  
   

  

    (18) 

2 ,
R

U U
c C

R R
 


   


                         (19) 

2 ,
U U

c C
R R


 


   


                         (20) 

3 1 ,
U U

P C
R R

  
 

     
 

                   (21) 

where 

 

2 2

3 2 2 2 2 2

1
1

2
.

( )

q q

T K T T K

s s

a
C C C s C s

 

 

 
  

 
  

 

 

IV. FINITE ELEMENT ANALYSIS 

 

The Galerkin finite element method is used to derive the 

stiffness and force matrices for the base element ( ).e  In this 

finite element method, total domain is divided into a finite 

set of sub-intervals, i.e. line elements along the radial 

direction of the disc. For any base element ( )e , the 

displacement ,U  the temperature  and the 

concentration C can be approximated as 
( ) ( ) ( ) ( ) ( ) ( )[ ] [ ] , [ ] [ ] , [ ] [ ] ,e e e e e eU N U N C N C               (22) 

where ( )[ ] eN is the shape function approximating the 

displacement, temperature and concentration field in the 

base element ( ).e The matrices ( ) ( )[ ] ,[ ]e eU   and 

( )[ ] eC represent the nodal values of the displacement, 

temperature and concentration  respectively. Using Eq. (22) 

and Galerkin finite element method over the volume of the 

base element 
( )eV , Eqs. (16), (17) and (18) become 

( )

2
2

2 2

1 1
0,

e

m

V

d d C
s U N dV

dR R dR R R R

    
       

   


     (23) 

( )

2

3 3 1 32

1 1
0,

e

m

V

d d d
a a U a C N dV

dR R dR dR R
  

               


                     

(24) 



( )

3 2 2

13 2 2 3 2

2
0

2 3 2

2 1 1 1

1
(1 ) 0,

eV

m

d d d d d
U

dR R dR R dR R dR R dR

d d
s s CN dV

dR R dR

 

  

   
        

   

 
    

 


(25) 

where mN  is the shape function. Using the local coordinates 

,iR R R    where iR is the radius of the i th node of the 

base element, Eqs. (23), (24) and (25) reduce to (dropping 

the asterisk for convenience): 

2

20

0

1 1
( )

( ) ( )

{ ( )} { ( )} |

L

m i

i i

L

m i m i

d d dC
s U N R R

R R dR R R dR dR

d dU dU
N R R dR N R R

dR dR dR

    
         

     


  




 (26) 



 

3 3
0

3 1

0

1 1

( ) ( )

( ) { ( )}

( ) | ,

L

i i

m i m i

L

m i

d d
a a U

R R dR dR R R

d d
a C N R R N R R dR

dR dR

d
N R R

dR

 






    
        

     


   







(27) 

2

20

12

0

3 2

2

12
0 0 0

{ ( )} (2 )

1 1
{ ( )}

( ) ( )

{ { ( )} (1 ) ( )}

{ ( )} | 2 | { ( )} |

L

m i m

m m i m

i i

m m i m i

L L L

m i m m i

d d d d
N R R N

dR dR dR dR

d d d d
N U N R R N

R R dR R R dR dR dR

d d d
N N R R s s N R R C dR

dR dR dR

d U dU d
N R R N N R R

dR dR dR

 

  





   


   
      

    

     

   



3
0 0

{ ( )} | { ( )} | ,
L L

m i m i

dC d dU
N R R N R R

dR dR dR




  

 (28) 

where j iL R R  is the length of the elements along the 

radial direction. 

 Now the applied boundary conditions may be considered 

as: 

0,       on   1,R                         (29) 

,bd
b b

dR s


     on   ,R S                  (30) 

0,P       on    1,R                        (31) 

,bPd P
b b

dR s
    on      ,R S                (32) 

2 3
1

1 3

(1 )
| ,

( 1)

cdU
U

dR a









  on    1,R             (33) 

2 0,| | | |
M M M M

cdU
U C

dR b
                   (34) 

where 1 and M  denote the first and last nodes of the 

solution domain respectively. 

Substituting the Eq. (22) into the Eqs (26)- (28) and after 

dropping the asterisks for convenience, we get 
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2

0

0 0

0

( ) { ( )}
( )

( ) ( )

{ ( )} ,|

L

n m n n
n m m n i m i

i

L L

n n
n nm i m i

Ln

m i

dN N N dNd
U N s N N R R N R R dR

dR R R dR dR

dN dN
N R R dR C N R R dR

dR dR

dU
N R R

dR



 
      

 

   
       

   





 

(35) 

3
0

0

3 3 1
0

0

[ { ( ) }] [ { ( )}

( )] ( ) { ( )} ,|

L
L

n n n
n nm i m n m i m

L
L

nm n i m n i m i

dN dN dNd
U a N R R N N dR N R R N

dR dR dR dR

d
a N N R R dR C a N N R R dR N R R

dR

 




     

    

 



                        (36) 
2

2 2

0

1 3

0 0

0

2

2

{ ( )} (2 )
( ) ( )

{ ( )}

{ ( )} (1 ) ( )

{ ( )}

L

n n m n m m
n m i m

i i

L L

n n
n nm i m

m n
m m i m n i

m i

dN dN N dN N Nd d
U N R R N dR

dR dR dR dR R R dR R R

dN dNd
N R R N dR C

dR dR dR

dN dNd
N N R R s s N N R R dR

dR dR dR

d U
N R R

dR

  

 

  
       

   

 
   

 


     



 



 

2
0 0

1 3
0 0 0

| 2 |

{ ( )} | { ( )} | { ( )} | .

L L

m

L L L

m i m i m i

dU
N

dR

d dC d dU
N R R N R R N R R

dR dR dR dR


 

 

    

   (37) 

Now the transfinite element Eqs. (35)- (37) are expressed in 

the matrix form as 

11 12 13

21 22 23

31 32 33

,

UK K K X

K K K Y

K K K ZC



    
    

    
         

                (38) 

where the sub-matrices 

11 12 13 21 22 23 31 32 33, , , , , , , , , , ,K K K K K K K K K X Y Z are 

2

11
0

( )
( )

{ ( )} ,

L
mn n m n

m m n i

i

n
m i

dN N N
K N s N N R R

dR R R

dNd
N R R dR

dR dR


     




 




(39) 

12

0

( ) ,

L

mn n
m i

dN
K N R R dR

dR

 
  

 
               (40) 

13

0

( ) ,

L

mn n
m i

dN
K N R R dR

dR

 
  

 
               (41) 

21 3

0

{ ( ) } ,

L

mn n
m i m n

dN
K a N R R N N dR

dR

 

   
 

  (42) 



22

0

3

{ ( )}

( ) ,

L

mn n n
m i m

m n i

dN dNd
K N R R N

dR dR dR

a N N R R dR


   





     (43) 

23 3 1

0

( ) ,

L

mn

m n iK a N N R R dR                (44) 

2

31 2

0

2

{ ( )} (2 )

,
( ) ( )

L

mn n n
m i m

m n m m

i i

dN dNd d
K N R R N

dR dR dR dR

N dN N N
dR

R R dR R R


    



 
 

  



                  (45) 

32 1

0

{ ( )} ,

L

mn n n
m i m

dN dNd
K N R R N dR

dR dR dR


 
   

 
                      

(46) 

33 3

0

0

2

{ ( )}

(1 ) ( ) .

L

mn m n
m m i

m n i

dN dNd
K N N R R

dR dR dR

s s N N R R dR



 


   



  

      (47) 

0 0
0

0 0
0

. .
.

, , .. .
.

0 0
0

0 b b

X Y Z

b bP

s s



   
     
     
     
            
     
     
     
        

              (48) 

 

V. PARTICULAR CASE (THERMOELASTIC 

MEDIUM) 

 

In this section, we derive the results in case of absence of 

mass diffusion from our results as obtained above. So we 

neglect the diffusion effect by eliminating Eqs. (4) and (5) 

and by putting 0c   and 2 0   into Eqs. (1), (3) and 

(8). The expression for displacement and temperature in 

thermoelastic medium can be written in the matrix form as 

11 12

21 22

,
K K U X

K K Y

    
    
     

                     (49) 

where the sub-matrices 11 12 21 22, , , , ,K K K K X Y  are 

given by Eqs. (39), (40), (42), (43) and (48) respectively. 

When the medium is isotropic, taking 

11 122 ,c c      in Pal and Kanoria [25], the result 

agrees with Equation (49). 
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VI. NUMERICAL RESULTS AND DISCUSSIONS 

 

For the sake of completeness we present some numerical 

applications to illustrate the analytical procedure as obtained 

earlier. As it is highly impossible to obtain the analytical 

solution of the problem in the physical domain (space-time 

domain), we develop a computer program by employing the 

numerical method of Laplace inversion given by Bellman et 

al.[29] and choose a time span given by seven values of time 

, 1(1)7it i   at which the field variables are evaluated from 

the negative of logarithms of the roots of the shifted 

Legendre polynomial of degree 7. We have made a 

comparative study for the variation of R and P when 

3,4,5,6,7,8i   for an isotropic medium in the context of 

GN-III model with 1.8R   which is shown in the table 

below: 

 

Table 1: Comparison of radial stress and chemical potential 

for different values of i  

 

As seen from the table, for 7i   and 8i  , the 

magnitude of R  and P  are same. So, we 

take 7 integration points for sufficient accuracy of our 

computation. In the numerical computation, we have 

considered a copper-like material. The values of the material 

constants are taken to be: 
5 1 4 3 1 2386 / , 1.78 10 , 1.98 10 , 383.1 / ,t c EK N Ks K m kg c m K         

10 2 10 2 3 0 43.86 10 / , 7.76 10 / , 8954 / , 0.1 10 ,N m N m kg m s          
1 1 1

0 293 , 0.0168, 0.15 10 , 0.2 10 , 0.1 10 ,T qT K s s s            

8 3 4 2 1 2 6 5 1 20.9 10 , 1.2 10 , 0.9 10 .D kgm s c m K s d m kg s         

In G-N theory K 
 is an additional material constant 

depending on the material. For copper material K 
 is taken 

as 
( 2 )

4

Ec
K

  
 . In order to study the effect of 

diffusion, we now present the thermophysical quantities in 

their graphical representations (figs. 1-6) under three-phase-

lag model (3P model), Green-Naghdi III model (GN-III) and 

Lord-Shulman model (L-S) for a fixed time 0.14t  .  For 

the purpose of our analysis, we carry out our computation 

for the thermoelastic medium, that is, under the absence of 

diffusion (WOD) and as well as for the thermoelastic 

diffusive medium, that is, under the influence of diffusion 

(WD). 

Figure-1 represents the variation of radial stress R  

against the radial distance R  under the effect of diffusion 

(WD) and without diffusion (WOD) for three-phase-lag 

model, GN-III model and L-S model. In each cases, the 

radial stress is noted to be zero at both the boundaries, which 

agrees with the boundary conditions. It is observed that, in 

presence of diffusion, the radial stress R  is reflexive 

throughout the medium for three-phase-lag  model and in 

the region 1 1.4R   for GN-III model. In absence of 

diffusion, the radial stress R  is reflexive in the region 

1 1.4R  for three-phase-lag model and in the region 

1 1.2R   for GN-III model whereas R  is 

compressive in the rest portion of the region for both 

models. Under L-S model, the radial stress is fully 

compressive throughout the medium in all cases (WD and 

WOD). 

 

 

Fig. 1 Variation of radial stress 

 

Figure-2 represents the variation of shear stress  against 

radial distance R in case of three different thermoelasticity 

models (3P model, GN-III, L-S model) in presence of 

diffusion (WD) and also in absence of diffusion (WOD). It is 

seen that the magnitude of   is maximum at the inner 

boundary 1R  for GN-III and L-S model. The effect of 

diffusion is very prominent in this medium for both 

Green-Naghdi III model (GN-III) and three-phase-lag model 

(3P model) whereas a mild effect of diffusion is observed 

under L-S model. Moreover the three-phase-lag theory 

predict a significantly higher numerical value as compared to 

other two models (GN-III, L-S). 

 

i  Radial stress Chemical potential 

3 

4 

5 

6 

7 

8 

-0.07246 

-0.07625 

-0,07519 

-0.08241 

-0.08638 

-0.08638 

0.57625 

0.60219 

0.62491 

0.66488 

0.68912 

0.68912 



   International Journal of Computer Sciences and Engineering                  Vol.7(1), Jan 2019, E-ISSN: 2347-2693 

   © 2019, IJCSE All Rights Reserved                                                                154 

 

Fig. 2 Variation of shear stress  

 

Figure-3 exhibits the space variation of the  temperature 

( ) considering for three different models (3P model, 

GN-III and L-S model). The effect of diffusion is not 

significant for this field under GN-III model though a mild 

effect of diffusion is observed under three-phase-lag model 

and L-S model. For GN-III model, the temperature fields 

increases with increase of radial distance throughout the 

medium. For three-phase-lag model, with the effect of 

diffusion, the temperature field initially remains at steady 

state, then after 1.4R  it increase rapidly with the 

increment of radial distance .R  For L-S model,   

increases with the increase of radial distance and attains its 

maximum magnitude at the outer boundary for all the cases 

(WD and WOD). Moreover the three-phase-lag model 

predict a significantly higher numerical value as compared to 

other two models (GN-III, L-S). 

 

 

Fig. 3 Variation of temperature 

 

Figure-4 is plotted to show the variation of displacement 

( )U versus radial distance .R The graph of displacement 

under three-phase-lag model and GN-III model for 

thermoelastic medium (WOD) are almost merged together, 

but with the effect of diffusion (thermoelastic diffusive 

medium) both the theory predict a significantly different 

value as compared to the previous case. For L-S model, the 

graph of displacement show significantly higher numerical 

value under thermoelastic diffusive medium (WD) as 

compared to the thermoelastic medium (WOD). For 

thermoelastic medium the displacement field shows  its 

compressive nature in the range 1 1.76R   for GN-III 

model, 1 1.85R  for three-phase-lag model and 

1 1.6R  for L-S model . 

 

Fig. 4 Variation of displacement 

Figure-5 shows the variation for chemical potential P for 

thermoelastic diffusive medium. The numerical results for 

the chemical potential are found to be in agreement with the 

theoretical boundary condition. The chemical potential 

shows a significantly different trend under L-S model as 

compared to GN-III and three-phase-lag models. For GN-III 

and three-phase-lag models, the chemical potential P  is 

compressive in the region 1 1.4R  whereas for L-S 

model P  is compressive in the region 1 1.45.R   

 

 

Fig. 5 Variation of chemical potential  

Figure-6 shows the variation of mass concentration ( )C for 

thermoelastic diffusive medium. Like the temperature field, 

under all three theories (3P model, GN-III and L-S model), 

the mass concentration shows minimum value at inner 

boundary and it increases with the increase of radial distance 

and attains its maximum value at the outer boundary of the 
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cylinder. The mass concentration ( )C is compressive 

throughout the considered region for all three models.  It is 

also noted that the magnitude of the concentration is large for 

L-S model compared to GN-III model and 3P model. 

 

Fig. 6 Variation of concentration 

VII. CONCLUSIONS 

The results established in this paper can be summarized as 

follows: 

(1) It is obvious that there is a distinct difference between 

the three-phase-lag model, GN-III model and L-S model for 

both thermoelastic medium (without diffusion) and 

thermoelastic diffusive medium. 

(2) The effect of diffusion is significant on the solutions of 

radial stress, shear stress concentration and displacement 

field whereas it has mild effect on temperature and chemical 

potential field. 

(3) It is believed that the result carried out through this 

problem should be beneficial for researchers working in the 

field of material science, the design of new materials, 

geophysics and other industrial applications. 
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