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Abstract— Anisotropic Diffusion is very efficient non-linear image processing PDE based technique which simultaneously restore 

images and enhance image features for 2-D or, 3-D images. This technique is described by local eigenvalues and local eigenvectors of the 

anisotropic diffusion tensor field where anisotropic diffusion coefficients are depending on direction and position. Here, mathematical 

analysis of robust anisotropic diffusion (RAD) filter for ultrasound (US) image has been discussed in this paper. It includes probabilistic 

memory mechanism and speckle statistics models of tissues characterization and adapts the anisotropic diffusion tensor to the 

ultrasound image iteratively. Higher frequency absorbed by tissue and skin but cannot penetrate deeply in comparison to lower 

frequency which give poorer image quality by echo signals, so we get an inferior quality image with some clinical information loss. This 

clinical information loss is restored by iterative process of various state-of-the-art filters, but discussed RAD filter shows better 

performance in terms of measured MSE and SSIM index, with including memory mechanism and speckle statistics, and preserves the 

relevant tissue details for clinical purposes. 
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I. INTRODUCTION  

Ultrasound (US) imaging technique is very popular imaging 
technique and plays an important role in real time diagnosis 
and treatment. It is a non-invasive nature, no emission of 
ionizing radiations, the low cost involved imaging technique. It 
is very helpful for many medical conditions such as cardiology, 
gynecology, neonatology, ophthalmology, orthopedics, etc. 
there are two types of US imaging system: two dimensional (2-
D) and three dimensional (3-D) US imaging system. However, 
2-D US imaging technique is conventional and having some 
limitations such as 2-D frame is produced at a given time (i.e. 
interest of structure of volume quantization in the body). In 
some medical conditions, structure of volume quantization 
(view area) is very important to find out the disease and its cure 
in advance. Thus, 3-D US imaging technique has drawn 
attention of researchers in recent years. Quantitative analysis 
and visual inspection are two different ways for 3-D US 
imaging data analyzing. Quantitative analysis can be manual or 
may be automatic that can be used for diagnosis to obtain some 
data/measurements. Usually, measurement of geometric 
distances and volumes comes under the quantitative analysis. 
Visual inspections are involved for real time diagnosis by the 
physician. The coherent nature of US imaging results with 
speckle noise which is multiplicative in nature, locally 
correlated noise, that reduces its utility for less than highly 
trained users and also complicates image processing task such 
as feature segmentation [15].  In some clinical applications, 
speckle reduction may be counterproductive. Therefore, many 
speckle reduction filters have been proposed. Speckle behavior 
in US images can be seen as a random process whose statistical 
features depend on the tissue class. [17] US imaging generally 
done between 2 to 18 MHz higher frequency range to get better 
image quality for clinical applications. Higher frequency 
absorbed by tissue and skin but cannot penetrate deeply in 
comparison to lower frequency which give poorer image 
quality by echo signals and speckle phenomena is inherent 

response of echo signals which provide important features for 
clinical purposes. Thus speckle noise removal filters are based 
on local statistics.  

Many state-of-the-art filters try to minimize the poor resolution 
and maximize sharpening the boundary at edges likewise the 
behavior of non-homogeneous diffusive phenomena of heat. 
Among these state-of-the-art filters, we focus on an anisotropic 
diffusion filter [22] based on probabilistic memory mechanism 
and speckle statistics models of tissues characterization. We 
mathematically analyze a PDE based approach to speckle 
reducing anisotropic diffusion filter with application to B-
Mode US image of human kidney which include probability 
model and adapt iteratively to the filtered image. For better 
boundary estimation and preservation of the clinical details for 
diagnostic purposes, probability model structure tensor, which 
belongs to each tissue in US image, defines a diffusion tensor 
for taking into consideration of the boundaries between 
different tissue classes for filtering purposes. In experiments 
and results section, we get better result in comparison to [22] 
after some modification in parameters selection. This is the 
main contribution of this work. 

II. BACKGROUND 

A. Specle Noise Model 

Here, we represent  (     ) the degraded quality image, 
 (     ) the noise which degraded the quality of the image 
and introduced in image during acquisition process,  (     ) 
the original image (that we want to restore). During some 
image acquisition process such as MRI, additive noise 
introduced which is represented by Gaussian variable of zero 
mean and a given standard deviation. Mathematically, the 
additive noise degraded quality image  (     ) can be 
represented by [21]: 

  (     )   (     )    (     )                                      (1) 
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And, during some image acquisition process such as US 
imaging, multiplicative noise, known as speckle, introduced 
which is represented by variable of mean and standard 
deviation. Mathematically, the speckle noise degraded quality 
image  (     ) can be represented by: 

   (     )   (     ) (     )   (     )                     (2) 

where,  (     ) and  (     ) are multiplicative and additive 
noise component respectively. As, we see the effect of additive 
noise behavior is very small in compared to multiplicative 
noise behavior. So, we neglect the additive noise behavior in 
speckle noise, then simplified model which is mathematically 
expressed as: 

   (     )   (     ) (     )                                           (3) 

In fact, an accurate description of the speckle noise pattern 
statistics is still an active research area which involves complex 
analytical modelling. Speckle noise behavior statistics can be 
categorized into different classes according to the number of 
scatterers per resolution cell (Scatterer Number Density 
(SND)) to their spatial distribution and to the characteristics of 
the imaging system [3]. 

B. Classical Filters 

Many filters have been proposed and developed for 
minimization of speckle noise effect in imaging such as 
Synthetic Aperture Radar (SAR) images and US images. The 
LEE [1] and KUAN [2] filters have the same mathematical 
formulation but they differ in derivations and modelling 
assumption. Actually, both filters make an output image by 
using linear combination computing. They select average 
intensity window to get a center pixel intensity in filter window 
and by varying window size attain a balance between 
coefficient of variation (point feature, edge feature, diffusion in 
homogeneous region, etc.). FROST filter [4] attains a balance 
by varying coefficient of variation such that filter preserves 
image features if coefficient of variation is high and filter not 
preserves image features if coefficient of variation is low. 
However, existing edge preserving and feature preserving 
image restoration filters have major limitations such as shape 
of the filter and size of window. If window size is too large, 
edge will not preserve and over-filtering (smoothing) occur [5], 
[6]. Then, an outlined partial differential equation (PDE) based 
diffusion technique is introduced for reducing speckled noise. 
This PDE based approach preserve edges and image features 
also as same manner Perona and Malik anisotropic diffusion 
[7], [8], [9] and we explore the anisotropic diffusion 
application in speckle imagery fields such as SAR, medical 
imaging, etc. 

C. Diffusion Filters for Speckle 

Diffusion is a physical process to create equilibrium 
concentration differences without destroying or, creating body 
mass. This physical observation expressed equilibration 
property by Fick’s law of diffusion equation [10]: 
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with initial condition    (     )   (          ) which is 
noisy image/input image.  (       ) is the output image. D is 
diffusion coefficient, known as symmetric positive definite 
tensor, which depend on local structure of  (       ) (if D is 
constant, then filter is isotropic diffusion filter and if D is not 
constant, then filter is anisotropic diffusion filter) and    and   
denote the divergence operator and gradient operator, 
respectively,   (     ) is the initial image, i.e. noisy image, t 
is temporal variable. Eq. (4), Linear Anisotropic Diffusion 
(LAD), is an elliptic Partial Differential Equation (PDE). Here, 
         

  is a given field of symmetric positive definite 
diffusion tensors where Ω is an open region of    and    is 
boundary of Ω. Eigenvectors of these tensors define 
preferential diffusion directions, and the Eigenvalues their 
corresponding coefficients. Evolution rule eq. (4) is 
complemented with an initial condition  (       )  
  (     )  at time t = 0. If   (     ) has pixels of vector 
type, then their components are treated independently [12].  

By using finite difference method, eq. (4) given as: 
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where “ ” shows that the R.H.S. part of the equation is the 
difference approximation of the L.H.S. part. 

Similarly, we have 
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All the values of eq. (5), eq. (6), and eq. (7) inserting in eq. (4) 

to obtain difference approximation of  
  (       )

  
. Put    = 1, 

    = 1, and    = 1we get: 

  (       )
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(8) 

So, obtaining discrete realization of anisotropic diffusion filter 
for  (       ) image from eq. (8): 

 (         )    (       ) 
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   (       )[ (         )   (       )]
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          {
 (         )[ (         )   (       )]

   (       )[ (         )   (       )]
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           {
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   (       )[ (         )   (       )]
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(9) 

In eq. (9), we can see that the major problem is selection of 
diffusion coefficient  (       ) in anisotropic diffusion filter. 

Most of the diffusion filters are simply modifications of 
perona-malik filter [11] where D is constant (scalar coefficient 
based on gradient of the image    (       ) which avoids 
diffusion near the boundaries and applies it in homogeneous 
areas). To create a speckle imagery affected smooth region [13] 
propose a new anisotropic diffusion filter Speckle reducing 
anisotropic diffusion (SRAD). SRAD selects finite power 
intensity image   (     )   and having none zero-valued 
intensities over the image domain Ω, and we get the output 
image   (       ) by following PDE: 
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where     denotes the boundary of Ω,  ⃗  is the outer normal to 
the    , and  ( ) is coefficient of diffusion which is defined 
as a decreasing function of the instantaneous coefficient of 
variation. Eq. (10) is known as SRAD PDE. 
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In eq. (11) and (12),  (       )  is the instantaneous 
coefficient of variation serves as the edge detector in speckled 
imagery,   ( ) is the speckle scale function and is estimation 
parameter related to the coefficient of variation of noise. 
 (       ) is determined by: 
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In case of 2-D, instantaneous coefficient of variation  (     )  
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Let us consider how to obtain  (       ), we know: 
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In continuous domain, we have [13]: 
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  (     ))      (16) 

Eq. (16) represented as follow in discrete domain: 
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As we see, SRAD filter is based on the filter originally 
proposed by [1]. Specially [1] starts from a linear 
approximation of eq. (3): 

  (     )  
  (     )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (       )  
                         (       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  [ (     )    (     )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]              (22) 

where   (       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is mean of original image,   (     )  is 

speckle noise component present in noisy image,  (     )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is 

noise mean, and   (     )
  is noise variance. Here, it supposed 

that noise mean and noise variance are constant throughout the 
noisy image.  

As noted by [8] using eq. (11) is equivalent to a discrete 
version of the equation   ((    )   (       )). 
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The equivalent Kuan’s filter is: 
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where,    (     )  is local variance of   (     ) ,   (       )  is 
the local spatial variance of  (       )  at current pixel 

(/voxel) location,     
  (       )

   (     )
 is edge magnitude parameter, 

    
  (       )

  (       )    (     )
    (     )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  is also edge magnitude 

parameter. This is the only difference between Kaun filter and 
Lee filter i.e. to change          in the diffusion equation. 
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 (     )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
 , is diffusion coefficient of noise. Here,  (       ) is 

the discrete approximation of   and   ( )  the discrete 

approximation of   (     )  which need to estimate at each 

iteration.  

D. Mathematical Application of SRAD Filter Algorithm 

Here, four stage iterative method can be used to solve 
mathematically eq. (10). Let anisotropic diffusion time step    
and spatial step   in       directions respectively, then the 
discretization of time and space coordinates as          
           and 
                                   
                                  respectively, 

where          is support image size. Let  (     )
  

 (            ), then iterative method can be described as: 

1) Computing Laplacian Approximation and Derivative 

Approximation 
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Here, we are using symmetric boundary conditions. So: 
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with symmetric boundary condition. 
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4) Mathematical Approximation to Differential Equation 
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             (     )
     (     )

  
  

 
  (     )
    (38) 

Eq. (38) is known as SRAD update function. For mathematical 
applications we choose      and        . 

E. Anisotropic Diffusion Flux (ADF) 

The ADF equation can be written as: 

{
 (       )     (     )

  (       )

  
     (       )    [  (     )   (       )]

  

            (39) 

where  (       )  is the diffusion flux and β is a data 
attachment coefficient. If β = 0, then eq. (39): 

 Heat diffusion flux  (       )  =   (       )  which 
is equivalent to Gaussian convolution. 

 Heat diffusion flux  (       )  = 
 (       )  (       ) (from eq. (4)). High gradient 
diffusion effect reduced by use of this function which is 
based on a threshold value δ on gradient norm. 

Diffusion matrix D proposed in [10] can be expressed in a 
diagonal form with Eigenvectors 〈        〉 and Eigenvalues 
(        ). So, Heat diffusion flux  (   ) can be expressed 
as:  

 (       )      (       ) 

                            ∑     (       )     
 
                    (40) 

where   (       )   =   (       )   is the 1
st
 order 

derivative of the intensity in the direction of   . Author [14] 
uses a particular heat diffusion flux that is decomposed in the 
basis of the of the gradient 〈  〉 (direction of the gradient), and 
the maximal 〈   〉  and minimal 〈   〉  curvature directions 
computed on the Gaussian smoothed image   (       ), here, 
smoothness is obtained by convolution of  (   )  with a 

Gaussian kernel       ( ⃑  )   
 

(√    )
   

  
| |⃗⃗ ⃗⃗⃗⃑  

    of standard 

deviation σ > 0, where D for dimensions,          
        and  ⃑         . 

The principle curvature directions are acquired as the two 
eigenvectors of the matrix PHσP, where Hσ is Hessian Matrix of 
Gaussian smoothed image   (       )  and P is projection 
matrix, in the plane orthogonal to the gradient direction. Along 
with the direction of Eigenvector     , to apply smoothing, 
the filter must preserve the boundaries and detect an edge 
clearly. 

            (
    (       )

|    (       )|
)  (

    (       )

|    (       )|
)
 

       (41) 

where I is Identity matrix. 

F. Anisotropic Diffusion Filter for Matrix Extension 

SRAD filter is efficiently perform directional filtering after 
adding a non-scalar component to the filter. This SRAD filter 
do directional filtering of the image along the image structures 
for better result in restoration of images [15]. Formally, SRAD 
is written as: 

                    
  (       )

  
    [(     )    (       )]  

    ([

(     )   

 (     )  

  (     )
]    (       )) 

         (42) 

From eq. (42), diffusion matrix   [(     )  ] is a scalar 
component matrix where I is Identity matrix. As we know that 
anisotropic diffusion flux F uses the direction of gradient and 
direction of principal curvature for a kind of sharper image. 
The combination of enhancement in the gradient direction with 
smoothing in the minimal curvature direction can lead very 
good enhancement of tubular structures like blood-vessels in 
3D images [15]. On the basis of Eigenvectors 〈        〉 and 
Eigenvalues (        ) new diffusion matrix can be written 
as:    as (      (     )) and fixed    to constant      and 
fixed    to     . In case of anisotropic diffusion flux F, we use 
          . For example, we use        and         
So, filtered image  (       ) with OSRAD filter: 

  (  |    |  ) (

(     (     ))   
      
      

)(

  
 

  
 

  
 

)    

            (43) 

where      is the amount of smoothing along the direction of 
maximal curvature, and      is the amount of smoothing along 
the direction of minimal curvature. In case of 2-D images, the 
parameter      and      reduces to just one coefficient      .  

G. PDE model Volterra Filter 

Authors [16] proposed a new type of non-linear anisotropic 
diffusion equation for regularization of PDEs.  This new type 
of non-linear anisotropic diffusion equation was combined with 
a time-delay. The PDE model: 
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    ( (       )  (       ))             (44) 
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  (       )   (       )(    (       ))    (45) 

where       (       )  =  ( (       )          ( ⃑  )) , 

       ( ⃑  )   
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)

  
 , ∫     ( ⃑  )      

     ( ⃑  )  is Gaussian kernel used in bounded region for 
smoothness.  (       ) is the diffusion tensor at point (     ) 
and time t. For well-posedness of this system model,    is used 
as positive smoothing parameter (            ).  So, eq. 
(44) and (45) after combined with time-delay, the equations 
becomes: 

 
  (       )

  
    ( (       )  (       ))          

(46) 

 
  (       )

  
  

 (       )

 
   

 (       )(    (       ))

 
          

(47) 

where    is time delay (relaxation time). This temporal 
dependence due to the coupling with delay differential equation 
(DDE) used in non-linear anisotropic diffusion equation for 
regularization of PDEs in eq. (47).  
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The system with initial conditions i.e. t = 0 such as noisy image 
  (     ), initial diffusion tensor   (       )     (     ) 
and periodic boundary conditions. For processing of images, 
boundary conditions are not essential task. Avoiding boundary 
conditions, by part integrations met in the result and filtered 
image is considered as the steady solution of eq. (46) and (47), 
so, stopping time is avoided. The Volterra equation: 

  (       )

  
        {   (     )    (       )} 

  ∫     
 

 
  { (       )[    (       )]    (       )}    

                           (48) 

The Volterra equation with time delay  : 

  (       )
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  ∫  
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  { (       )[    (       )]    (       )}    

                       (49) 

III. ROBUST ANISOTROPIC DIFFUSION FILTERING 

The novelty of this filtering technique is to eliminate the effect 
of gradient information due to the lack of contours and low 
contrast of US images with objective of preservation of 
relevant clinical details in interest region using probabilistic-
driven selective memory mechanism filtering. A new selective 
filtering tensor operator  (       ) used as transformation of 
the instantaneous diffusion tensor  (       )  at location 
(     ) into a null tensor for suitable tissue characterization 
and preservation. In this context,  (       )    
   (       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  where,  (       )  for the probability of the 

tissue regions and   (       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ for the probability of the non-
tissue (meaningless) regions. For this selective behavior the 
diffusion tensor  (       ) is multiplied by its Eigenvalues by 

  (       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ . Memory mechanism used, to know the 
anisotropic diffusion direction satisfy the condition that 

  (       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅    , so  (     )   (       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅      Memory 

mechanism will be disable if    (       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅    , so that 

 (     )   (       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅      So the new reconstruct diffusion 
tensor by using expansion of outer product: 
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   (       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  (

  (       )   
   (       )  

    (       )
)   

and  (       )   (  |    |  ) and  (       )   (

  
 

  
 

  
 

) . 

Preserving pathway of the time dependent probability for 
getting more robust characterization than obtained from 

instantaneous probability,   (       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  , tensor operator 
 (       )  is not directly applied to  (       ) . This 
 (       )  provides more robust characterization than 

  (       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

Now, our proposed system DDE, with same initial and periodic 
condition as [15] and  (     ) is the spatial dependence of  , 
will be: 

  (       )

  
    ( (       ))    (       )        (51) 

  (       )

  
  

 (       )

 (     )
   ( (       ))         (52) 

Integrate eq. (52), we get: 

 (       )  

  ( (       )) 
  

 (     )  ∫  
(   )

 (     )  ( (       ))    
 

 
    

       (53) 

To turn ON/OFF the memory mechanism, spatial dependence 
 (     ) should satisfied the minimum conditions  

that  (     ) [   ]  (   ).  The anisotropic diffusion flux 
 (       ) =  (       )  (       ) , then from eq. (53): 

 (       )     (       )     (       )        (54) 

where filtered diffusion tensor  ( (       )) , Ω ≤ t, 

 (   )(     ) =   ( (       ))   (       )  and 

  (       )    ( (       )) 
  

 (     )    (       ) 

                                 
  

        (   )(     )                      (55) 

  (       )= ∫
 
(   )

 (     )  ( (       ))    (       )   

  ∫  
(   )

 (     )  (   )(     )
 

 
   

 

 
     

                         (56) 

IV. EXPERIMENTS AND RESULTS 

A. Images 

We consider the ‘true’ B-Mode US image of human kidney 
presented in [18] are used in this experiment. This real US 
image is used for quantitative analysis. The size of the ‘true’ B-
Mode US image of human kidney is 522x469x24 (in pixel 
unit) in x, y, and z directions respectively. 

B. Performance Metrics 

Two performance metrics were used in our experiments to 
measure the algorithm performance, one is called Mean 
Squared Error (MSE) which is used for accuracy and precision 
of the ‘true’ image and other is called Structural Similarity 
Index Measure (SSIM) which is used for quality similarity 
between two images (original image and filtered image). 

1) Mean Squared Error 
The MSE is beneficial to have some measure of the difference 
between a pair of similar images. The most common difference 
measure is the mean-square error [19]. The MSE measure is 
popular because it correlates practical image with reference 
image for visually qualify test and MSE is mathematically 
tractable. Let  (       ) be pixel value intensity of reference 
image at (     ) and measured image  (       ) at (     ) 
coordinate axis. The MSE is defined as: 

    
 

   
 ∑ ∑ ∑ (| (       )    (       )| )   
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           (57) 

2) Structure Similarity Index Measure 
SSIM which is based on human visual system is proposed by 
[20]. They argue that natural image signals are highly 
structured as the nearby pixels exhibits strong dependencies. 
SSIM is a function of three components: luminance 
comparison, contrast comparison, and structure comparison. 
Mathematically it can be written as: 

     (   )   [ (   )] [ (   )] [ (   )]        (58) 

where p and q are the original and distorted image contents at 
the local window respectively.           are parameters that 
adjust the relative significance of the three components.  

The luminance comparison function   is given by: 

 (   )   
 (   )

   (   )   
  
  
 

         (59) 

where C1 = (K1, L)
2
, with L being the dynamic range of the 

pixel values and K1 << 1 is a small constant. R being a measure 
of luminance change relative to background luminance that 
incorporates Weber’s law. Mean intensity of signal p is 
represented by    .  

The contrast comparison function is defined as: 

 (   )   
(         )

(  
     

     )
       (60) 

Here, C2 = (K2, L)
2
 and K2 << 1.    and    are the standard 

deviations of signals p and q respectively.   

The structural comparison function is given as:  

 (   )   
       

        
       (61) 

where C3 is a constant and     is the correlation coefficient of 

signals p and q. If            and     
  

 
 , then: 

    (   )   
(         )(        )

(  
     

     )(  
     

     )
     (63) 

C. Result for Real US Image 

In this section, we show the performance of RAD filter with 
real US image in order to compare with other state-of-the-art 
algorithms, discussed in background section. We consider the 
‘true’ B-Mode US image presented in [18]. Designing of 
optimized RAD filter is very careful precision task which 
highly depend on anisotropic diffusion step,   , and iterations 
number,            .   related to filter window size,   (       ) 
related to the structure diffusion tensor (smoothing parameter 
for derivatives),   (       ) smoothing parameter for anisotropic 

diffusion tensor,       related to amount of anisotropic 

diffusion along the orthogonal direction to edges. We keep 
  (       )     (       )  for optimization purpose. Both 

numerical validation MSE and SSIM was used to measure the 
performance of state-of-the-art filters and discussed RAD 
filters respectively.  Discussed RAD filter preserves the clinical 
details while performing filtering of US image. The image 
presented in Fig. 1(a). shows a B-mode US image of an 
anatomic phantom of a human kidney, Fig.1(b). is speckled 
image with standard deviation σ = 0.4, and Fig.1(h). shows 
RAD filtered image. The performance response of state-of-the-
art filters is visually shown from Fig.1(c). to Fig.1(g). and 
comparative response of all mentioned filters is given in table -
II. The optimization criterion for all filters given in table -I. 

 
(a) 

 
(b) 

 
(c) 

 

(d) 

 

(e)   

 

(f) 

 

(g) 

 

(g) 

Figure 1.  Experimental results obtained for real B-mode US image of human kidney; (a) original image, (b) speckle image with σ = 0.4, (c) FROST filter, 

(d) SRAD filter, (e) DPAD filter, (f) OSRAD filter, (g) POSRAD filter, (h) RAD filter. 



   International Journal of Computer Sciences and Engineering            Vol.-4(9), PP(XX-XX) Sep 2016, E-ISSN: 2347-2693 

 

  © 2016, IJCSE All Rights Reserved                                                                                                                                       159 

 

Figure 2.  Optimized Parameters Criterion for the filtering real B-mode 

US image of human kidney 

Filter Optimized Parameters 

FROST Filter     

SRAD Filter                      

DPAD Filter                          

OSRAD Filter 
         (       )               

                

POSRAD Filter 
          (       )          

                

RAD Filter 

         (       )      (       )     

      
                

Figure 3.  MSE and SSIM Results on filtering real B-mode US image of 

human kidney  

S.No. Filter MSE SSIM 

1. Noisy Image 0.0145 0.7216 

2. FROST Filter 0.0035 0.8450 

3. SRAD Filter 0.0185 0.7635 

4. DPAD Filter 0.0040 0.8892 

5. OSRAD Filter 0.0025 0.8651 

6. POSRAD Filter 0.0024 0.8827 

7. RAD Filter 0.0020 0.8931 

V. CONCLUSIONS 

This paper presents a mathematical analysis of RAD filter 
for speckle noise reduction in real B-Mode US images on the 
basis of the performance evaluation metrics. We have used 
two performance metrics MSE and SSIM for which state-of-
the-art filters gives optimum results but they suppress desired 
clinical tissue details when dealing with real US images. 
Here, DDE which is used in Volterra equation, implemented 
as memory mechanism. The performance comparison, 
shown in table – I and table – II, shows that discussed RAD 
filter gives better results, after some modification in 
parameters selection, in comparison to state-of-the-art filters 
and preserves the relevant tissue details for clinical purpose 
with including memory mechanism. This methodology offers 
an advantage over the discussed state-of-the-art filters in 
each iteration while preserving and enhancing the tissue 
details and gives better result for US image restoration. 
Future work includes improving of the RAD filter by taking 
into the account for more complex and real imaging images 
with speckle distribution. 
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