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Abstract—Closed itemset mining plays an important role in mining compressed representations or summaries of the set of 

frequent patterns. It uses the support information of itemsets and the superset–subset relationship among itemsets for removing 

redundancy. Closed itemset is always smaller or equal in cardinality comparing to other concise representation such as frequent 

free sets and generators. But, the compression using this closed-pattern approach may not be very effective, since slightly 

different count often exists between super and sub patterns. This paper focuses to compare two closed itemset algorithms such 

as FPclose and CFPtree-closed and a frequent itemset algorithm NCFPGEN for studying and determining the performance of 

these algorithms in the execution time aspect.  
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I.  INTRODUCTION  

Data Mining is the process of extracting previously unknown 

and potentially useful hidden predictive information from 

large amounts of data. Frequent pattern mining is a 

fundamental research topic that has been applied to different 

kinds of databases. In the early days, the size of the database 

and the generation of a reasonable amount of frequent 

itemsets were considered as the most costly aspects of 

frequent itemset mining, and the most energy went into 

minimizing the number of scans through the database. 

However, if the minimal support threshold is set too low, or 

the data is highly correlated, the number of frequent itemsets 

itself can be prohibitively large. To overcome this problem, 

recently several proposals have been made to construct a 

concise representation based on lossless compression 

methods such as closed itemsets [2-7] [22] and constraints 

based frequent itemsets [8-11] instead of mining all frequent 

itemsets. The constraint based mining though useful, but can 

hardly be used for pre-computation, since different users are 

likely to have different constraints. The closed itemsets 

representation gives the less number of frequent 

representative patterns based on support value. This concise 

representation not only uses the support information of 

itemsets but also uses the superset–subset relationship among 

itemsets for removing redundancy. However, the 

compression using the closed-pattern approach may not be 

very effective, since slightly different count often exists 

between super and sub patterns. This paper focuses to 

compare both closed itemset algorithms FPclose and 

CFPtree-closed with a frequent itemset algorithm NCFPGEN 

for generating NCFP-tree which stores all frequent itemsets 

in compressed manner. It analyses these algorithms because 

they are based on similar FP-tree concept and they follow the 

depth-first search technique. 

  

The rest of the paper is organized as follows: Section I 

contains the introduction of frequent itemset mining. Section 

II gives the basic definitions of frequent itemsets and closed 

itemsets. Section III describes the related work. Section IV 

discusses the algorithms FPclose and CFPtree-closed and 

NCFPGEN for generating NCFP-tree with example. The 

experimental results are shown in section V. Section VI 

describes the results and discussion of the algorithms FPclose 

and CFPtree-closed and NCFPGEN. Finally, Section VI 

concludes the paper. 

 

II. BASIC DEFINITIONS 

This section gives the basic definitions of frequent itemsets 

and frequent closed itemsets. Let I=I1, I2, … , Im be a set of m 

distinct attributes, T be transaction that contains a set of 

items such that T ⊆I and D be a database with different 

transaction records Ts. 

Definition 1. ( itemset). 

An itemset X is a finite subset of I, the set of possible items. 

Definition 2. (transactions and transaction databases). 
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A transaction t is a pair ≺i, X≻ consisting of a transaction 

identifier tid (t) = i  N and an itemset (t) = X ⊆ I. A 

transaction database D is a set of transactions with unique 

transaction identifiers. The set SD of all itemsets in D is SD 

= { X: ≺i, X≻ i D }. 

Definition 3. (support/frequencies). 

The support of X in D is supp(X, D) = |cover(X, D)| where 

cover (X, D) = {tid | (tid, I) D, X ⊆I}. 

Definition 4. (Frequent itemset mining). 

Given a transaction database D and a real value σ  [0, 1], 

find all σ frequent itemsets, i.e., determine the collection F 

(σ, D) = {X⊆I: support (X, D) ≥ σ} of σ – frequent itemsets 

in D. 

Definition 5. (Closed frequent itemsets). 

An itemset X  F (σ, D) is closed, if there exists no proper 

super-itemset Y such that Y has the same support count as X 

in F. The collection of closed σ -frequent itemsets in D is 

denoted by C (σ, D). 

 

III. RELATED WORK  

Many algorithms and techniques are proposed for 

enumerating itemsets from transactional databases. It has 

been observed that the complete set of frequent patterns often 

contains a lot of redundancy [21] i.e.) many frequent patterns 

have similar items and supporting transactions. To overcome 

this problem, several approaches have been made to 

construct a concise representation of the frequent itemsets. 

Two major approaches have been developed in this direction: 

lossless compression and lossy approximation. The closed 

frequent patterns [3] and non derivable itemsets [13] methods 

are generally referred to as lossless compression since we 

can fully recover the exact frequency of any frequent 

itemsets. The maximal frequent pattern [17] is called as lossy 

compression since we cannot recover the exact frequencies. 

In addition to these approaches, recently many proposals 

such as generators [14], disjunction-free generators [15], δ-

free sets [16], top-k frequent closed patterns [18] and 

redundancy-aware top k patterns [19] have been made to 

construct a concise (compressed) representation of the 

frequent itemsets, instead of mining all frequent itemsets. 

But, the type of concise representation that received a lot of 

attention in the literature is the closed itemsets because the 

number of closed patterns is always smaller or equal in 

cardinality than the set of frequent free sets [15-16], lesser 

than that of generators [14] and the number of non derivable 

patterns [13] is larger than that of closed patterns on some 

datasets. Furthermore, the set of generators itself is not 

lossless. Hence, this study focuses to concentrate on closed 

itemset. 

 

Frequent closed patterns preserve the exact support of all 

frequent patterns. The concept of closed frequent patterns is 

proposed by Pasquier et al. The Close [2-3] and the AClose 

[4] algorithms perform the breadth first search for the 

generators of the frequent closed itemsets in a level wise 

manner. These kinds of patterns are concise in the sense that 

all of the frequent patterns can be derived from them. 

Unfortunately, the number of patterns generated in these 

approaches is still too large to handle. CLOSET [6] is an 

extension of the FP-growth algorithm [1] which constructs a 

frequent pattern tree FP-tree and recursively builds 

conditional FP-trees in a bottom-up tree search manner. 

Although CLOSET uses several optimization techniques to 

enhance the mining performance, its performance still suffers 

in sparse datasets or when the support threshold is low. The 

algorithm CLOSET+ [7] uses one global prefix-tree for 

keeping track of all closed itemsets.  

 

 

IV. DISCUSSION OF FPCLOSE AND CFPTREE-CLOSED 

AND NCFPGEN WITH EXAMPLE 

FPclose [12] is one of the best algorithms for mining closed 

frequent itemsets, even when compared to CLOSET+. In this 

algorithm, a CFI-tree (closed frequent itemsets- tree), another 

variation of the FP-tree, is used for testing the closeness of 

frequent itemsets. CFI-tree depends on FP-tree TX and is 

denoted as CX. The itemset X is represented as an attribute of 

T, T: base. The CFI-tree CX always stores all already found 

CFIs containing itemset X and their counts. In a CFI-tree, 

each node in the sub tree has four fields: item-name, count, 

node-link, and level. Here, level is still used for subset 

testing. The count field is needed because when comparing Y 

with a set Z in the tree, it is not the case that Y  Z and Y 

and Z have the same count is verified. The order of the items 

in a CFI-tree’s header table is the same as the order of items 

in header table of its corresponding FP-tree. 

 

In FPclose, the insertion of a CFI into a CFI-tree is similar to 

the insertion of a transaction into an FP-tree, except now the 

count of a node is not incremented; it is always replaced by 

maximum count up-to-date. Suppose a newly found frequent 

itemset Y which contains X, then only needs to be compared 

with the CFI’s in CFI-tree is CX. In CFI-tree, if there is no 

superset of Y with same support as Y, then Y is considered 

as closed. The item order in FP-tree and CFI-trees is same 

because they are both for base. Here, a node x: l: c means 

that the node is for item x, its level is l and its count is c. 

The CFPtree-closed algorithm [20] utilizes CFP-tree for 

finding frequent closed itemsets. The CFP-tree is constructed 

from a database with respect to a given minimum support 

threshold which is lossless, that is, it contains the complete 

set of frequent itemsets. The CFP-tree structure is different 

from the FPtree structure proposed by Han et al. [1] on 

several aspects: (1) A FP-tree stores projected transactions 

during the mining process, while a CFP-tree stores 

discovered frequent itemsets. (2) There is only one pointer in 

a CFP-tree entry, but there are four pointers in a FP-tree 
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node. Hence the CFP-tree structure is more disk-friendly 

than the FP-tree structure. (3) Most importantly, there is only 

prefix sharing in FP-trees, while there are both prefix sharing 

and suffix sharing in CFP-trees. The space saved by suffix 

sharing is much more significant than that by prefix sharing. 

Suffix sharing makes it feasible to compute and store all 

frequent itemsets in a CFP-tree even when it is not feasible to 

store all frequent itemsets in other structures. Here, the path 

from root to particular node represents particular frequent 

pattern. 

The concise representations of frequent itemsets such as 

frequent closed itemsets, generators, disjunction-free sets, 

non-derivable frequent itemsets  and cover equivalent classes 

are efficiently produced from a CFP-tree using the query 

processing algorithms because these concise representations 

use the support information of itemsets and the superset–

subset relationship among itemsets to remove redundancy. 

The closed itemsets in a CFP-tree are identified as follows: 

For each itemset l in the CFP-tree, the search for its subsets 

in the CFP-tree is performed.  If a subset of l has the same 

support as l, then the subset is marked as non-closed. We 

traverse the CFP-tree in depth-first order from left to right, 

and search for the subsets of every itemset being visited. 

According to the left containment property, when an itemset 

is visited, all the supersets of the itemset have been visited 

except those that are in the sub tree pointed by l. Therefore, if 

an itemset is not marked as non-closed when it is visited, 

then the itemset is a closed itemset if all the entries in its 

child node are less frequent than it. 

 

The NCFPGEN algorithm [23] generates frequent itemsets 

using NCFP-tree. The NCFP-tree (Non-Recursive CFP-tree) 

is similar to CFP-tree structure but, it differs in processing 

the conditional database. The main difference is that a new 

single extended conditional database is created initially 

instead of creating multiple conditional databases 

recursively. In CFP-tree, a new conditional database is 

created for each itemset every time by applying push-right 

step. The NCFP-tree utilizes the extended conditional 

database in an efficient manner by keeping the transactions 

start with the itemsets which are not yet processed. It does 

not follow the recursive approach.  

 

Consider the following Transactional Database. It has seven 

transactions, that is |D|=7. Assume min-sup=40%. The set of 

frequent itemsets and frequent closed itemsets are 

discovered. Table 2 shows all frequent itemsets and table 4 

shows frequent itemsets in compact form. The closed 

itemsets are given in table 3.  

 
Table 1. Transaction Database 

 

 

 

 

 

 
Table 2. Frequent Itemsets 

 

 

 

 

 

 
 

 

Table 3. Closed Frequent Itemsets 
 

Closed Patterns (min-sup=40%) 

f:5, a:6 

pf:4, fa:4,ma:5 

cma:3 

pfma:3 

 

 
Table 4. Frequent itemset (compact form) 

 

 
 

 

 

 

 

It is known that CFP-tree and NCFP-tree store the same 

number of frequent itemsets in compact form. Therefore, 

both trees represent the same table 4. Similarly, FPclose and 

CFP-tree closed give same number of closed itemsetes which 

is shown in table 3.From these tables, we observe that the 

number of compact form frequent itemsets is lesser than all 

frequent itemsets but, it is slightly larger than the number of 

closed itemsets. 

 

The CFI-tree corresponds to FPclose is given in figure1 and 

CFP-tree / NCFP-tree corresponds to CFP-tree closed and 

NCFPGEN is given in figure 2. 

TID TRANSACTION 

1 a, c, e, f, m, p 

2 a, b, f, m, p 

3 a, b, d, f, g 

4 d, e, f, h, p 

5 a, c, d, m, v 

6 a, c, h, m, s 

7 a, f, m, p, u 

All Patterns (min_sup = 40%) 

c:3, d:3, p:4, f:5, m:5, a:6 
 

cm:3, ca:3, pf:4, pm:3, 

pa:3, fm:3, fa:4, ma:5 

cma:3, pfm:3, pfa:3, 
pma:3, fma:3 

 

pfma:3 

Frequent Itemsets(Compact Form) 

(min_sup = 40%) 

cma:3 

d:3 

pfma:3  pf:4 

fma:3    fa:4  f:5 

ma:5 

a:6 
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Header Table 

Item      Head of node links 

 

a:6 

 

m:5 

 

f:5 

 

p:4 

 

d:3 

 

c:3 

 

 

 

 

 

 
 

  

Header Table 

Item      Head of node links 

 

a:6 

 

m:5 

 

f:5 

 

p:4 

 

d:3 

 

c:3 

 

 

 

 

 
Fig. 1 (a) & (b) CFI-tree Construction 

 

 
c:3 d:3 p:4 f:5 m:5 a:6 

 

 

 
 

 
 

 

 
 

Fig. 2 CFP-tree / NCFP-tree Construction 

 

In figure 1 (a), first we insert (a,m,f,,p) and (a,m,c) with 

count 3. Then, we insert (a,m) with count 5.Therefore, the 

counts for nodes a and m are both changed to be 5.In figure 1 

(b), the remaining CFI’s (a,f) :4, (f,p) :4, (f) :5 and (a) :6 are 

inserted. Now, the resultant CFI-tree contains all mentioned 

CFI’s in table 3. 

In figure 2, we either create single entry node or multiple 

entries node depends on the count of the frequent itemsets. A 

single entry contains multiple items if it is the only child of 

its parent. The frequent itemset ma: 3 is entered as single 

entry and the frequent itemset m: 3 and a: 4 are entered as 

multiple entries while driving from their parent. 

 

V. EXPERIMENTAL RESULTS  

The experiments are carried out on the computer with the 

configuration such as Intel(R) Core(TM) i3CPU, 3 GB 

RAM, 2.53 GHz Speed and Windows 7 Operating System. 

The algorithms such as FPclose, CFPtree-closed and 

NCFPGEN for creating NCFP-tree approaches are 

implemented in Java. The experiments are evaluated on two 

datasets namely mushroom and retail. The mushroom and 

retail are real datasets. They are relatively dense. The 

mushroom dataset contains the characteristics of various 

species of mushrooms. It has 119 items and 8124 

transactions. The minimum, maximum and average length of 

its transaction is 23. The retail dataset contains the retail 

market basket data from an anonymous Belgian retail store. 

It has 16,470 items and 88,162 transactions. The maximum 

length of its transaction is 77 and the average length of its 

transaction is10.31. Both are obtained from the UCI 

repository of machine learning databases. The algorithms are 

tested on the mushroom dataset with a support level of 10% 

to 50% in increments of 10%.They are also tested on the 

retail dataset with a support  level of 0.01% to 0.05%  in 

increments of 0.01%. 

Running Time  

Here, the experiment considers CPU time only for finding 

performance of the algorithms. The figure 1 shows the 

running time of FPclose, CFPtree-closed and NCFPGEN 

algorithms. G. Liu et al [20] showed that the CFPtree-closed 

algorithm is slightly better than FPclose even though it 

generates frequent closed itemsets using a post-processing 

strategy. They also showed that constructing a CFP-tree for 

storing all frequent itemsets is much more efficient than 

generating frequent closed itemsets especially on dense 

datasets such as mushroom and retail. The following figure 

shows that NCFPGEN algorithm is better for these datasets.  

The paper [23] discusses that NCFP-tree is better than CFP-

tree for the datasets such as mushroom, retail and 

T10I4D100K. It also describes that NCFP-tree provides all 

features similar to CFP-tree.  The figure 1 shows that NCFP-

tree is comparable to both FPclose, CFPtree-closed 

algorithms.  

  f : 4 

 

 

 

 

 

 

 

 

 

 

 

; 

ma : 3 

;  
; 3 

a  5 

 

ma :3 

m: 3 a:4 

a: 3 

root 

 

c:3:3 

m:2:5 

f:3:3 

p:4:3 

a:1:5 

root 

 

c:3:3 

m:2:5 

f:3:5 

p:4:4 

a:1:6 
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Fig. 1(a) 

 

 

Fig. 1(b) 

Fig. 1(a) – 1(b) Running Time 
 

VI. RESULTS AND DISCUSSION 

The algorithms FPclose, CFPtree-closed and NCFPGEN are 

based on similar FP-tree concept and they follow the depth-

first search technique. Each algorithm has its own strengths 

and limitations. In FPclose algorithm, the construction of the 

CFI-tree is mostly similar to FP-tree when inserting new 

transactions. But, it does not support for finding other 

concise representations such as generators, disjunction-free 

sets, non-derivable frequent itemsets etc. In CFPtree-closed 

algorithm, the CFP-tree is utilized. The CFP-tree contains the 

complete set of frequent itemsets and it supports for 

producing concise representations of frequent itemsets using 

query processing algorithm. In NCFPGEN algorithm, a 

similar CFP-tree such as NCFP-tree is created. This NCFP-

tree also supports for producing concise representations of 

frequent itemsets. The running time shows that NCFPGEN 

algorithm is comparable to both FPclose, CFPtree-closed 

algorithms 

VII. CONCLUSION   

.  

We have compared three algorithms such as FPclose, 

CFPtree-closed and NCFPGEN with two datasets in this 

paper. The running time shows that NCFPGEN algorithm is 

comparable to both FPclose, CFPtree-closed algorithms.  

 

 In future, NCFPGEN algorithm may be compared with other 

closed itemset algorithms in various aspects to find out the 

effectiveness of NCFPGEN algorithm because this algorithm 

supports for producing concise representations of frequent 

itemsets. We believe that NEFPGEN algorithm may 

contribute a good support to produce concise representations 

with further research efforts. 
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