

 © 2018, IJCSE All Rights Reserved 143

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-6, Issue-3 E-ISSN: 2347-2693

Comparative Study of FPclose, CFPtree-closed and NCFPGEN

Algorithms

R. Prabamanieswari

1*
, D.S. Mahendran

2
, T.C. Raja Kumar

3

1*

 Department of Computer Science, Govindammal Aditanar College for Women, Tiruchendur, India
2
Department of Computer Science, Aditanar College of Arts and Science, Tiruchendur, India

3
Department of Computer Science, St. Xaviers College, Tirunelveli, India

*Corresponding Author: prabacs_2006@yahoo.com, Tel.: 919894796214

Available online at: www.ijcseonline.org

Received: 24/Feb//2018, Revised: 03/Mar2018, Accepted: 23/Mar/2018, Published: 30/Mar/2018

Abstract—Closed itemset mining plays an important role in mining compressed representations or summaries of the set of

frequent patterns. It uses the support information of itemsets and the superset–subset relationship among itemsets for removing

redundancy. Closed itemset is always smaller or equal in cardinality comparing to other concise representation such as frequent

free sets and generators. But, the compression using this closed-pattern approach may not be very effective, since slightly

different count often exists between super and sub patterns. This paper focuses to compare two closed itemset algorithms such

as FPclose and CFPtree-closed and a frequent itemset algorithm NCFPGEN for studying and determining the performance of

these algorithms in the execution time aspect.

Keywords—frequent itemset, closed itemset

I. INTRODUCTION

Data Mining is the process of extracting previously unknown

and potentially useful hidden predictive information from

large amounts of data. Frequent pattern mining is a

fundamental research topic that has been applied to different

kinds of databases. In the early days, the size of the database

and the generation of a reasonable amount of frequent

itemsets were considered as the most costly aspects of

frequent itemset mining, and the most energy went into

minimizing the number of scans through the database.

However, if the minimal support threshold is set too low, or

the data is highly correlated, the number of frequent itemsets

itself can be prohibitively large. To overcome this problem,

recently several proposals have been made to construct a

concise representation based on lossless compression

methods such as closed itemsets [2-7] [22] and constraints

based frequent itemsets [8-11] instead of mining all frequent

itemsets. The constraint based mining though useful, but can

hardly be used for pre-computation, since different users are

likely to have different constraints. The closed itemsets

representation gives the less number of frequent

representative patterns based on support value. This concise

representation not only uses the support information of

itemsets but also uses the superset–subset relationship among

itemsets for removing redundancy. However, the

compression using the closed-pattern approach may not be

very effective, since slightly different count often exists

between super and sub patterns. This paper focuses to

compare both closed itemset algorithms FPclose and

CFPtree-closed with a frequent itemset algorithm NCFPGEN

for generating NCFP-tree which stores all frequent itemsets

in compressed manner. It analyses these algorithms because

they are based on similar FP-tree concept and they follow the

depth-first search technique.

The rest of the paper is organized as follows: Section I

contains the introduction of frequent itemset mining. Section

II gives the basic definitions of frequent itemsets and closed

itemsets. Section III describes the related work. Section IV

discusses the algorithms FPclose and CFPtree-closed and

NCFPGEN for generating NCFP-tree with example. The

experimental results are shown in section V. Section VI

describes the results and discussion of the algorithms FPclose

and CFPtree-closed and NCFPGEN. Finally, Section VI

concludes the paper.

II. BASIC DEFINITIONS

This section gives the basic definitions of frequent itemsets

and frequent closed itemsets. Let I=I1, I2, … , Im be a set of m

distinct attributes, T be transaction that contains a set of

items such that T ⊆I and D be a database with different

transaction records Ts.

Definition 1. (itemset).

An itemset X is a finite subset of I, the set of possible items.

Definition 2. (transactions and transaction databases).

 International Journal of Computer Sciences and Engineering Vol.6(3), Mar 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 144

A transaction t is a pair ≺i, X≻ consisting of a transaction

identifier tid (t) = i  N and an itemset (t) = X ⊆ I. A

transaction database D is a set of transactions with unique

transaction identifiers. The set SD of all itemsets in D is SD

= { X: ≺i, X≻ i D }.

Definition 3. (support/frequencies).

The support of X in D is supp(X, D) = |cover(X, D)| where

cover (X, D) = {tid | (tid, I) D, X ⊆I}.

Definition 4. (Frequent itemset mining).

Given a transaction database D and a real value σ  [0, 1],

find all σ frequent itemsets, i.e., determine the collection F

(σ, D) = {X⊆I: support (X, D) ≥ σ} of σ – frequent itemsets

in D.

Definition 5. (Closed frequent itemsets).

An itemset X  F (σ, D) is closed, if there exists no proper

super-itemset Y such that Y has the same support count as X

in F. The collection of closed σ -frequent itemsets in D is

denoted by C (σ, D).

III. RELATED WORK

Many algorithms and techniques are proposed for

enumerating itemsets from transactional databases. It has

been observed that the complete set of frequent patterns often

contains a lot of redundancy [21] i.e.) many frequent patterns

have similar items and supporting transactions. To overcome

this problem, several approaches have been made to

construct a concise representation of the frequent itemsets.

Two major approaches have been developed in this direction:

lossless compression and lossy approximation. The closed

frequent patterns [3] and non derivable itemsets [13] methods

are generally referred to as lossless compression since we

can fully recover the exact frequency of any frequent

itemsets. The maximal frequent pattern [17] is called as lossy

compression since we cannot recover the exact frequencies.

In addition to these approaches, recently many proposals

such as generators [14], disjunction-free generators [15], δ-

free sets [16], top-k frequent closed patterns [18] and

redundancy-aware top k patterns [19] have been made to

construct a concise (compressed) representation of the

frequent itemsets, instead of mining all frequent itemsets.

But, the type of concise representation that received a lot of

attention in the literature is the closed itemsets because the

number of closed patterns is always smaller or equal in

cardinality than the set of frequent free sets [15-16], lesser

than that of generators [14] and the number of non derivable

patterns [13] is larger than that of closed patterns on some

datasets. Furthermore, the set of generators itself is not

lossless. Hence, this study focuses to concentrate on closed

itemset.

Frequent closed patterns preserve the exact support of all

frequent patterns. The concept of closed frequent patterns is

proposed by Pasquier et al. The Close [2-3] and the AClose

[4] algorithms perform the breadth first search for the

generators of the frequent closed itemsets in a level wise

manner. These kinds of patterns are concise in the sense that

all of the frequent patterns can be derived from them.

Unfortunately, the number of patterns generated in these

approaches is still too large to handle. CLOSET [6] is an

extension of the FP-growth algorithm [1] which constructs a

frequent pattern tree FP-tree and recursively builds

conditional FP-trees in a bottom-up tree search manner.

Although CLOSET uses several optimization techniques to

enhance the mining performance, its performance still suffers

in sparse datasets or when the support threshold is low. The

algorithm CLOSET+ [7] uses one global prefix-tree for

keeping track of all closed itemsets.

IV. DISCUSSION OF FPCLOSE AND CFPTREE-CLOSED

AND NCFPGEN WITH EXAMPLE

FPclose [12] is one of the best algorithms for mining closed

frequent itemsets, even when compared to CLOSET+. In this

algorithm, a CFI-tree (closed frequent itemsets- tree), another

variation of the FP-tree, is used for testing the closeness of

frequent itemsets. CFI-tree depends on FP-tree TX and is

denoted as CX. The itemset X is represented as an attribute of

T, T: base. The CFI-tree CX always stores all already found

CFIs containing itemset X and their counts. In a CFI-tree,

each node in the sub tree has four fields: item-name, count,

node-link, and level. Here, level is still used for subset

testing. The count field is needed because when comparing Y

with a set Z in the tree, it is not the case that Y  Z and Y

and Z have the same count is verified. The order of the items

in a CFI-tree’s header table is the same as the order of items

in header table of its corresponding FP-tree.

In FPclose, the insertion of a CFI into a CFI-tree is similar to

the insertion of a transaction into an FP-tree, except now the

count of a node is not incremented; it is always replaced by

maximum count up-to-date. Suppose a newly found frequent

itemset Y which contains X, then only needs to be compared

with the CFI’s in CFI-tree is CX. In CFI-tree, if there is no

superset of Y with same support as Y, then Y is considered

as closed. The item order in FP-tree and CFI-trees is same

because they are both for base. Here, a node x: l: c means

that the node is for item x, its level is l and its count is c.

The CFPtree-closed algorithm [20] utilizes CFP-tree for

finding frequent closed itemsets. The CFP-tree is constructed

from a database with respect to a given minimum support

threshold which is lossless, that is, it contains the complete

set of frequent itemsets. The CFP-tree structure is different

from the FPtree structure proposed by Han et al. [1] on

several aspects: (1) A FP-tree stores projected transactions

during the mining process, while a CFP-tree stores

discovered frequent itemsets. (2) There is only one pointer in

a CFP-tree entry, but there are four pointers in a FP-tree

 International Journal of Computer Sciences and Engineering Vol.6(3), Mar 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 145

node. Hence the CFP-tree structure is more disk-friendly

than the FP-tree structure. (3) Most importantly, there is only

prefix sharing in FP-trees, while there are both prefix sharing

and suffix sharing in CFP-trees. The space saved by suffix

sharing is much more significant than that by prefix sharing.

Suffix sharing makes it feasible to compute and store all

frequent itemsets in a CFP-tree even when it is not feasible to

store all frequent itemsets in other structures. Here, the path

from root to particular node represents particular frequent

pattern.

The concise representations of frequent itemsets such as

frequent closed itemsets, generators, disjunction-free sets,

non-derivable frequent itemsets and cover equivalent classes

are efficiently produced from a CFP-tree using the query

processing algorithms because these concise representations

use the support information of itemsets and the superset–

subset relationship among itemsets to remove redundancy.

The closed itemsets in a CFP-tree are identified as follows:

For each itemset l in the CFP-tree, the search for its subsets

in the CFP-tree is performed. If a subset of l has the same

support as l, then the subset is marked as non-closed. We

traverse the CFP-tree in depth-first order from left to right,

and search for the subsets of every itemset being visited.

According to the left containment property, when an itemset

is visited, all the supersets of the itemset have been visited

except those that are in the sub tree pointed by l. Therefore, if

an itemset is not marked as non-closed when it is visited,

then the itemset is a closed itemset if all the entries in its

child node are less frequent than it.

The NCFPGEN algorithm [23] generates frequent itemsets

using NCFP-tree. The NCFP-tree (Non-Recursive CFP-tree)

is similar to CFP-tree structure but, it differs in processing

the conditional database. The main difference is that a new

single extended conditional database is created initially

instead of creating multiple conditional databases

recursively. In CFP-tree, a new conditional database is

created for each itemset every time by applying push-right

step. The NCFP-tree utilizes the extended conditional

database in an efficient manner by keeping the transactions

start with the itemsets which are not yet processed. It does

not follow the recursive approach.

Consider the following Transactional Database. It has seven

transactions, that is |D|=7. Assume min-sup=40%. The set of

frequent itemsets and frequent closed itemsets are

discovered. Table 2 shows all frequent itemsets and table 4

shows frequent itemsets in compact form. The closed

itemsets are given in table 3.

Table 1. Transaction Database

Table 2. Frequent Itemsets

Table 3. Closed Frequent Itemsets

Closed Patterns (min-sup=40%)

f:5, a:6

pf:4, fa:4,ma:5

cma:3

pfma:3

Table 4. Frequent itemset (compact form)

It is known that CFP-tree and NCFP-tree store the same

number of frequent itemsets in compact form. Therefore,

both trees represent the same table 4. Similarly, FPclose and

CFP-tree closed give same number of closed itemsetes which

is shown in table 3.From these tables, we observe that the

number of compact form frequent itemsets is lesser than all

frequent itemsets but, it is slightly larger than the number of

closed itemsets.

The CFI-tree corresponds to FPclose is given in figure1 and

CFP-tree / NCFP-tree corresponds to CFP-tree closed and

NCFPGEN is given in figure 2.

TID TRANSACTION

1 a, c, e, f, m, p

2 a, b, f, m, p

3 a, b, d, f, g

4 d, e, f, h, p

5 a, c, d, m, v

6 a, c, h, m, s

7 a, f, m, p, u

All Patterns (min_sup = 40%)

c:3, d:3, p:4, f:5, m:5, a:6

cm:3, ca:3, pf:4, pm:3,

pa:3, fm:3, fa:4, ma:5

cma:3, pfm:3, pfa:3,
pma:3, fma:3

pfma:3

Frequent Itemsets(Compact Form)

(min_sup = 40%)

cma:3

d:3

pfma:3 pf:4

fma:3 fa:4 f:5

ma:5

a:6

 International Journal of Computer Sciences and Engineering Vol.6(3), Mar 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 146

Header Table

Item Head of node links

a:6

m:5

f:5

p:4

d:3

c:3

Header Table

Item Head of node links

a:6

m:5

f:5

p:4

d:3

c:3

Fig. 1 (a) & (b) CFI-tree Construction

c:3 d:3 p:4 f:5 m:5 a:6

Fig. 2 CFP-tree / NCFP-tree Construction

In figure 1 (a), first we insert (a,m,f,,p) and (a,m,c) with

count 3. Then, we insert (a,m) with count 5.Therefore, the

counts for nodes a and m are both changed to be 5.In figure 1

(b), the remaining CFI’s (a,f) :4, (f,p) :4, (f) :5 and (a) :6 are

inserted. Now, the resultant CFI-tree contains all mentioned

CFI’s in table 3.

In figure 2, we either create single entry node or multiple

entries node depends on the count of the frequent itemsets. A

single entry contains multiple items if it is the only child of

its parent. The frequent itemset ma: 3 is entered as single

entry and the frequent itemset m: 3 and a: 4 are entered as

multiple entries while driving from their parent.

V. EXPERIMENTAL RESULTS

The experiments are carried out on the computer with the

configuration such as Intel(R) Core(TM) i3CPU, 3 GB

RAM, 2.53 GHz Speed and Windows 7 Operating System.

The algorithms such as FPclose, CFPtree-closed and

NCFPGEN for creating NCFP-tree approaches are

implemented in Java. The experiments are evaluated on two

datasets namely mushroom and retail. The mushroom and

retail are real datasets. They are relatively dense. The

mushroom dataset contains the characteristics of various

species of mushrooms. It has 119 items and 8124

transactions. The minimum, maximum and average length of

its transaction is 23. The retail dataset contains the retail

market basket data from an anonymous Belgian retail store.

It has 16,470 items and 88,162 transactions. The maximum

length of its transaction is 77 and the average length of its

transaction is10.31. Both are obtained from the UCI

repository of machine learning databases. The algorithms are

tested on the mushroom dataset with a support level of 10%

to 50% in increments of 10%.They are also tested on the

retail dataset with a support level of 0.01% to 0.05% in

increments of 0.01%.

Running Time

Here, the experiment considers CPU time only for finding

performance of the algorithms. The figure 1 shows the

running time of FPclose, CFPtree-closed and NCFPGEN

algorithms. G. Liu et al [20] showed that the CFPtree-closed

algorithm is slightly better than FPclose even though it

generates frequent closed itemsets using a post-processing

strategy. They also showed that constructing a CFP-tree for

storing all frequent itemsets is much more efficient than

generating frequent closed itemsets especially on dense

datasets such as mushroom and retail. The following figure

shows that NCFPGEN algorithm is better for these datasets.

The paper [23] discusses that NCFP-tree is better than CFP-

tree for the datasets such as mushroom, retail and

T10I4D100K. It also describes that NCFP-tree provides all

features similar to CFP-tree. The figure 1 shows that NCFP-

tree is comparable to both FPclose, CFPtree-closed

algorithms.

 f : 4

;

ma : 3

;
; 3

a 5

ma :3

m: 3 a:4

a: 3

root

c:3:3

m:2:5

f:3:3

p:4:3

a:1:5

root

c:3:3

m:2:5

f:3:5

p:4:4

a:1:6

 International Journal of Computer Sciences and Engineering Vol.6(3), Mar 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 147

Fig. 1(a)

Fig. 1(b)

Fig. 1(a) – 1(b) Running Time

VI. RESULTS AND DISCUSSION

The algorithms FPclose, CFPtree-closed and NCFPGEN are

based on similar FP-tree concept and they follow the depth-

first search technique. Each algorithm has its own strengths

and limitations. In FPclose algorithm, the construction of the

CFI-tree is mostly similar to FP-tree when inserting new

transactions. But, it does not support for finding other

concise representations such as generators, disjunction-free

sets, non-derivable frequent itemsets etc. In CFPtree-closed

algorithm, the CFP-tree is utilized. The CFP-tree contains the

complete set of frequent itemsets and it supports for

producing concise representations of frequent itemsets using

query processing algorithm. In NCFPGEN algorithm, a

similar CFP-tree such as NCFP-tree is created. This NCFP-

tree also supports for producing concise representations of

frequent itemsets. The running time shows that NCFPGEN

algorithm is comparable to both FPclose, CFPtree-closed

algorithms

VII. CONCLUSION

.

We have compared three algorithms such as FPclose,

CFPtree-closed and NCFPGEN with two datasets in this

paper. The running time shows that NCFPGEN algorithm is

comparable to both FPclose, CFPtree-closed algorithms.

 In future, NCFPGEN algorithm may be compared with other

closed itemset algorithms in various aspects to find out the

effectiveness of NCFPGEN algorithm because this algorithm

supports for producing concise representations of frequent

itemsets. We believe that NEFPGEN algorithm may

contribute a good support to produce concise representations

with further research efforts.

REFERENCES

[1] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without

candidate generation”, In Proceedings of ACM SIGMOD’00, pp

1–12, May 2000.

[2] Pasquier N, Bastide Y, Taouil R and Lakhal, “Pruning Closed

Itemset Lattices for Association Rules”, Proc. BDA conf., pp 177-

196, 1998.

[3] Pasquier N, Bastide Y, Taouil R and Lakhal L, “Efficient Mining

of Association Rules using Closed Itemset Lattices”, Information

Systems, vol 24, No 1, pp 25-46,1999.

[4] Pasquier N, Bastide Y, Taouil R and Lakhal, “ Discovering

frequent closed itemsets for association rules”, In: Proc 7th Int

Conf on Database Theory (ICDT’99), Jerusalem, Israel, pp 398–

416,1999.

[5] Zaki M, “Generating non-redundant association rules”, In: Proc

2000 ACM SIGKDD Int Conf Knowledge Discovery in Database

(KDD’00), Boston, USA, pp 34–43, 2000.

[6] J. Pei, J. Han, and R. Mao, “CLOSET: An efficient algorithm for

mining frequent closed itemsets”,In ACM SIGMOD’00 Workshop

on Research Issues in Data Mining and Knowledge Discovery, pp

21–30, 2000.

[7] J. Wang, J. Han and J. Pei, “Closet+: Searching for the best

strategies for mining frequent closed itemsets,” in Proc. KDD,

New York, NY, USA, pp. 236–245, 2003.

[8] Ng R, Lakshmanan LVS, Han J and Pang A, “Exploratory mining

and pruning optimizations of constrained associations rules”, In:

Proc 1998 ACM-SIGMOD Int Conf Management of

Data(SIGMOD’98), Seattle, USA, pp 13–24, 1998.

[9] Lakshmanan LVS, Ng R, Han J and Pang A, “Optimization of

constrained frequent set queries with2-variable constraints”, In:

Proc 1999 ACM-SIGMOD Int Conf Management of Data

(SIGMOD’99),Philadelphia, USA, pp 157–168,1999.

[10] Pei J, Han J and Lakshmanan LVS, “Mining frequent itemsets

with convertible constraints”, In: Proc 2001Int Conf Data

Engineering (ICDE’01), Heidelberg, Germany, pp 433–332, 2001.

[11] R. Srikant, Q. Vu, R. Agrawal, Mining association rules with item

constraints, in: Proceedings of the 3rd ACMSIGKDD Conference,

1997, pp. 67–73.

[12] Gosta Grahne and Jianfei Zhu, “Fast Algorithms for Frequent

Itemset Mining Using FP-Trees”, IEEE Transactions on

Knowledge and Data Engineering, vol. 17, no. 10, October 2005.

[13] Calders and B. Goethals., “Mining all non-derivable frequent

itemsets”, In Proc. of 2002 European Conf. on Principles of Data

Mining and Knowledge Discovery(PKDD’02), pp 74–85, 2002.

[14] Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, and L.Lakhal,

“Mining minimal non-redundant association rules using frequent

 International Journal of Computer Sciences and Engineering Vol.6(3), Mar 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 148

closed itemsets,” in Proc. 1st Int. Conf. CL, London, U.K., pp.

972–986, 2000.

[15] A.Bykowski and C. Rigotti, “A condensed representation to find

frequent patterns,” in Proc. PODS, New York, NY, USA, pp. 267-

273, 2001.

[16] J.F. Boulicaut, A. Bykowski, and C. Rigotti, “Free-sets: A

condensed representation of boolean data for the approximation of

frequency queries,” Data Mining Knowl. Discov., vol. 7, no. 1,

pp.5–22, 2003.

[17] R. J. Bayardo, “Efficiently mining long patterns from

databases,”in Proc. SIGMOD, New York, NY, USA, pp. 85–93,

1998.

[18] J. Wang, J. Han, Y. Lu, and P. Tzvetkov, “TFP: An efficient

algorithm for mining top-k frequent closed itemsets,” IEEE Trans.

Knowl. Data Eng., vol. 17, no. 5, pp. 652–664, May 2005.

[19] D. Xin, H. Cheng, X. Yan, and J. Han, “Extracting redundancy

aware top-k patterns,” in Proc. KDD, Philadelphia, PA, USA,

pp.444–453,2006.

[20] G. Liu, H. Lu, and J. X. Yu, “CFP-tree: A compact disk-based

structure for storing and querying frequent itemsets,” Inf. Syst.,

vol. 32, no. 2, pp. 295–319, 2007.

[21] R.Prabamanieswari, D.S.Mahendran, T.C. Raja Kumar, “A Survey

on Concise and Lossless Representation of Frequent Pattern Sets”,

International Journal of Advanced Research in Computer and

Communication Engineering, Vol. 4, Issue 9, September 2015.

[22] Caiyan Dai and Ling Chen, “An Algorithm for Mining Frequent

Closed Itemsets with Density from Data Streams”, International

Journal of Computer Sciences and Engineering, Vol. 4(2), pp. 40-

48, Feb 2016.

[23] R.Prabamanieswari, D.S.Mahendran, T.C. Raja Kumar, “NCFP-

tree: A Non-Recursive Approach to CFPtree using Single

Conditional Database”, International Journal for Research in

Applied Science & Engineering Technology (IJRASET), Volume

5 Issue XI November 2017.

Authors Profile

Mrs R.Prabamanieswari is currently pursuing
Ph.D degree. She is working as Asssociate
Professor in Computer Science, Govindammal
Aditanar College for Women, Tiruchendur.
She has attended National and International
Seminars and Conferences and published few
papers. Her area of research is Data Mining.

D.S.Mahendran is working as Associate
Professor in Computer Science, Aditanar
College, Tiruchendur. He received M.Sc.
Physics and PBDCSA degrees from Madurai
Kamaraj University , M.Phil and Ph.D degrees
in Computer Science from Alagappa
University, Karaikudi. His research interest
includes Computer algorithms, Ad-Hoc
Networks, Network Security and Cloud
Computing.

Prof. T.C.RajaKumar has been working as

Associate Professor of the Department of

Computer Science in St. Xavier’s College

(Autonomous), Tirunelveli. He has

completed his M.Sc. (Computer Science) in

Bharathidasan University, Tiruchirappali, and

M.Phil. (Computer Science) in Alagappa

University, Karaikudi and Ph.D. (Computer

Science) in Manonmaniam Sundaranar

University, Tirunelveli. He is a member of IEEE and also a

member of curriculum development committees of various

Universities and Autonomous colleges of Tamilnadu. He has

attended so many National and International Seminars, Conferences

and published more than 20 scientific papers in National and

International Journals. His area of research is Digital Image

Processing and Data Mining.

