

 © 2016, IJCSE All Rights Reserved 125

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-4, Issue-12 E-ISSN: 2347-2693

Implementation and Consistency Issues in Distributed Shared Memory

 Debendranath Das
1*

, Ryan Saptarshi Ray
2
 and Utpal Kumar Ray

3

1*
Department of Information Technology, Jadavpur University, Kolkata, India

 2
Department of Information Technology, Jadavpur University, Kolkata, India

 3
Department of Information Technology, Jadavpur University, Kolkata, India

 Available online at: www.ijcseonline.org

Received: 24/Nov/2016 Revised: 28/Nov/2016 Accepted: 14/Dec/2016 Published: 31/Dec/2016

Abstract— Presently all programmers want to perform their tasks much faster than before. So, Parallel Processing comes into the

picture to satisfy the increasing demands. Till a long time, parallel programs were only written either for multiprocessing

environment or multi-computing environment. However, both of these parallel processing systems have some relative advantages

and disadvantages. Distributed Shared Memory (DSM) system is a new and attractive area of research which combines the

advantages of both shared-memory parallel processors (multiprocessors) and distributed systems (multi-computers). However, in

DSM environment there are some critical issues like memory consistency that should be handled carefully. In this paper, an overview

of DSM is given after a brief description of Distributed Computing Systems. Later various implementation issues and consistency

models related to DSM are shown. Then an example of a simple program is given that can be implemented in DSM environment

using Open SHMEM.

Keywords- Parallel Programming; Multiprocessing; Multicomputing; Distributed Shared Memory (DSM); Consistency Models.

I. INTRODUCTION

The two basic or conventional methods for Information

Sharing in MIMD (i.e. Multiple Instruction Multiple Data)

architecture are –

1> Shared Memory Approach (Used in Multiprocessor

Systems)

2> Message Passing Approach (Used in Multicomputer or

Distributed Systems)

Both have some advantages and disadvantages. Distributed

Shared Memory (DSM) is a relatively new concept which

tries to combine the advantages of both multiprocessor

systems and multicomputer systems. But still DSM has some

disadvantages and there are lots of important issues which

must be handled very carefully in order to successfully

implement DSM. Consistency is one such important issue in

DSM systems, which must be addressed very carefully by

both the computer architects and programmers in order to

write correct parallel programs maintaining memory

consistency [1].

Rest of the paper is organized as follows, Section II contains

a brief overview of Distributed Shared Memory (DSM),

Section III discusses the various implementation issues of

DSM. Section IV contains the different consistency models

of DSM. Section V shows how to write programs in DSM

environment using OpenSHMEM and Section VI concludes

this paper with future directions.

II. DISTRIBUTED SHARED MEMORY

Multiprocessor Systems (i.e. Shared Memory approach for

communication) enable simple data sharing through a

uniform mechanism of reading and writing shared structures

in the common memory. This system has advantages of ease

of programming and portability, although these systems are

not scalable. Sometimes it suffers from longer latency for

memory accessing, and often the design of memory system is

a very complex task [1,3].

Multicomputer Systems (i.e. Message Passing approach for

communication) are scalable in nature. Hence, we can obtain

high computation power from these systems. Communication

between processes residing on different nodes involves a

message-passing model that requires explicit use of

send/receive primitives. Process migration imposes problems

because of different address spaces. Therefore, compared to

shared-memory systems, hardware problems are easier and

software problems more complex in distributed-memory

systems [3,13].

DSM Overview:
In early days of distributed computing, it was implicitly

assumed that programs on machines with no physically

shared memory obviously ran in different address spaces. In

1986, Kai Li proposed a different scheme in his PhD

dissertation entitled, “Shared Virtual Memory on loosely

Coupled Microprocessors” [6]. It opened up a new area of

research that is known as Distributed Shared Memory (DSM)

 International Journal of Computer Sciences and Engineering Vol.-4(12), Dec 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 126

[3]. In DSM systems we try to incorporate the advantages of

both Multiprocessor and Multicomputer Systems.

DSM provides a virtual address space shared among different

processes in loosely coupled processors. That is, DSM is

basically an abstraction that integrates the local memories of

different machines in a network environment into a single

logical entity shared by cooperating processes executing on

multiple sites. The shared memory itself exists only virtually.

Due to the virtual existence of the shared memory, DSM is

sometimes also called as Distributed Shared Virtual Memory

(DSVM) [1,2].

Figure 1. Distributed Shared Memory

Software DSM

Until recently the process communication in distributed

systems was limited only to message passing paradigm. But

some recent loosely coupled distributed memory systems

have implemented a software layer on top of the message

passing communication system to provide a shared memory

abstraction to the programmers. The shared memory

abstraction gives the system the illusion of physically shared

memory and allows the programmers to use the shared

memory paradigm. This is the concept of distributed shared

memory where the distributed memory is not shared

physically but they are shared logically by all the processors.

The software layer which is used for providing the shared

memory abstraction can be implemented either in an

operating system kernel or in runtime library routines with

proper system kernel support.

Hardware DSM

DSM can also be implemented by hardware. However,

hardware implementation requires the addition of special

network interfaces and cache coherence circuits to the system

to make remote memory access look like local memory

access. So, Hardware DSM is very expensive compared to

Software implementation of DSM systems [3].

Pros & Cons of DSM Systems

Pros: Because of the combined advantages of shared-

memory and distributed systems, DSM approach is a viable

solution for large-scale, high-performance systems with a

reduced cost of parallel software development [8].

Cons: Consistency can be an important issue in DSM as

different processors access, cache and update a shared single

memory space.

III. IMPLEMENTATION ISSUES OF DSM

Important issues involved in the design and implementation

of DSM system are: [1,8]

 Virtual Memory and DSM

 Granularity

 Structure of Shared Memory Space

 Memory Coherence and Access Synchronization

 Data Location and Access

 Replacement Strategy

 Thrashing

 Heterogeneity

Virtual Memory and DSM

DSM is not true shared memory like tightly coupled

multiprocessor system. Thus, remote memory accesses have

to be reconciled with the memory manager at each node. Of

course, if the basic machine architecture does not support

virtual memory, then the solution could perhaps be

simpler. However, if the basic architecture supports virtual

memory then the DSM Management and Virtual

Management(VM) have to be integrated. In particular, the

local memory at each node may be considered as a large

cache memory of the global distributed memory space that

spans over the entire network. The DSM and VM

management at each node would have to cooperate to ensure

that the semantics implemented by the DSM manager and the

VM manager are not compromised.

Granularity

One of the most important parameters in the design of DSM

system is granularity. Granularity refers to the block size or

page size of a DSM system. It indicates the unit of data

sharing and the unit of data transfer across the network when

a block or page fault occurs in the local memory of a site or

node. Selecting proper block size is an important part in

designing a good DSM system, otherwise, the system

performance degrades. Due to the fact of locality of reference

(especially spatial locality of reference), it is more likely that

the process should refer next to a location, which is a

neighbor of the current location. Hence if the page size or

block size is greater, then relatively less number of times

page faults will occur, which also, in turn, will save the

network bandwidth and communication overhead. However,

larger block size also creates some problems. For example,

multiple processes at different nodes may refer to the same

 International Journal of Computer Sciences and Engineering Vol.-4(12), Dec 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 127

page or block resulting in the frequent transfer of blocks

from one node to another without actually performing the

execution task, resulting in a condition called Thrashing.

That is why selecting a suitable block size (i.e. granularity) is

an important issue in designing a DSM system

Structure of Shared Memory Space

Structure refers to the layout of the shared data in memory.

The structure of the shared memory space of DSM system is

very much dependent on the applications that the DSM

system is intended to support [1].

Memory Coherence and Access Synchronization

If replication or copy of shared data items is allowed in a

DSM system, then maintaining shared data consistency (also

called memory coherence) is an important issue. This is

because multiple sites or nodes may have a copy of the same

shared data and if any of them modifies the data then it

should be informed to all other nodes, otherwise other

processes may use dirty data unknowingly. This problem is

similar to multi cache scheme for shared memory

multiprocessors. For solving this problem, we need to

implement a good memory coherence protocol. In DSM

system, concurrent access to shared data may be allowed. So,

memory coherence protocol alone is not sufficient to

maintain the consistency of the shared data, we also need

some synchronization tools or primitives like semaphore,

event flag, lock etc. for ensuring exclusive access to the

shared data

Data Location and Access

To ensure data sharing in DSM system, all user processes

must be able to locate and retrieve the relevant data.

Therefore, a DSM system must implement some form of data

block locating mechanism in order to service network data

block faults.

Replacement Strategy

In DSM system, the main memory of each node can be

considered as a bigger cache of the global shared address

space. So, similar to caching mechanism, if a page fault

(synonymous to cache fault) occurs at a specific site or node

when the entire local memory is full, then it causes the

replacing of existing page to accommodate the new arrival

page. That is data block of local memory must be replaced by

new data block. Therefore, a suitable cache replacement

strategy (e.g. FIFO, LRU) is also necessary for the design of

a DSM system.

Thrashing

In a DSM system, data block migrates from one node to

another on demand. Therefore, if two nodes compete for

write access to a single data item, the corresponding data

block may be transferred back and forth at such a high rate

that no real wok can get done. This is called thrashing [1].

DSM system should avoid this situation.

Heterogeneity

The DSM system must be designed to take care of

heterogeneity so that it functions properly with machines

having different architectures.

IV. CONSISTENCY MODELS

Among the various important issues of DSM systems

discussed in the previous section, my focus for this paper is

on Memory Coherence, which basically deals with the fact of

maintaining the distributed shared memory consistent (i.e.

Memory Coherence). In this section, various consistency

models of DSM will be described.

Consistency requirements vary from application to

application. A consistency model basically refers to the

degree of consistency that has to be maintained for the shared

memory data for the memory to work correctly for a certain

set of applications. It is defined as the set of rules that

applications must follow if they want the DSM system to

provide the degree of consistency guaranteed by the

consistency model [1].

The memory consistency model of a shared-memory

multiprocessor provides a formal specification of how the

memory system will appear to the programmer, eliminating

the gap between the behavior expected by the programmer

and the actual behavior supported by the system.

A consistency model is essentially a contract between the

software and the memory. It says that if the software agrees

to obey certain rules, the memory promises to work correctly

[2]. This model determines the order in which memory

operations will appear to execute to the programmer. If we

want stronger consistency model, then obviously, the degree

of concurrency or parallelism gets down. So, the basic idea is

to invent a consistency model that allows consistency

requirements to be relaxed to a higher degree, with the

relaxation done in such a way that a set of applications can

function correctly.

Some major consistency models are described below [1,2, 4].

Strict Consistency Model

The most stringent consistency model is called strict

consistency. It is defined by the following condition: “Any

read to a memory location x returns the value stored by the

most recent write operation to x.” [2,5] Implementation of

the strict consistency model requires the existence of an

absolute global time so that memory read/write can be

correctly ordered to make the meaning of “most recent”

clear. However, in distributed system the existence of

absolute global time is not possible and also synchronizing

the local clocks of each node perfectly is impossible (due to

 International Journal of Computer Sciences and Engineering Vol.-4(12), Dec 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 128

technical limitations). Hence implementation of strict

consistency model in DSM system is practically impossible.

To understand this consistency, take an example: In Figure2,

consider two processes P1 and P2. The operations done by

each process are shown horizontally, with time increasing to

the right. Straight lines separate the processes. The symbols

W(x)a and R(y)b mean that a write to x with the value a and

a read from y returning b have been done, respectively. P1

does a write to location x, storing the value 1. Later, P2

reads x and sees the 1 and this behavior is correct for a

strictly consistent memory.

Figure 2. Strictly Consistency Memory

Sequential Consistency Model

This model was proposed by Lamport [1979] [1]. A shared

memory system is said to be sequential consistent if all the

processes see the same order of all memory access operations

on the shared memory. For example, if three operations

read(r1), write(w1) and read(r2) are performed in the same

order on a memory address, any of the orderings of the three

operations (i.e. permutation of r1, w1 and r2) is acceptable

provided that all processes see the same ordering. If any of

the processes see some other ordering of memory access

operations than the others, then it is not a sequential

consistent memory. Compared to strict consistency model,

sequential consistency model is weaker, because strict

consistency model only allows one ordering (r1, w1, r2) and

nothing else. In a sequentially consistent system, all

processors must agree on the order of observed effects.

The following is a legal execution history for SC.

Figure 3. Sequential Consistency Memory

Note that R(y)2 by processor P3 reads a value that has not

been written yet! Of course, this is not possible in any real

physical system. However, it shows a surprising flexibility of

the Sequential Consistency model.

Causal Consistency Model

This model was proposed by Hutto and Ahamad [1990] [1].

It relaxes the requirements of sequential consistency model

for better concurrency. Unlike the sequential consistency

model, in this model all processes see only those memory

reference operations in the same order that are causally

related and the memory reference operations that are not

causally related may be seen in different order by different

processes. A memory reference operation (read/write) is said

to be causally related to another memory reference operation

if the first one might have been influenced in any way by the

second one. For example, if a process performs a read

operation followed by a write operation on some memory

address, then the write operation is causally related to the

read operation because the value returned by the read

operation must be dependent on the previous write operation.

Obviously, in the implementation of shared memory system

supporting this causal consistency model, there is a need to

keep track of which memory reference operation is

dependent on which other memory reference operations. This

can be done by constructing and maintaining a dependency

graph for the memory access operation.

Figure 4. Causal Consistency Memory

This is a legal execution history under Causal Consistency

but not under Sequential Consistency. Note that W(x)1 and

W(x)2 are causally related as P2 observed the first write by

P1. Furthermore, P3 and P4 observe the accesses W(x)2 and

W(x)3 in different orders, which would not be legal under

SC.

Pipelined Random-Access Memory Consistency Model

This PRAM consistency model, proposed by Lipton and

Sandberg [1988][1], provides weaker consistency semantics

than the consistency models described so far. It only ensures

that all write operations performed by a single process are

seen by all other processes in the order in which they were

performed as if all the write operations performed by a single

process are in a pipeline. Write operations performed by

different processes may be seen by different processes in

different orders.

The following execution history is legal under PRAM Model

but not under Causal Consistency Model:

Figure 5. PRAM Consistency Memory

P3 and P4 observe the writes by P1 and P2 in different

orders, although W(x)1 and W(x)2 are potentially causally

related. Thus, this would not be a legal history for Causal

Consistency.

 International Journal of Computer Sciences and Engineering Vol.-4(12), Dec 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 129

Processor Consistency Model

This model was proposed by Goodman [1989][1]. It is

similar to the previous one (i.e. PRAM consistency model),

with one additional restriction imposed on it. That is memory

coherence. Memory coherence means that for any memory

location all processes agree on the same order of all write

operations to that location. Processor consistency ensures

that all write operations performed on the same memory

location (no matter by which process they are performed) are

seen by all processes in the same order. This requirement is

in addition to the requirement imposed by the PRAM

consistency model.

Weak Consistency Model

This model is proposed by Dubois [1988] [1]. It is defined by

stating the following properties: [5]

1. Accesses to synchronization variables are sequentially

consistent.

2. No access to a synchronization variable is allowed to be

performed until all previous writes have completed

everywhere.

3. No data access (read or write) is allowed to be performed

until all previous accesses to synchronization variables have

been performed.

It is a weak consistency model that provides better

performance at the cost of putting an extra burden on the

programmers.

Release Consistency Model

This model provides accesses which are used to tell the

memory system that a critical region is about to be entered.

Release accesses say that a critical region has just been

exited. These accesses can be implemented either as ordinary

operations on special variables or as special operations. In

either case, the programmer is responsible for putting explicit

code in the program telling when to do them. For example,

by calling library procedures such as acquire and release or

procedures such as enter_critical_region and

leave_critical_region. There are two flavors of release

consistency that differ based on the program orders they

maintain among special operations. The first flavor maintains

sequential consistency among special operations (RCsc),

while the second flavor maintains processor consistency

among such operations (RCpc)[5]. A variation of release

consistency model is Lazy Release Consistency Model

proposed by Kelehar [1992] and is more efficient than the

conventional release consistency model.

V. PROGRAMMING IN DSM USING OPENSHMEM

Brief Overview of OpenSHMEM

OpenSHMEM is a standard for SHMEM library

implementations which is used to write parallel programs in

DSM environment. SHMEM is a communications library

which we can use for Partitioned Global Address Space

(PGAS) style programming [9]. Some important features of

SHMEM are one-sided point-to-point and collective

communication, a shared memory view, and atomic

operations that operate on globally visible or “symmetric”

variables in the program [10].

Simple Example Parallel Program written using

OpenSHMEM:

This program simply prints the Hello World message along

with its node number to the terminal.

#include <stdio.h>

#include "shmem.h"

#if !defined(OSHMEM_SPEC_VERSION) ||

OSHMEM_SPEC_VERSION < 10200

#error This application uses API 1.2 and up

#endif

int main(intargc, char* argv[])

{

intproc, nproc;

char name[SHMEM_MAX_NAME_LEN];

int major, minor;

shmem_init();

nproc = shmem_n_pes();

proc = shmem_my_pe();

shmem_info_get_name(name);

shmem_info_get_version(&major, &minor);

printf("Hello, world, I am %d of %d: %s (version:

%d.%d)\n",

proc, nproc, name, major, minor);

shmem_finalize();

return 0;

}

A brief overview of the OpenSHMEM function calls used in

the above program is given below: [12]

shmem_init() subroutine is used to initialize the calling PE

and to reserve resources for communicating with other PEs.

This subroutine performs the same function as the start_pes

subroutine.

shmem_n_pes() returns the total number of PEs running in

an application.

shmem_my_pe() returns the processing element (PE)

number of the calling PE. It accepts no arguments. The result

is an integer between 0 and npes - 1, where npes is the total

number of PEs executing the current program.

 International Journal of Computer Sciences and Engineering Vol.-4(12), Dec 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 130

shmem_info_get_name() returns the vendor defined

character string of size defined by the constant

SHMEM_MAX_NAME_LEN. The program calling this

function prepares memory of size

SHMEM_MAX_NAME_LEN.

shmem_info_get_version returns the major and minor

version number of the software.

shmem_finalize() is a collective operation that ends the

OpenSHMEM portion of a program previously initialized by

shmem_init and releases resources used by the

OpenSHMEM library. This collective operation requires all

PEs to participate in the call.

VI. CONCLUSION

So, we can say that, DSM is a new paradigm for writing

parallel programs that tries to take advantages of both

multiprocessor systems and multicomputer systems or

distributed systems, suppressing their disadvantages.

However, for designing the DSM system we should take care

of certain implementation issues like consistency that

significantly affect the performance of the system. Software

DSM is more cost effective and convenient than Hardware

DSM. But it is still having some disadvantages. One such

disadvantage is that programmers need to understand the

various consistency models to write correct programs.

OpenSHMEM programming paradigm is used to write

parallel programs in DSM environment. OpenSHMEM is a

library-based programming language and provides a high

level of abstraction. It helps to avoid many parallel

programming errors.

Further work can be done in the following fields:

a) Performance optimization of DSM systems

b) Investigation of new consistency models

c) Research can be done to explore how DSM systems can be

used to solve some real life critical problem

REFERENCES

[1] Pradip K.Sinha, “Distributed Operating Systems: Concepts and

Designs” published by IEEE Computer Society Press,2004.

[2] Andrew S. Tanenbaum, “Distributed Operating Systems”

published by PEARSON Education, Fifth Impression,2008.

[3] Ryan Saptarshi Ray, Utpal Kumar Ray, Ashish Anand,Parama

Bhaumik, “Distributed Shared Memory – A Survey and

Implementation Using Openshmem” published in Int. Journal

of Engineering Research and Applications, ISSN: 2248-9622,

Vol. 6, Issue 2, (Part - 1) February 2016, pp.49-52.

[4] David Mosberger, “Memory Consistency Models”, Paper

submitted to Department of Computer Science, The University

of Arizona, Tucson, AZ 85721.

[5] Radhika Gogia, Preeti Chhabra, Rupa Kumari,

“CONSISTENCY MODELS IN DISTRIBUTED SHARED

MEMORY SYSTEMS”, Research Article published in

IJCSMC, Vol. 3, Issue. 9, September 2014, pg.196 – 201.

[6] Kai Li, “Shared Virtual Memory on Loosely Coupled

Microprocessors”, PhD Thesis submitted to Yale University,

September 1986.

[7] M. J. Flynn, “Computer Architecture: Pipelined and Parallel
Processor Design” published by Jones and Barlett, Boston,
1995.

[8] Jelica Protic, Milo Tomasevic, Veljko Milutinovic, “A Survey

of Distributed Shared Memory Systems” published in

Proceedings of the 28th Annual Hawaii International

Conference on System Sciences,1995.

[9] PGAS Forum,http://www.pgas.org/

[10] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C.

Koelbel, L. Smith “Introducing OpenSHMEM, SHMEM for

the PGASCommunity”, published in Proceedings of

Partitioned Global AddressSpace Conference, 2010.

[11] Message Passing Interface (MPI) standard, http://www-

unix.mcs.anl.gov/mpi/

[12] http://openshmem.org/site/Documentation/Manpages/Browse

[13] Faizul Navi Khan, Kapil Govil, “Reliability Based Task

Allocation Scheme to Enhance the Performance of Distributed

Environment”, Research Article published in IJCSE Vol. 2,

Issue. 8, September 2014, pg.99.

Authors Profile

Debendranath Das received the degree of B.Tech
in Computer Science and Engineering. from, West
Bengal University of Technology, India in 2015.
He is currently pursuing the degree of M.E. in
Software Engineering from Jadavpur University,
India from 2015 (presently attending the final year
classes). His interests lie in the field of Distributed Systems,Parallel
Computing, Data Structures and Algorithms, Swarm Intelligence.

Ryan Saptarshi Ray received the degree of B.E. in
I.T. from School of Information Technology, West
Bengal University of Technology, India in 2007.
He received the degree of M.E. in Software
Engineering from Jadavpur University, India in
2012. Currently he is Senior Research Fellow in
the Department of Information Technology, Jadavpur University,
India. He was employed as Programmer Analyst from 2007 to 2009
in Cognizant Technology Solutions. He has published 2 papers in
International Conferences, 9 papers in International Journals and
also a book titled “Software Transactional Memory: An Alternative
to Locks” by LAP LAMBERT ACADEMIC PUBLISHING,
GERMANY in 2012 co-authored with Utpal Kumar Ray..

Utpal Kumar Ray received the degree of B.E. in
Electronics and Telecommunication Engineering in
1984 from Jadavpur University, India and the
degree of M.Tech in Elecrical Engineering from
Indian Institute of Technology, Kanpur in 1986. He
was employed in different capacities in WIPRO
INFOTECH LTD., Bangalore, India; WIPRO
INFOTECH LTD., Bangalore, India, Client: TANDEM
COMPUTERS, Austin, Texas, USA; HCL America, Sunnyvale,
California, USA, Clent: HEWLETT PACKARD, Cupertino,
California, USA; HCL Consulting, Gurgaon, India; HCL America,
Sunnyvale, California, USA; RAVEL SOFTWARE INC., San Jose,

http://openshmem.org/site/Documentation/Manpages/Browse

 International Journal of Computer Sciences and Engineering Vol.-4(12), Dec 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 131

California, USA; STRATUS COMPUTERS, San Jose, California,
USA; AUSPEX SYSTEMS, Santa Clara, California, USA and Sun
Micro System, Menlo Park, California, USA for varying periods of
duration from 1986 to 2002. From 2003 he is working as Assistant
Professor in the Department of Information Technology, Jadavpur
University, India. He has published 15 papers in different
conferences and journals. He has also published a book titled
“Software Transactional Memory: An Alternative to Locks” by
LAP LAMBERT ACADEMIC PUBLISHING, GERMANY in
2012 co-authored with Ryan Saptarshi Ray..

