
 © 2016, IJCSE All Rights Reserved 146

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-4, Issue-9 E-ISSN: 2347-2693

A Review on Specific Data Structures Using Data Preprocessing and

Refinement of Existing Algorithms in Order to Improve Time Complexities

S. Hrushikesava Raju
1*

 and M.Nagabhusana Rao
2

1
Professor, Department of CSE, SIETK, NarayanaVanam Road, Puttur,A.P. -India

2
Professor & HOD, Department of IT, SRK Institute of Technology, Vijayawada, A.P. -India

Available online at: www.ijcseonline.org

Received: 22/Aug/2016 Revised: 02/Sept/2016 Accepted: 20/Sept/2016 Published: 30/Sep/2016

Abstract- The data preprocessing is helpful in removing noise, inconsistency in the given data and produce quality data. The

output of the data preprocessing is then given to refinement of existing algorithm that can later applied over the data structures

called external sorting, optimal binary search trees, and pattern matching algorithms. In external sorting(first case), user data

entered can be qualified using Data preprocessing, then separate algorithms used to different data items such as numeric and

alphabets. In Optimal binary search trees (second case), user entered data can be made quality data using data preprocessing

(second case), then refined algorithm used over the data elements that produce OBSTs separately for numeric items, and String

items. In pattern matching (third case), user entered data can be made quality data, then refined algorithm used over the text

which immediately finds out index for the pattern along with history of indices for the substring which further helpful in

manual identification of the given pattern in the large given text. The results and graphs were also demonstrated based on

certain examples. This also differentiates between time complexities obtained of the existing and proposed algorithm used over

the data structures such as external sorting, OBST, and pattern matching.

Keywords—Data preprocessing, data structures, external sorting, Optimal Binary Search Trees, Pattern Matching, Time

Complexities.

I. Introduction

Certain data structures are taken into consideration such as

external sorting, pattern matching, and optimal binary

search trees. These data structures also used in important

real time applications such as bank applications in which

account information going to be sorted based on balance,

or date of opening the account, or based on IFSC Code etc.

where external sorting is used. The other applications such

as finding a particular data in the huge amount of related

data like gas holder’s information or PAN card

information where pattern matching is used. The last but

not least applications such as construction of decision

induction trees or binary search trees where optimal binary

search trees are used so that visual effect gives more

meaning simply than lot of English like statements.

A. External Sorting: It is the data structure required

whenever the data stored in external storage devices such

as tape, disk, drum etc. The existing algorithm consumes

more number of disk accesses, more runs, more input and

output costs. The time complexity 2*N* (log B (N/M) + 1)

where N is number of items in the data set, B is order of

sorting such as 2-way or 3-way or k-way etc. and M is

initial run size been reduced still further after data

preprocessing is applied on the initial data set and

modified algorithm is applied on that data set. The output

of this is producing sorted data elements in less than 2*N*

(log B (N/M) + 1). The related works on this are:

Firstly, certain types of lemmas are used to achieve

efficient external sorting but it works on only one disk

model although it takes less Input / Output operations than

normal merge sort.

Secondly, the external sorting applied on the data although

that are of disk accesses or inputs / outputs costs are huge

compared to disk accesses on data without redundancy.

The time complexity of k-way merging and poly-phase

merging on the data that possess redundancy are also

taking more time. But poly-phase is somehow reduce time

compared to k-way merge sorting.

The following table lists existing methods used for

external sorting:

To perform external sorting efficiently, first data

preprocessing should be applied which process the initial

data set and produce quality data. Then, refined existing

algorithm is used to sort that data. The output is sorted data

Method name Irregularity output

Data cleaning Incomplete, noise,

inconsistent, missing

Quality data

Before

integration

Data Integration

and transformation

Object identity

problem

Quality data

with care

taken

Data reduction Data set is high

dimensional

Reduced size

Data Discretization

and summarization

Data continuous Simplified

data sets

Table 1 : Data preprocessing method’s irregularities &

their output

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 147

elements in less time compared to earlier external sorting

techniques.

Data preprocessing separates the data based on the type

such as numeric, alphabetic, and string type.

Based on type, sorting is applied but this preserves original

count of content.

B. Efficient Pattern Matching: In this data structure, a

pattern is searched in the huge given text, outputs the index

of the pattern. There are existing methods used which are

all searches the pattern only once whether it exists in

multiple places.

The related works on this are Brute Force which compare

pattern with every character of the text until match is

found, Boyer more which computes last occurrence

function that decides from which index in the text, the

pattern going to be searched, KMP computes failure

function that also determines from which position in the

text, the pattern going to be searched. All these search the

pattern only once in text. The other method Robin Karp

used to search the pattern in the text and produce indices

for the pattern that was found in the text and also search

multiple patterns in the text. The disadvantages are time

became worst when pattern is of large size, works by

converting text and pattern into decimals, and many

patterns have same has function.

The following table lists existing methods used for pattern

matching:

PM Algorithm Computation Time

Complexity

Brute Force Comparing with every

Text index

O(n*m)

Boyer Moore Last Occurrence table O(|Ε|+n*m)

KMP Failure function O(n+m)

Rabin Karp

Method

Converting pattern and

text into decimals

More time

complexity

depends on the

context

BWT Method Rotating the block of

text

Regular

Expressions

Effort to learn the style

for each new language

The time complexity is reduced by introducing data

preprocessing on the initial data set and refined pattern

matching with the help of one time look indexing is used.

This maintains the indices for the substrings of given

pattern. This history helps to search a pattern in single time

or in very less time compared to earlier methods.

C. Optimal Binary Search Trees: In this data structure,

many unnecessary attributes are computed. This is going to

be reduced by using post dynamic programming. Initially,

the clean data set is going to be obtained using data

preprocessing method. The time complexity taken by this

method is reduced significantly.

The related works on this are as follows:

Technique Advantage Disadvantage

Randomization Simple, easy and

mandatory task

Takes more time in

giving right tree with

minimum cost

Using sets Optimal sub-

structures

Expensive in avoiding

overlapping sub-

problems

Technique Advantage Disadvantage

Greedy Guarantee the

optimal in each

case

Using Recursion cause

Traditional

Dynamic

Programming

Giving a tree

optimally

Leads many

Unnecessary

computations

Proposed

Dynamic

Programming(Po

st DP)

Gives a tree

optimally with

little time

complexity

NIL

To perform efficient construction of OBST, First data

preprocessing is applied on the initial data set that produce

clean data set. Later, Refined Dynamic Programming is

developed which is also called post Dynamic

Programming. It has same characteristics as Dynamic

Approach but it starts computing from best attribute that

gives minimum cost, the next nodes are computed from

there onwards.

II. Proposed Methodology

The existing algorithms used over external sorting, pattern

matching, and optimal binary search trees are refined and

data preprocessing algorithm is developed before

construction of data structure. The Pseudo codes for each

case are as follows:

A. Development of Data preprocessing and refinement

of existing external sorting:

First data preprocessing is applied on the initial data set

and later refined pattern matching is applied where former

gives clean data without noise and latter gives history of

indices first and then finds the pattern in the given text in

O(1) time.

These procedures are described neatly through the

following flow charts.

The flowchart to apply data preprocessing is as below:

Table3: Related Methods advantages and disadvantages

for OBSTs

TABLE 2: Drawbacks of Pattern Matching Algorithms

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 148

The flowchart to perform external sorting is as below:

B. Development of data preprocessing method and refining

existing algorithm as Dynamic Pattern Matching algorithm

with the help of onetime look indexing:
 In this, first data preprocessing applied on the initial data set

which produce clean data set. Later, refined pattern matching

along with onetime look indexing is used which reduce time

complexity significantly greatly.

The following flow chart gives the working procedure:

First step, the data preprocessing works as follows:

Declare variables based on type of data

check type of
data

eliminate

duplication
separate data into integer

data and character data

eliminate

duplication

eliminate duplication in both types

 produce data set with unique keys

 End

numeric

alphanumeric

string

 Start

Figure 1: Development of Data Preprocessing methodology

Declare variables, tapes as arrays or pointer arrays based on data type

 read data from first input tape or page

 sort them and write on output tapes

 read first runs from output tapes/pages, sort and merge and write

on input tapes/pages alternatively

 read first runs from input tapes/pages, sort and merge and write on

output tapes /pages alternatively

Start

check whether last

runs were read

 all sorted data deposited on single output tape or page

End

No

Y

Figure 2 : External Sorting Steps

 Start

Call Data Preprocessing Module in order to produce clean data set

Call Refined Pattern Matching method which takes help of onetime

look indexing method

 End

Figure 3: Procedure of Efficient Pattern Matching

Start

 End

 Read text from user

repeat read until end

char is reached

check

with' ‘

count the

spaces

replace all

grouped

spaces with

single space

chec

k

with

‘(‘

check

with

‘) ‘

if it is

char

push into

stack

pop the

stack

store in tac

string

Display text of clean string

T

F

stack

empty

Figure4: Data

Preprocessing steps

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 149

The dynamic pattern matching procedure is depicted in the

following flow graph which takes the help of one time

look indexing method is as follows:

The work of D-PM is depicted in and is as follows:

C. Development of Data preprocessing and refinement

of optimal binary search trees:

The initial data set can be refined first using data

preprocessing which eliminates redundancy and separates

the elements of different type. Later, Post dynamic

programming is applied which avoid unnecessary

computations and reduce computation time greatly. The

following illustrates data preprocessing:

The following demonstrates the post dynamic

Programming:

Figure 5: Dynamic Pattern Matching with the help of

one time look indexing

Declare variables based on type of data

check type of
data

eliminate

duplication
eliminate

duplication

produce data set with unique keys

 End

numeric

alphabets

string

S

eliminate

duplication

Call Binary Search Tree

Construction Approach

produce data set

with unique keys

Call Post Dynamic

Programming

Figure 6: Application of Data Preprocessing approach

Start

Take the initial weights, costs, and ranks are zero

Call rank of last level computation because which helps to pick

root node

Call the calculation of weight and cost of only related

entries (i,j)

Start

find dsubstringind first dimension last value array length

and store it in r

find dsubstringind[][] first dimension last value array length

and store it in c

find pattern length and store in len, take k=0, j=0 where k is

index array index, and j is dsubstringind second dimension index

compare tac[dsubstringind

[r-1][j]+len-1] with

pattern[len-1]

match

 assign dsubstring[r-1][j] to index[k]

 increment j, increment k

 return index array

End

 ++j

 j<c

F

F

Start

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 150

III. Results and Comparison

 The results for each data structure is illustrated

based on existing and refinement of existing methods

based on examples. The examples are taken from Results

column in the papers for external sorting, for pattern

matching, and for post dynamic computation. The time

complexities observed for existing and proposed methods

are demonstrated below:

Data Structure Existing Method

Drawbacks, time

complexities

incurred

Refinement of

existing method

using data

preprocessing

advantages and their

time computations

External Sorting More no. of input

and output costs,

no. of runs, no. of

passes.

For redundancy

involved in

example

Considered:
2*N* (log B (N/M)

+ 1)= 120 disk

accesses, 7 runs, 4

passes

Redundancy

eliminated, Minimum

no. of passes, runs,

disk accesses are

consumed. The

estimated costs are 36

disk accesses, 2 runs,

3 passes

Pattern

Matching

Unable to process

for second time

pattern search in

single search by

certain methods,

one method search

multiple patterns

but involve

overhead

For considered

Example:
Brute Force:21

Boyer Moore:10

KMP:20

Robin Karp:21

Able to search given

pattern in the text in

al occurrences and

also produce history

of substring indices

for future need.

 For considered

Example:
Dynamic PM using

one time look

indexing: O(1)

Optimal Binary

Search Trees

More space, more

computation time

Less space, less

computation time.

For Considered

Example:
Space=

45*sizeof(item)

Time= 4 *

sizeof(item)

For Considered

Example:
Space: O(15*3)=45

Time: O(4 * 3 + 5 for

initial variables +

some intermediate

variables assume k) <

45

IV. Conclusion

 The background data structures used in most of

applications such as banking where external sorting is

used, finding a particular candidate gas details in huge gas

members information or finding a pan data in huge

information where pattern matching is used, construction

of real time scenarios for a lot of detailed descriptions

where optimal binary search trees are used. These are also

used in most of other suitable applications. Implementation

of these might helpful to apply in many new applications

as indirect data structures. For external sorting, data

preprocessing eliminates redundancy and preserves the

data set. Then, a refined algorithm is applied separately for

numeric, alphabets, and strings. For redundant data,

existing algorithm won’t have capability to process the

data set in certain odd times and proposed algorithm

applied merge sorting separately on the each category of

different data items. For Pattern matching, existing

algorithms won’t find a pattern for second time in single

attempt by certain algorithms and involve overhead by

Robin Karp method although it search multiple patterns at

a time. The time complexity consumed by proposed

Dynamic Approach is significantly reduced and history of

the substrings of the given pattern also recorded. For

OBSTs, the existing methods take more time and involve

space for unnecessary computations. The proposed initially

eliminate the redundancy in the data set and construct the

efficient OBST for the given strings and binary trees for

numeric and alphabets but designing OBST for the given

strings is done in less time and space also saved using Post

Dynamic Computing.

V. References:
[1] Mark Allen Weiss, “Data Structures and Algorithm Analysis

in C++”, Fourth Edition, Chapter7, Page No (297 – 347).

[2] Mark Allen Weiss, “Data Structures and Algorithm Analysis

in Java” , Third Edition, Chapter7, Page No (297 – 347).

[3] Alfred V. Aho, John E. HopCroft and Jelfrey D. Ullman,

“Data Structures and Algorithms”, Sorting, Addison –

Wesley, 1983.

[4] Micheline Kamber and Jiawei Han, “Data Mining Principles

and Techniques”, Data Preprocessing, Morgan Kaufmann,

2006, Page No (13 -30)

Table 3.1: Comparison among existing and

proposed methods

Construct OBST based on the ranks returned. The nodes

of a tree are taken (i,r-1) and (r,j) knowledge if the root

entry is (i,j) = r and is recursively applied

End

Figure 7: Post Dynamic Programming

S

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 151

[5] Margaret H Dunham, “Data Mining Introductory and

Advanced Topics”, Pearson Education, 3e, 2008

[6] Sam Anahory and Dennis Murray, “Data Ware housing in the

Real World”, Pearson Education, 2003

[7] D. E. Knuth (1985), “The Art of Computer Programming”,

Sorting and Searching, Vol. 3, Addison –Wesley, Reading,

MA, 1985

[8] Alok Aggarwal, Jeffrey Scott Vitter, ”Algorithms and Data

Structures”, Input and Output Complexity of Sorting and

related problems, AV88.pdf.

[9] Leu, Fang-Cheng; Tsai, Yin-Te; Tang, Chuan Yi, “An

efficient External Sorting Algorithm”, pp (159-163),

Information Processing Letters 75 2000.

[10] Ian H. Witten, Eibe Frank, Morgan Kaufmann, “Data

Mining: Practical Machine Learning Tools and

Techniques”, Second Edition (Morgan Kaufmann Series in

Data Management Systems), 2005.

[11] Zhi – Hua Zhou, Dept. of CSE, Nanjing University ,

“Introduction to Data Mining”, part3: Data Preprocessing,

Spring 2012, Pt03.pdf.

[12] Chiara Rebso, “Introduction to Data Mining: Data

Preprocessing”, KDD- LAB, ISTI – CNR, Pisa, Italy.

[13] Michael T.Good Rich, Roberto Tamassia,”Data Structures

and Algorithms in java”,6th Edition.

[14] Akepogu Ananda Rao, Radhika Raju Palagiri, “Data

Structures and Algorithms using C++ “.

[15] Donald Adjeroh, Timothy Bell, Amar Mukharjee, “The

Burrows Wheeler Transform”.

[16] Machael McMillan,” Data Structures and Algorithms using

Visual Basic.NET”.

[17] Svetlana, Eden,”Introduction to String Matching and

modification in R using Regular expressions”, march,2007.

 [18] Jeffrey.E.F.Fredl, “Mastering Regular Expression” , 3rd

Edition, 3rd Edition, O,reilly publications.

[19] “Regular expressions and Matching in Modern Perl”, 2011-

12 edition.

[20] S. S. Sheik,Sumit K. Aggarwal, Anindya Poddar, N.

Balakrishnan, K. Sekar,.,”A FAST Pattern Matching

Algorithm”, J. Chem Inf. Comput. Sci. 2004, 44, 1251-

1256.

[21] Micheline Kamber, Jiawei Han, ” Data Mining Concepts

and Techniques”, Second Edition.

[22] Dorian Pyle, “Data preparation for Data Mining”, Morgan

Kaufmann Publishers, Inc.

[23] Pang-Ning Tan, Vipin Kumar, Michael Steenbach,

“Introduction to Data Mining”, Addition-Wesley

Companion book site, Page No (19 – 88).

[24] E.Horotiwz, S.Sahni, Dinesh Mehta, “Fundamentals of data

structures in C++” , Second Edition.

AUTHORS PROFILES:

Mr. S. HrushiKesava Raju, working as a

Associate Professor in the Dept. of CSE,

SIETK, Narayanavanam Road, Puttur. He is

pursuing Ph.D from Rayalaseema University

in the area “ Development of Data

preprocessing on certain advanced Data

Structures by refining their existing

algorithms for getting improved time

complexities”. His other areas of interest are

Data Mining, Data Structures, and Networks.

E-mail: hkesavaraju@gmail.com

Dr. M.Nagabhushana Rao, working as

Professor & Head of the department in the

Dept. of IT, SRK Institute of Technology,

Vijayawada, A.P. He had completed Ph.D

from S.V. University in the area of Data

mining. He is presently guiding many

scholars in various disciplines.

