
 © 2018, IJCSE All Rights Reserved 1386

International Journal of Computer Sciences and Engineering Open Access

Review Paper Vol.-6, Issue-7, July 2018 E-ISSN: 2347-2693

HAT: An Efficient Deduplicatable Dynamic POS Scheme

K. N. Priyanka

1
, K. Aruna Kumari

2

1,2

Department of Computer science and Engineering, SRKR Engineering College, Bhimavaram, India

Available online at: www.ijcseonline.org

Accepted: 18/Jul/2018, Published: 31/Jul/2018

Abstract- Dynamic PoS is valuable cryptographic crude that empowers a user to check the trustworthiness of outsourced

documents and to proficiently refresh the records in a cloud server. In spite of the fact that analysts have arranged a few

dynamic PoS plots in single user situations, the issue in multi-user conditions has not been examined adequately. A sensible

multi-user cloud stockpiling framework needs the safe client-side cross-user de-duplication strategy that allows a user to skirt

the transferring technique and get the possession of the records now, once elective house proprietors of proportional documents

have uploaded them to the cloud server. To the most straightforward of our information, none of the present dynamic PoS will

bolster this framework. amid this paper, we tend to present the origination of de-duplicatable dynamic evidence of capacity

related propose a development refers to as DeyPoS, to acknowledge dynamic PoS and secure cross-user duplication, in the

meantime. Considering the difficulties of structure decent variety and individual tag age, we tend to abuse a one of a kind

apparatus alluded to as Homomorphic Authenticated Tree (HAT).

Keywords: De-duplication, Proof of ownership, Dynamic proof of storage, Cloud Computing.

I. Introduction

To the best of our insight, none of the current dynamic

PoSs can bolster this procedure. To better understand the

accompanying substance, we exhibit more details about

PoS and dynamic PoS. In these plans, each square of a

record is appended a tag which is utilized for checking the

uprightness of that square. At the point when a verifier

needs to check the honesty of a document, it haphazardly

chooses some square indexes of the record, and sends them

to the cloud server. As per these tested indexes, the cloud

server restores the relating obstructs alongside their tags.

The verifier checks the square trustworthiness and index

rightness. The previous can be specifically ensured by

cryptographic tags. The most effective method to deal with

the last is the real distinction amongst PoS and dynamic

PoS.

In the greater part of the PoS conspires, the square index is

"encoded" into its tag, which implies the verifier can check

the square respectability and index accuracy at the same

time. Notwithstanding, dynamic PoS can't encode the

square indexes into tags, since the dynamic tasks may

change numerous indexes of non-refreshed squares, which

brings about pointless calculation and correspondence cost.

For instance, there is a document comprising of 1000

squares, and another square is embedded behind the second

square of the record. At that point, 998 square indexes of

the first document are changed, which implies the user

needs to create and send 999 tags for this refresh.

Authenticated structures are acquainted in dynamic PoSs

with illuminate this test. Therefore, the tags are appended to

the authenticated structure as opposed to the square

indexes.

In Merkle tree is a standout amongst the most effective

authenticated structures in dynamic PoS, the tag comparing

to the second document square includes the index of the

Merkle tree node ν5 that is 5, as opposed to 2. At the point

when another square is embedded behind the second record

obstruct, the authenticated structure transforms into the

structure. At that point, the index in the tag comparing to

the second document square changes, and the user just

needs to produce 2 tags for this refresh.

This figure provides an example that authenticated structure

utilized as a part of dynamic PoS lessens the calculation

cost in the refresh procedure. Taking the mix of as

illustration, is a dynamic PoS plot which utilizes Merkle

tree as its authenticated structure, is a cross user De-

duplication conspire which likewise utilizes Merkle tree as

its authenticated structure. Suppose Alice and Bob

independently claim a record F, a Merkle tree TF is created

and put away by the cloud server for De-duplication, and

two Merkle trees TA and TB are produced by Alice and

Bob individually, and put away in the cloud server for PoS.

At the point when Alice refreshes F to F′, the cloud server

refreshes TA to T′A for PoS and creates another Merkle

tree TF′ for De-duplication.

Users should be persuaded that the records keep inside the

server don't appear to be altered. Old systems for protecting

information honesty, similar to Message Authenticated

codes (MACs) and computerized marks require users to

exchange the majority of the records from the cloud server

for check that acquires a noteworthy correspondence

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1387

esteem. These strategies don't appear to be fitting for cloud

stockpiling administrations wherever users could check the

honesty as a rule, similar to every hour. In this way,

scientists presented Proof of Storage (PoS) for checking the

respectability while not downloading documents from the

cloud server. What is more, users may require numerous

dynamic activities, similar to adjustment, inclusion, and

deletion, to refresh their records, while keeping up the

capability of PoS.

Dynamic PoS is anticipated for such dynamic tasks. In

refinement with PoS, dynamic PoS utilize structures,

similar to the Merkle tree. In this manner, once dynamic

activities are dead, users recover tags (which are utilized

for honesty checking, similar to MACs and marks) for the

refreshed squares exclusively, instead of make for all

squares. To raised see the resulting substance. We tend to

blessing extra details concerning PoS and dynamic PoS. In

these plans, each square of a record is snared a

(cryptographic) tag that is utilized for substantiating the

trustworthiness of that square. Once a champion desires to

discover the respectability of a document, it all over

chooses some square indexes of the record, and sends them

to the cloud server. Steady with these tested indexes, the

cloud server restores the relating hinders beside their tags.

For instance, there's a document comprising of one

thousand squares, and a substitution square is embedded

behind the second square of the record. At that point, 998

square indexes of the primary document are adjusted,

which infers the user ought to produce and send 999 tags

for this refresh. Structures are acquainted in dynamic PoS’s

with unwind this test. Accordingly, the tags are snared to

the structure rather than the square indexes .However,

dynamic PoS stays to be enhanced in an exceedingly multi-

user air, in view of the need of cross-user American state

duplication on the client-side. This implies that users will

skirt the transferring strategy and procure the possession of

documents currently, as long in light of the fact that the

uploaded records exist as of now inside the cloud server.

Accordingly, the tags territory unit associated with the

structure instead of the square indexes .However, dynamic

PoS stays to be enhanced in relate to a great degree multi-

user climate, because of the prerequisite of cross-user

American state duplication on the client-side. This proposes

that users can avoid the transferring approach and procure

the possession of documents right now, as long because of

the uploaded records exists as of now among the cloud

server. This procedure can shrivel house for putting away

for the cloud server, and spare transmission metric for

users. To the main of our data, there aren't any dynamic

PoS that will bolster anchor cross-user American state

duplication.

II. Related Work

A. Proof of Storage

The idea behind PoS is to pick couple of information

hinders indiscriminately, as the test. At that point, the cloud

server restores the tested information squares and their tags

as the reaction. Since the information squares and the tags

can be consolidated by means of homomorphic capacities,

the correspondence costs are decreased.

This PoS idea was essentially presented by Ateniese et al

and Kaliski. Ateniese [1] presented present a model for

provable data possession (PDP) that permits a client that

has put away information at an un-trusted server to confirm

that the server possesses the first information without

recovering it.

Kaliski [2] presented a POR (proofs of retrievability) plot

empowers a chronicle or go down administration (prover)

to create a succinct confirmation that a user (verifier) can

recover an objective document F, that will be, that the file

holds and dependably transmits record information

adequate for the user to recoup F completely. A POR might

be seen as a sort of cryptographic proof of knowledge

(POK), yet one extraordinarily designed to deal with a

substantial document (or bit string) F. Investigated POR

convention here in which the communication costs, number

of memory gets to for the prover, and capacity necessities

of the user (verifier) are little parameters basically

independent of the length of F. To direct and confirm POR,

users should be outfitted with devices that have stage get to,

and that can endure the (non-immaterial) computational

overhead acquired by the confirmation procedure. This

plainly hinders the vast scale selection of POR by cloud

users, since numerous users progressively depend on

compact devices that have constrained computational limit,

or may not generally have arrange get to.

Later [3][4][5] present the idea of outsourced proofs of

retrievability (OPOR), in which users can errand an outside

evaluator to perform and confirm POR with the cloud

provider. Proposed POR conspire limits user exertion,

causes insignificant overhead on the examiner, and

considerably enhances over existing openly irrefutable

POR. These above consequent works extended the

examination of PoS however those works did not consider

dynamic tasks.

B. Dynamic Proof of Storage

Proofs of retrievability enable a client to store her

information on a remote server (e.g., "in the cloud") and

occasionally execute a proficient review convention to

watch that the majority of the information is being kept up

effectively and can be recouped from the server. For

effectiveness, the calculation and correspondence of the

server and client amid a review convention ought to be

altogether littler than perusing/transmitting the information

completely. In spite of the fact that the server is just

solicited to get to a couple of areas from its stockpiling

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1388

amid a review, it must keep up full information of all client

information to have the capacity to pass.

Beginning with crafted by Juels and Kaliski every single

earlier answer for this issue significantly accept that the

client information is static and don't enable it to be

effectively refreshed. Indeed, they all store a repetitive

encoding of the information on the server, with the goal

that the server must delete a vast part of its stockpiling to

„lose‟ any genuine substance. Shockingly, this implies that

even a solitary piece alteration to the first information

should change a vast part of the server stockpiling, which

makes refreshes very wasteful. Conquering this restriction

was left as the principle open issue by every earlier work.

The work [6], gives the primary arrangement giving proofs

of retrievability to dynamic stockpiling, where the client

can perform discretionary peruses/composes on any area

inside her information by running a proficient convention

with the server. Anytime, the client can execute an effective

review convention to guarantee that the server keeps up the

most recent form of the client information. The calculation

and correspondence unpredictability of the server and client

in our conventions is just polylogarithmic in the extent of

the client’s information. The beginning stage of our answer

is to part up the information into little squares and

repetitively encode each square of information separately,

so a refresh inside any information square just influences a

couple of code word images. The fundamental trouble is to

keep the server from identifying and deleting excessively

numerous code word images having a place with any single

information square. We do as such by stowing away where

the different code word images for any individual

information square are put away on the server and when

they are being gotten to by the client, utilizing the

algorithmic methods of neglectful RAM.

Later works [7][8] proposed a dynamic PoR conspire with

steady client stockpiling whose transfer speed cost is

tantamount to a Merkle hash tree, in this manner being

extremely pragmatic. The development out plays out the

developments of Stefanov et al. furthermore, Cash et al.,

both in principle and by and by. Contrasted and the current

dynamic PoR plot, our most pessimistic scenario

correspondence unpredictability is O(logn) rather than

O(n). Among them, the plan in [7] is the most productive

arrangement by and by. Be that as it may, the plan is

stateful, which expects users to keep up some state data of

their own records locally. Subsequently, it isn't suitable for

a multiuser situation.

C. De-duplicatable Dynamic Proof of Storage

Halevi et al. [9] presented the idea of verification of

possession which is an answer of cross-user De-duplication

on the client-side. It requires that the user can create the

Merkle tree without the assistance from the cloud server,

which is a major test in dynamic PoS. Xu et al. [10]

proposed a client-side De-duplication conspire for encoded

information, however the plan utilizes a deterministic

evidence calculation which shows that each record has a

deterministic short verification. Along these lines, any

individual who gets this confirmation can pass the check

without possessing the record locally. Other De-duplication

plans for scrambled information were proposed for

upgrading the security and proficiency. Once the records

are refreshed, the cloud server needs to recover the total

authenticated structures for these documents, which causes

overwhelming calculation cost on the server-side.

Zheng and Xu [11] proposed an answer called verification

of capacity with De-duplication, which is the primary

endeavor to design a PoS conspire with De-duplication. Du

et al. [12] presented proofs of possession and retrievability,

which are like [11] yet more proficient as far as calculation

cost. Note that neither [11] nor [12] can bolster dynamic

activities. Because of the issue of structure decent variety

and private tag age, [11] and [12] can't be extended to

dynamic PoS. Wang et al. [13] [14], and Yuan and Yu [15]

considered confirmation of capacity for multi-user

refreshes, however those plans center around the issue of

sharing documents in a gathering. De-duplication in these

situations is to de-duplicate records among various

gatherings. Lamentably, these plans can't bolster de-

duplication because of structure decent variety and private

tag age.

III. Problem Statement

Present dynamic PoSs, a tag utilized for integrity check is

generated by the secret key of the up-loader. Therefore,

different owners who have the responsibility for record

however have not uploaded it because of the cross-user De-

duplication on the client-side cannot create another tag

when they update the document. In this circumstance, the

dynamic PoSs would fail.

IV. System Architecture

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1389

Our system model considers two sorts of elements: the

cloud server and users. For each document, unique user is

the user who uploaded the record to the cloud server, while

ensuing user is the user who demonstrated the

responsibility for document yet did not really transfer the

document to the cloud server.

In the Cloud substance, the cloud first check login

verification of users and after that it gives authorization for

De-duplication process for authenticated users and user's

information are put away in squares. The asymptotic

execution of our plan in examination with related plans,

where n denotes the quantity of squares, b denotes the

quantity of the tested squares, and |m| denotes the measure

of one square. From the table, we watch that our plan is the

just a single fulfilling the cross-user De-duplication on the

client-side and dynamic proof of storage at the same time.

Besides, the asymptotic execution of our plan is superior to

alternate plans aside from which just provides frail security

ensure.

V. Implementation Techniques Procedure

A. Block Generation

In this module, we develop the Block Generation process.

In the refresh stage, users may adjust, embed, or delete a

few squares of the records. At that point, they refresh the

comparing parts of the encoded documents and the

authenticated structures in the cloud server, even the first

records were not uploaded without anyone else. Note that,

users can refresh the records just on the off chance that they

have the possessions of the documents, which implies that

the users ought to transfer the records in the transfer stage

or pass the confirmation in the De-duplication stage.

In spite of the fact that we can make n-hinders in this

module, we split the documents into 3 Blocks. The Blocks

for documents are divided similarly as needs be and after

that the squares are uploaded in the Cloud Server as well.

B. De-duplicatable Dynamic POS:

In this module we center around a De-duplicatable

Dynamic PoS conspire in multiuser situations. De-

duplicatable Dynamic Proof of Storage is utilized to de-

duplicate alternate user’s record with legitimate validation

yet without transferring a similar document. De-

duplicatable dynamic PoS, which tackles the structure

assorted variety and private tag age challenges.

The principle procedure of this module is Original user is

the user who uploaded the document to the cloud server,

while consequent user is the user who demonstrated the

responsibility for record yet did not really transfer the

document to the cloud server. There are five stages in a de-

duplicatable dynamic PoS system: pre-process, transfer,

De-duplication, refresh, and proof of storage. In the pre-

process stage, users expect to transfer their nearby records.

The cloud server decides whether these documents ought to

be uploaded. In the event that the transfer procedure is in

truth, go into the transfer stage; generally, go into the De-

duplication stage.

In the transfer stage, the records to be uploaded don't exist

in the cloud server. The first users encode the nearby

documents and transfer them to the cloud server. In the De-

duplication stage, the documents to be uploaded as of now

exist in the cloud server. The ensuing users possess the

documents locally and the cloud server stores the

authenticated structures of the records. Resulting users need

to persuade the cloud server that they claim the documents

without transferring them to the cloud server.

In the refresh stage, users may alter, insert, or delete a

couple of squares of the archives. By then, they revive the

looking at parts of the encoded reports and the

authenticated structures in the cloud server, even the main

records were not uploaded without any other person's info.

Note that, users can invigorate the archives just in case they

have the possessions of the records, which infers that the

users should move the records in the exchange stage or pass

the affirmation in the De-duplication arrange. For each

invigorate, the cloud server needs to spare the principal

report and the authenticated structure if there exist

distinctive owners, and record the revived bit of the record

and the authenticated structure. This engages users to

invigorate an archive all the while in our model, since each

revive is simply "associated" to the primary record and

authenticated structure.

VI. Proposed Functional Procedure

We propose a concrete scheme of de-duplicatable dynamic

PoS called DeyPoS. It consists of five functions.

• Init

• Encode

• De-duplicate

• Update

• Check.

Init()

Cloud Server and user enlist the Unique ID for

introduction. Unique enlisted user can transfer the records

to the server. Resulting user enroll the Unique ID and its

enlisted Password for get to the uploaded records.

Encode()

Unique users previously transfer the Files to the Cloud

server an encoding procedure done. In the Encode

procedure the Homographic Authenticate Tree rationale be

connected.

De-duplicate()

Detect the copy of the ID by confirm the database by the

Unique Deypos ID and the created special secret word. In

the event that ID and secret key approved achievement the

resulting users can get to the document rights generally ID

consider as Duplication.

Update()

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1390

Unique users transfer the document to the cloud server and

afterward refreshed. Document transfer with remarkable ID

for get to the records by the consequent users.

Check()

Check the Validation and confirmation process for the Files

transfer and download. Cloud server Execution and No. of

De-duplication preliminaries happen when attempt to get to

the server records.

VII. Homomorphic Authentication Tree

To actualize an effective de-duplicatable dynamic PoS

conspire, we design a novel authenticated structure called

HAT. A HAT is a parallel tree in which each leaf node

relates to an information square. In spite of the fact that

HAT does not have any impediment on the quantity of

information obstructs, for description straightforwardness,

we accept that the quantity of information squares n is

equivalent to the quantity of leaf nodes in a full parallel

tree.

In this way, for a record F = (m1, m2, m3, m4) where ml

speaks to the ι-th square of the document. Every node in

HAT comprises of a four-tuple Vi = (I, li, vi, ti). I is the

extraordinary index of the node. The index of the root node

is 1, and the indexes increments start to finish and from left

to right. Denotes the quantity of leaf nodes that can be

come to from the I-th node. is the variant number of the I th

node. Speaks to the tag of the i
th

 node. At the point when a

HAT is introduced, the variant number of each leaf is 1,

and the form number of each non-leaf node is the total of

that of its two youngsters. For the I-th node, denotes the

blend of the squares comparing to its takes off. The tag is

figured from F(mi), where F denotes a tag age work. We

require that for any node vi and its youngsters v2i and v2i

+1, F(mi) = F(m2i ⊙ m2i +1) = F(m2i) ⊗ F(m2i +1)

holds, where ⊙ denotes the mix of m2i and m2i +1, and ⊗

shows the mix of F(m2i) and F(m2i +1), which is the

reason we call it a "homomorphic" tree.

VIII. Performance Analysis

We initially assess the cost in the transfer stage. Bellow

figure speaks to the instatement time for developing Merkle

trees and HATs with various sizes of records and squares.

The introduction time is comparable in all plans. For

instance, the introduction time for developing Merkle tree

and HAT is 7.9s, separately, for a 1GB record of 4kB

square size.

Fig: Initialization time in different file sizes

Fig: Authenticator size in different file sizes

The storage cost of the client is O(1), and the storage cost

of the server is appeared in above figure. The authenticator

size of HAT is bigger than that of the Merkle tree. In any

case, when Merkle tree is utilized in PoS conspire, it

requires more space for putting away tags of record

squares. Accordingly, the storage cost of our plan is like

other Merkle tree based PoS plans. At the point when the

square size is 4kB, the authenticator estimate is under 3%

of the document measure in our scheme.

IX. Conclusion

We proposed the extensive necessities in multi-user cloud

storage systems and presented the model of de-duplicatable

dynamic Pos. We designed a novel apparatus called HAT

which is an effective authenticated structure. In view of

HAT, we proposed the main useful de-duplicatable

dynamic PoS scheme called DeyPoS and demonstrated its

security in the irregular prophet model. The hypothetical

and exploratory outcomes demonstrate that our DeyPos

usage is proficient, particularly when the document

measure and the quantity of the tested squares are

expansive. The main sensible de-duplicatable dynamic PoS

scheme which makes utilization of finish necessities in

multi-shopper cloud storage systems and demonstrated its

security inside the arbitrary prophet model. The

hypothetical and test comes about demonstrate that the

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1391

strategy is productive, particularly when the document

measurement and the quantity of the tested squares are

huge.

References

[1] Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,

and D. Song, “Provable data possession at untrusted stores,” in Proc.

of CCS, pp. 598–609, 2007.

[2] A. Juels and B. S. Kaliski, Jr., “PORs: Proofs of retrievability for

large files,” in Proc. of CCS, pp. 584 –597,2007.

[3] F. Armknecht, J.-M. Bohli, G. O. Karame, Z. Liu, and C. A. Reuter,

“Outsourced proofs of retrievability,” in Proc. of CCS, pp. 831–843,

2014.

[4] H. Shacham and B. Waters, “Compact proofs of retrievability,” in

Proc. of ASIACRYPT, pp. 90–107, 2008.

[5] Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of retrievability via

hardness amplification,” in Proc. of TCC, pp. 109–127, 2009.

[6] Z. Mo, Y. Zhou, and S. Chen, “A dynamic proof of retrievability

(PoR) scheme with o(logn) complexity,” in Proc. of ICC, pp. 912–

916, 2012.

[7] E. Shi, E. Stefanov, and C. Papamanthou, “Practical dynamic proofs

of retrievability,” in Proc. of CCS, pp. 325–336, 2013.

[8] D. Cash, A. K¨upc¸ ¨u, and D. Wichs, “Dynamic proofs of

retrievability via oblivious RAM,” in Proc. Of EUROCRYPT, pp.

279–295, 2013.

[9] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of

ownership in remote storage systems,” in Proc. of CCS, pp. 491–500,

2011.

[10] J. Xu, E.-C. Chang, and J. Zhou, “Weak leakage-resilient client side

De-duplication of encrypted data in cloud storage,” in Proc. Of

ASIACCS, pp. 195–206, 2013.

[11] Q. Zheng and S. Xu, “Secure and efficient proof of storage with De-

duplication,” in Proc. of CODASPY, pp. 1– 12, 2012.

[12] R. Du, L. Deng, J. Chen, K. He, and M. Zheng, “Proofs of

ownership and retrievability in cloud storage,” in Proc. of TrustCom,

pp. 328–335, 2014.

[13] B. Wang, B. Li, and H. Li, “Public auditing for shared data with

efficient user revocation in the cloud,” in Proc. of INFOCOM, pp.

2904–2912, 2013.

[14] B. Wang, B. Li, and H. Li, “Oruta: privacy-preserving public

auditing for shared data in the cloud,” IEEE Transactions on Cloud

Computing, vol. 2, no. 1, pp. 43–56, 2014.

[15] J. Yuan and S. Yu, “Efficient public integrity checking for cloud

data sharing with multi-user modification,” in Proc. of INFOCOM,

pp. 2121–2129, 2014.

