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Abstract— As open source software systems are becoming bigger and more complex, the bug detection task and fixing it to 

improve the performance of the software is also getting complex, time taking, and inefficient. Users are permitted by the 

developers to report bugs that are found by them using a bug tracking system such as Bugzilla to improve the quality and 

efficiency of the software. In Bugzilla, users identify clearly the details of the bug, such as the description, the component, the 

version, the product, and the severity. Depending on this information, the priority levels to the reported bugs are assigned by 

the developers according to their severity. In this research, the model is proposed that is a customized version of a classification 

technique called ―Customized Cascading Randomized Weighted Majority Voting‖. This technique will include an ensemble of 

two base classifiers: Naïve Bayes classifier and Random Forest classifier with different proposed weights in case of textual 

datasets. 
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I. INTRODUCTION 

As the rapid increase in dependence on software systems, the 

importance of software quality is becoming more 

necessitous. There are different methods to ensure quality in 

software such as code reviews and rigorous testing so that 

bugs can be removed as quickly as possible to prevent the 

loss it may cause. 

The bug is commonly described as the presence of a fault in 

a software system which results in it to act differently from 

its specified behavior. Due to system complexity and 

incomplete testing, many software systems are often released 

with defects. Bug reporting is a standard practice which 

involves the integration of source software with bug 

tracking/feedback system such as Bugzilla, Jira to keep track 

of the reported bug by the end user to improve the next 

releases. The number of responses is very large that it 

becomes nearly difficult to remove all the bugs (due to time 

constraints) and the software remains the same for many 

releases. In order to come over this, the process called bug 

triaging came into the picture. The collaboration of bug 

priority on the basis of bug severity is called bug triaging. 

The prioritization on the basis of severity forms the basis of 

the important attribute that describes the impact of a bug on 

the successful execution of the software product. 

II. LITERATURE REVIEW 

Bug fixing time is one of the important prospects in this 

research area. Kim & Whitehead et al. [1] did an 

experimental study to report important metrics such as bug 

fixing time, fixing time distribution, files with the highest 

bug fixing time and likewise. (2006) 

Gujral and Sharma et al. [2] have explored the usage of the 

dictionary-based approach using text mining technique and 

Naïve Bayes Multinomial classifier in the classification of 

Bug severity. They have further employed an approach using 

a dictionary of bug terms to make the task more efficient. 

They have created the local dictionary of particular terms 

using TF-IDF with which severity can be predicted. The 

precision and accuracy level of 72% and 69% respectively 

have been calculated using the NBM algorithm. (2015) 

Cubranic et al. [3] went beyond the prediction of bug 

severity and automated the process of assigning the bug to 

the concerned developer. He trained a Naıve Bayes classifier 

with the history of the developers who resolved the bugs as 

the category and the corresponding explanations of the bug 

reports as the data. This classifier is subsequently used to 

predict the most appropriate developer for a newly reported 

bug. It was found to be over 30 % accurate with assigning of 

the incoming bug reports of the Eclipse project to a correct 

developer using this approach (2004). 

Similarly, Anvik et al. [13] used supervised learning 

algorithms and labeling heuristic approach on different 

datasets of Eclipse and Firefox. The precision level was 

found to be 57% and 64% respectively. (2006) 

Yang and Zhang et al. [11] proposed a novel method for bug 

triage and bug severity prediction. They tried extracting 

topic(s) from historical bug reports in the bug repository 

using NLP and tokenization and find bug reports related to 



   International Journal of Computer Sciences and Engineering                                      Vol.7(5), May 2019, E-ISSN: 2347-2693 

  © 2019, IJCSE All Rights Reserved                                                                                                                                        1346 

each topic. When a new bug report arrives, they decide the 

topic(s) to which the report belongs. Then utilizing the multi-

feature to identify corresponding reports that have the same 

multi-feature (e.g., component, product, priority, and 

severity) with the new bug report. Thus, given a new bug 

report, we are able to recommend the most appropriate 

algorithm (depending upon the frequency of topic) to fix 

each bug and predict its severity. To evaluate the approach, 

they had measured the effectiveness by using about 30,000 

golden bug reports extracted from three open source projects 

(Eclipse, Mozilla, and Netbeans). The results show that the 

defined approach is effective to recommend the appropriate 

algorithm to fix the given bug and predict its severity. (2014) 

Pushpalatha and Mrunalini et al. [9] used a bagging 

ensemble method for predicting the severity of Bugzilla bug 

reports repository. They further analyzed the results and 

compared with C4.5 classifier. Bagging, known as Bootstrap 

aggregating technique creates the composite model N* which 

reduces the variance of the individual classifier by combining 

a series of N learned models, N1, N2…Nn. Whereas, on the 

other hand, C4.5, also known as J48 on WEKA data mining 

tool, is based on the Decision Tree algorithm. The results 

have shown that bagging ensemble method gives better 

accuracy (81%) as compared to C4.5 general classifier (76%) 

on the given dataset. (2016) 

Menzies and Marcus et al. [8] used textual analysis methods 

like tokenization, stop word removal and stemming. 

Important tokens are then identified using term frequency-

inverse document frequency (TF-IDF).These tokens are then 

used as features for technique named SEVERIS (Severity 

Issue assessment) on NASA datasets to predict the bug 

severity.(2008) 

Ahmed Lamkanfi et al. [7] proposed a new method for 

classifying bugs based on the basis of severity. The usage of 

text Mining Algorithms along with Machine Learning 

Algorithm is effective in increasing the efficiency of the Bug 

Severity prediction model. Bug reports from Eclipse, 

GNOME, and Mozilla were preprocessed with text mining 

algorithms (tokenization, stop word removal, stemming). 

After that, Naïve Bayes was applied, and the average 

precision and recall of Eclipse and Mozilla was 0.65-0.75 

and 0.70-0.85 respectively in case of GNOME. (2011) 
Israel Herraiz et al. [12] analyzed the bug reports of Eclipse. 

It was concluded that this bug report has too many options 

for severity and priority field. Severity levels can be reduced 

to three levels as important, non-important and request for 

enhancement based on the time taken. Similarly, the priority 

field in bug reports was grouped into high, medium, low, 

according to mean time taken to close the bug. (2008) 

Lamkanfi et al. [6] provided a comparison of several 

classifiers to classify bugs issues as severe, non-severe. He 

compared Naive Bayes (NB), Naive Bayes Multinomial 

(NBM) and Support Vector Machines (SVM) to evaluate the 

performance of the classifiers within Eclipse and GNOME 

projects. Moreover, he reduced the lower bound for the 

number of bug reports for accurate prediction to 250 reports, 

necessary for NB and NBM to start providing accurate 

predictions. Overall, the best classifier selected for each 

component was NBM with an average precision to vary 

within 0.59 to 0.93. NBM was generally faster and more 

efficient in the prediction process. (2010) 

Ahsan S, Ferzund J, Wotawa F et al. [5] employed Naïve 

Bayes, RBF network, Random Forest, SVM and J48 

algorithms on Mozilla datasets and compared precision 

values in the bug severity prediction.(2009) 

Sharma and Rana et al. [10] proposed a feature selection and 

classification approach for categorizing the bug reports into 

severe and non-severe class. Further, they used the output to 

create a dictionary of critical terms of severity indicator. Top 

125 dictionary terms are selected and used as dictionary 

terms to train a classifier using feature selection methods 

such as info – gain and Chi-square. Further, the author 

compared the performance of NBM and KNN. It was found 

that accuracy, precision is in the range of 64 % to 75 % and 

66 % to 74 % using Naïve Bayes classifier and using KNN 

classifier, it is in the range of 87 % to 91 and 79 % to 95 % 

respectively. (2015) 

 

III. OBJECTIVE 

The objectives of this research are as follows: 

1. To study more than a thousand bug reports over 

various versions of Eclipse and to apply the data pre-

processing techniques such as tokenization, Stop-words 

removal process and stemming on the dataset. 

2. To study various machine learning algorithms and 

finalize two (Naïve Bayes and Random Forest) to create a 

prediction model by using these algorithms  

3. To compare and analyze the accuracy of these models. 

IV. METHODOLOGY 

4.1 BUG DATA COLLECTION: 

The bug reports of Eclipse project are used for the 

experiments. Eclipse projects focused on various metrics 

such as building extensible frameworks, tools, and runtimes 

for building and managing software across the life cycle 

phase. In this research work, Eclipse bug data reports from 

Bugzilla (bug repository) have been extracted. It has many 

products and components. The versions taken into account 

are 2.0, 2.1, 3.0,and 3.1. There are 5 main products of 

Eclipse of which we focus on 3 which are JDT, PDE, and 

Platform. The task of bug data collection was recorded 

during the research work manually. The factors that were 

taken into interest during the data collection are bug id, 

summary, long description, product, component, resolution, 

status, opened time, close time, severity, author and priority. 
 
4.2 DATA PRE-PROCESSING: 

Text processing is a major stage while working with textual 

data in order to test and evaluate the accuracy of performance 
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of the proposed model. It is accomplished to extract textual 

attributes from the bug report attributes such as summary and 

long description. Because the summary of bug report gives a 

better description of a bug report, it is included for priority 

and severity prediction. There are a number of words in the 

text attributes that contain meaningless information and 

increase dimensionality, thus decreasing the performance of 

the model. Therefore, standard text categorization approach 

is used to transform the text data into meaningful 

representation. It is done by applying the text pre-processing 

techniques, which include tokenization, stop-word removal, 

and stemming. 

Various code is being written in Jupyter notebook to carry 

out Text-Preprocessing. 

  

4.3 CUSTOMIZED CASCADING WEIGHTED     

MAJORITY VOTING: 

This technique depends on having an ensemble of multiple 

base classifiers that fed their individual results into a number 

of learners; a learner per each severity category. For each 

learner, each base classifier votes with different weight, i.e., 

a particular bug can be critical for one of the classifier, but 

major for the other classifier and so on. Thus, the final output 

is concluded using Majority Voting model. The higher the 

combined weightage for the bug as a particular type of 

severity, the more the chances of declaring it the same at the 

end of the experiment. We would be using Random Forest 

and Naive Bayes Multinomial classifiers on textual datasets. 

The final contribution of this study is to design a generic 

classification framework that can perform well with textual 

datasets and also compare the result between NBM, RF, and 

CCWMV. 

 

4.4 EVALUATION TECHNIQUE: 

Evaluation of the proposed technique is based on two 

performance metrics: F-measure and Accuracy. 

Traditionally, the accuracy rate has been the most commonly 

used empirical measure. However, in the framework of 

imbalanced datasets (used here), accuracy is no longer a 

proper measure. Hence, it may lead to erroneous conclusions. 

Therefore, F-measure is used. 

F-measure can be defined as the weighted harmonic mean of 

precision and recall and can be computed as follows. 

 

                                         (1)                                        

                                        (2) 

                                              (3) 

Where 

F-measure is also used to define the weightage to the 

particular severity type of the bug. 

 

V. RESULTS AND DISCUSSIONS 

As already discussed, the experiments were conducted with 

different settings in Weka. The experiment accomplished by 

using 70 percent of the dataset for training and 30 percent for 

testing purpose. The results which are obtained are listed in 

Table 1 and Table 2 

Table 1 show precision, recall and F-measure for each bug 

severity class for different versions of Eclipse projects and 

their corresponding calculated accuracy for the bug report 

features for Naïve Bayes classifier. 

Experiments were performed on 4 versions of Eclipse using 

textual datasets and different algorithms, namely Naïve 

Bayes, Random Forest & proposed technique (CCWMV) 

with 2 base classifiers (RF & NB). It is easily deducible from 

the Table 1 that the Random Forest model predicts the 

severity levels with an accuracy of 86.5% for version 2.0, 

72% for version 2.1, 64.1% for version 3.0, 84.7% for 

version 3.1. If we go by severity level, then Naïve Bayes is 

efficient in predicting minor severity with the utmost 

accuracy and average precision of about 86%.The reason 

behind it is the presence of minor severity level in abundance 

in our bug reports dataset with a maximum number of 

instances. Given the imbalanced textual dataset, the Naïve 

Bayes based classifier is also performing efficiently in 

classifying different levels of severity with f-measure values 

(combined metric of precision &  recall) ranging between 

0.71 to 0.86.  
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Table 1. Severity prediction models of Naïve Bayes for Eclipse version 2.0, 2.1, 3.0, and 3.1 

 

Version Algorithm  Severity Precision Recall F-measure Accuracy 

 

 

Eclipse 
2.0 

 

 

 
 

 

 
Naïve 

Bayes 

 
 

 

 
 

 

 

 

 

 
 

 
 

 Major 0.952 0.833 0.889  

 

86.597% 
 Minor 0.786 0.688 0.733 

 Normal 0.947 0.857 0.900 

 Blocker 1.000 0.947 0.973 

 Critical 0.680 1.000 0.810 

          Wt. Avg 0.884 0.866 0.868 

 

 

Eclipse 
2.1 

 Major 0.125 0.286 0.174  

 

72% 
 Minor 0.895 0.850 0.872 

 Normal 0.000 0.000 0.000 

 Blocker 0.286 0.235 0.258 

 Critical 0.000 0.000 0.000 

Wt. Avg 0.754 0.720 0.735 

 
 

Eclipse 

3.0 

 Major 0.745 0.798 0.771  
 

64.1026% 
 Minor 0.957 0.643 0.769 

 Normal 0.349 0.526 0.420 

 Blocker 0.046 0.692 0.087 

 Critical 0.143 0.182 0.160 

Wt. Avg 0.851 0.641 0.717 

 

 

 Major 0.923 0.781 0.846  

 
 Minor 0.821 0.636 0.717 

Eclipse 

3.1 

Naïve Bayes 

 
 

 

 

 Normal 0.883 0.807 0.833 84.705 % 

 Blocker 0.941 0.884 0.841 

 Critical 0.671 0.990 0.962 

Wt. Avg 0.847 0.819 0.836 

 

Table 2. Severity prediction models of Random Forest 

Version  Algorithm  Severity  Precision  Recall  F-measure  Accuracy  

  

  

Eclipse  

2.0  

  

  

Random Forest  

Major 0.557  0.348  0.430    

  

70.9%  

Minor 0.519  0.507  0.516  

Normal 0.867  0.911  0.877  

Blocker 0.553  0.126  0.202  

Critical 0.360  0.839  0.509  

Wt. Avg  0.712  0.709  0.691  

  

  

Eclipse  

2.1  

  

  

Random Forest  

Major 0.911  0.842  0.875    

  

84.2051%  

Minor 0.802  0.561  0.660  

Normal 0.838  0.829  0.833  

Blocker 0.750  0.958  0.841  

Critical 0.935  0.990  0.962  

Wt. Avg  0.845 0.842  0.836  
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Eclipse  

3.0  

  

  

Random Forest  

Major 0.000  0.000  0.000    

  

81.0588%  

  Minor 0.545  0.862  0.670  

Normal 0.943 0.962  0.954  

Blocker 0.163 0.056  0.087  

Critical 0.667  0.313  0.421  

Wt. Avg  0.789  0.811  0.691  

  

  

Eclipse  

3.1  

  

  

Random Forest  

Major 0.915  0.741  0.819    

  

82.5%  

Minor 0.673  0.614  0.642  

Normal 0.745  0.844  0.792  

Blocker 0.840  0.932  0.883  

Critical 0.934  0.966  0.950  

Wt. Avg  0.827  0.825  0.823  

 

The Severity report, as the name guessed, is suggestive that 

the model is capable of differentiating ranging between major 

severity bugs to normal severity bugs efficiently. If the bugs 

with normal severity do not distinguish from are not major or 

blocker severity level with high accuracy by the classifier, the 

fundamental purpose of time efficiency of the developers will 

not be served, and the developers will not be able to 

comprehend as to solve which bug and which bug can be kept 

aside. As a result, the time and man-hours of the developers 

will be utilized in the wrong direction, thus decreasing 

efficiency and productivity. Solving blocker, major severity 

level bugs is critical from the viewpoint of any company too 

as the whole product will be corrupted and thereby decreasing 

the market brand of that company. 

 
Table 3. Severity Prediction Model for CCWMV 

Eclipse Version CCWMV Accuracy       F-Measure 

Version 2.0 87.4 0.7095 

Version 2.1 83.8 0.7355 

Version 3.0 78.5 0.6495 

Version 3.1 86.1 0.8045 
 

This categorization is somewhat solved as our classifier can 

distinguish between major, minor & normal with quite a good 

accuracy and developers can decide which bug to be 

addressed. 

The algorithm shows lesser accuracy while classifying normal 

and critical severity types of bugs. One of the causes behind it 

is the less number of instances for the above-mentioned types 

may be due to 70-30% division of dataset. There may be 

miss-classification of severity types which may be one of the 

causes of less accurate performance. 

Table 2 shows Random Forest classifier for predicting 

severity levels with an accuracy of 70.9% for version 2.0, 

84.2 

% for version 2.1, 81.05% for version 3.0, 82.5% for version 

3.1 respectively. Again, if we talk of the f-measure (harmonic 

mean of precision and recall), the F-measure for Minor, 

Normal & Critical severity types of version 2.0 is comparably 

better than Major and Blocker severity types. Similarly, the F- 

measure for Major, Normal, Blocker, Critical severity types 

of version 2.1 is comparable among themselves and is better 

than Minor severity types. The F-measure of version 3.0 for 

Normal severity types is excellent and good for comparison 

with Major, Minor, Blocker, and Critical. Similarly, in this 

version, Minor can be easily distinguished from Major as well 

as Blocker. The f-measure in this version is poor for Blocker 

as well as Major severity types. The F-measure of version 3.1 

is comparable between Critical and Blocker with the 

maximum value for Critical severity type while f-measures 

for all others such as Major, Minor & Normal severity types 

are good. 

This research paper hovers around the prediction of bug 

severity on the basis of various severity types (Major, Minor, 

Normal, Blocker & Critical) based on a CCWMV 
(Customized Cascading Randomized Weighted Majority   

Voting) technique. The proposed model has been assessed 

and compared with related works by other classification 

algorithms such as Random forest & Naïve Bayes. It can be 

easily inferred from Table 3 that CCWMV technique has 

better accuracy in predicting the types of severity in Eclipse 

version 2.0, 2.1, 3.0, 3.2 over the Naïve Bayes but Random 

Forest has the better performance in predicting the bug 

severity in eclipse version 2.1 and version 3.0 with the 

accuracy of 84.2% & 81.05% as compared to 83.8% & 78.5% 

respectively in case of CCWMV model. However the 

percentage accuracy in versions 2.0 & 3.1 is high in case of 

CCWMV with 87.4% & 86.1% over 70.9% & 82.5% in case 

of Random forest model.  

On the same note, the f-measure (0.70) in version 2.0 in case 

of CCWMV is better than that of Random forest (0.691), 

thereby CCWMV is more accurate in distinguishing between 

various types of severity than Random forest. The f-measure 

in version 3.1 is comparable to that of Random forest; thus, 

both of the models are equivalent in classifying bug into 

various severity types. The main reason for low performance 

in version 2.1, version 3.0 might contribute to the small-size 

dataset in the respective cases. It can be enhanced by using 
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the different set of base classifiers with the usage of statistical 

classifiers too. 

Graphical representation of evaluated Accuracies for various 

versions of Eclipse for Naïve Bayes, Random Forest, and 

CCWMV: 

 

 
Figure 1. Accuracy of each version for Naïve Bayes, Random Forest and 

Customized Cascading Weighted Majority Voting Algorithm 
 

VI. CONCLUSIONS AND FUTURE SCOPE  

In this paper, the experiments were performed to predict the 

severity levels of bug reports of Bugzilla. These bugs affect 

the trustworthiness and quality of software. Bug tracking 

systems allow users to report bugs that are introduced when 

they use the Eclipse platform that is an open source software. 

However, predicting the priority and severity level of these 

bug reports is an arising issue. The factors that were 

considered for the experiments include temporal, textual, 

author-related, severity and product. All these features are fed 

to the Naïve Bayes and Random Forest successively using the 

CCWMV after textual analysis to classify the issues with bug 

reports and to predict the severity levels to bug reports. The 

text preprocessing techniques refine the most useful terms 

from datasets. 

The prediction models for chosen techniques are developed 

and compared with the CCWMV results. 
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