

 © 2019, IJCSE All Rights Reserved 124

International Journal of Computer Sciences and Engineering Open Access

Survey Paper Vol.-7, Issue-3, March 2019 E-ISSN: 2347-2693

A Survey on Diverse Vision and Varied Application Zone of BWT

Algorithm

S.Ranjitha

1*
, L. Robert

2*

1,2

Department of Computer Science, Government Arts College, Coimbatore, Tamil Nadu, India

*Corresponding Author: ranjithabiju@gmail.com, Tel.: +91 9751619450

DOI: https://doi.org/10.26438/ijcse/v7i3.124135 | Available online at: www.ijcseonline.org

Accepted: 20/Mar/2019, Published: 31/Mar/2019

Abstract— In the world of information, the data has to be stored in a large amount where the compression plays a vital role.

Compression is beneficial because it reduces the resources required to store and transmit data. The paper discusses the different

vision on BWT transformation algorithm, BWT works on data in memory and files too big to process in one go. The first

section concentrates on complete Burrow Wheeler Transformation algorithm compression and decompression mechanism. This

paper also examines the various Modification on BWT. The primary objective of this study is investigating the different

approaches using BWT transformation. The comparison and performance analysis of second step algorithm in BWT is

highlighted in this survey. Various Search algorithm using BWT is discussed briefly. A brief on recent work using this

algorithm in different application Suffix Array, Suffix Sort on small space. Therefore this paper examines comparative analysis

performance in compression ratio is carried out on various techniques.

Keywords— Move to Front, Frequency Count, Suffix Sort, Inversion Frequencies.

I. INTRODUCTION

Data and compression is the word which is ubiquitous. All the

text, images and data are profusely increasing in all the fields

of the research area. Data compression is necessary to reduce

the size of the resource required for storing and transmitting

data. Data compression is encoding information using fewer

bits than the original representation. There are different

methods and techniques.

Data compression methods are Lossy and Lossless based

upon the kind of data used. Lossy compression achieves

better compression by losing some information. When the

compressed stream is decompressed, the result is not identical

to the original data stream. Such a method makes sense

especially in compressing images, movies, or sounds Based

upon the type of data different algorithm for compression are

existing. In Lossless the compression is achieved without data

loss and it is applied to text. Lossless data compression is

based upon entropy type, Dictionary type and other types in

which the most famous and popular compression BWT is

used.

The main purpose of this article is to review the researches

associated with BWT algorithm based upon various data

compression, since BWT is the basis of many algorithm for

compression and indexing of many large collection of strings.

The paper highlight a survey on original BWT algorithm to

its various modification on BWT with different applications

areas and its approaches.

In this paper Section I contains the introduction about the data

compression and its methods. Section II gives an introduction

on BWT compression. Section III gives a detail on original

BWT Algorithm with compression and decompression

Algorithm using MTF coding and also its performance and

result. Section IV explains modification on BWT with

analysis on comparison and results of the experiments.

Section V explores the second step algorithm in BWT where

the MTF is replaced by WFC with result with different

weight functions. Section VI describes Boyer Moore

algorithm with tables and figures. Section VII contributes on

BWT with suffix array, suffix sorting and different algorithm

implemented based on these concepts and the last Section

VIII concludes the survey of the paper with future directions

on survey in the BWT area.

II. BACKGROUND

A. Introduction on BWT

BWT (Burrow Wheel Transformation) is a Block sort Lossless

Compression. This concept was originally developed by

Michael Burrow and D.J. wheeler in 1994. This method

reaches compression within a percent or so of which can be

accomplished by statistical modeling techniques, but at speeds

similar to those of algorithms based on Lempel and Ziv’s. This

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 125

Algorithm takes and processes a block of text as a single unit

rather than taking the input sequentially and applies a

reversible transformation to input to form a new block of text.

The transformation tends to take the group characters together

so that the possibility of finding a character close to another

instance of the same character is increased significantly.

The Transformed Text can easily be compressed with fast

locally-adaptive algorithms, such as move-to-front coding in

combination with Huffman or arithmetic coding [1].

The “Calgary Corpus” is a random collection of 18 diverse

files of text, program, binary, and conventionally limited to a

subset of 14 files) that forms a de-facto standard for comparing

lossless compressors. Results are usually mentioned as “bits

per character” (bpc) or the final compressed size (in bits)

divided by the input size (bytes or characters) for each file; the

14 values are then averaged to give an overall measure or

figure of merit. A better compressor will provide a corpus

average of about 3.0 bpc, while the best approach 2.1–2.2 bpc

[2].

III. BWT ALGORITHM (ORIGINAL)

Briefly, This algorithm never process any input sequential but

takes a lock of text as a single unit. The algorithm takes a

string S of N characters and changes by forming the N

rotations (cyclic shifts) of S, then lexicographically sorting

them, and the last character from each rotation is extracted for

further reference. A string L is formed from these characters,

where the i
th

 character of L is the last character of the i
th

sorted rotation. In addition to L, the algorithm computes the

index I of the original string S in the sorted list of rotations.

Remarkably, there is an efficient algorithm to compute the

original string S given only L and I [3]

The rough idea is to encode a text in two passes. This

transformation does not compress the text but it transforms it

in such a way that it is easier to compress. The algorithm

basic work by applying a reversible transformation block of

the input text. It has two steps of transformation.

In the original version, the transformation was done using

MTF to get a final Entropy Coding stage as depicted in Figure

1.

a) Compression Transformation.

b) Decompression Transformation

Figure 1: Burrow Wheel Compression Algorithm

Compression Algorithm :

Michael Burrow and D.J.Wheeler specified in the original

BWT transformation give the easier compress closer to

ideality of RLE.

In order to perform the BWT, we consider a string S, of

length N, as if it actually contains N different strings, with

each character in the original string being the start of a

specific string that is N bytes long as shown in figure 2 and

sort rotation.

Three steps for transforming

1) Form the N* N for an input string, by performing right

shift one character to the end of the input string or cyclic

rotating (left).

2) Sort the matrix in lexicographic order.

 3) Extract the Last column of the matrix.

Here input string for transformation is considered as given

below Eg: S=BANANA as shown in Fig 1

Figure 2: A sample data set

Figure 3: The set of strings associated with the buffer

Considering the sample data set of Figure2, a cyclic rotation

i.e Shifting is performed until the length of the input string.

Here the length of the string is 6 so the shifting is performed

till the 6 rows of the matrix.

The next step in the BWT is to perform a lexicographical sort

on the set of input strings. That is, we want to order the

strings using a fixed comparison function.

Figure 4: Lexicographical sort

We will be getting a lexicographical sort as shown in Figure3

B A N A N A [1]

A N A N A B [2]

N A N A B A [3]

A N A B A N [4]

N A B A N A [5]

A B A N A N [6]

B A N A N A

[1] A B A N A N

[2] A N A B A N

[3] A N A N A B

[4] B A N A N A

[5] N A B A N A

[6] N A N A B A

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 126

Figure 5: Transformed Text Matrix

From the above transform, let L is easily obtained by taking

The transpose of the last column of M together with the

primary index. Eg: L=NNBAAA, INDEX = 4.

The transformed text using BWT is the last column in the

sorted list, together with the row number where the original

string ends up. The Benefits of taking the last column of the

transformed string is because it has got a special symbol

clustering using which recovering all the table entirely which

other columns cannot give. The transformed text is more

amenable to subsequent compression algorithms. The MTF

algorithm is applied to encode the transformed text.

Algorithm1: MOVE TO FRONT CODING:

Move to Front (MTF) transform is a data encoding technique

designed (typically a stream of bytes) to improve the

performance of entropy encoding techniques of compression.

MTF each byte value is encoded by its index in a list, which

changes over the course of the algorithm

This algorithm encodes the output (L, I) of the compression

algorithm, where L is a string of length N and I is an index. It

encodes L using a move-to-front algorithm

Step 1.1): The step applies to move to front techniques to

encodes each of the characters in L to the individual

characters and defines a vector of integers R[0];:::; R[N-1],

which are the codes for the characters L[0];:::;L[N-1].

Step 1.2): Initialize a list Q of characters to contain each

character in the alphabet X exactly once. For each i D 0;:::;

N1 in turn, set R[i] to the number of characters preceding

character L[i] in the list Q, then move character L[i] to the

front of Q.

Taking Q = [‘A’,’B’,’N’] initially, and L =‘NNBAAA’,

compute the vector R: (2 0 1 2 0 0). Apply on elements of R,

anyone Huffman or arithmetic coding, treating each element

as a separate token to be coded. Any coding method can be

applied to the elements of R as long as the decompressor can

achieve the inverse operation. [3]

Algorithm2: MOVE-TO-FRONT DECODING

This algorithm is the inverse of Algorithm1. It calculates the

pair (L, I) from the pair. (OUT, I). We assume that the initial

value of the list Q used in step1.1 is available to the

decompressor and that the coding scheme used in step1.2 has

an inverse operation.

Step 2.1): Decode
Decode the coded stream OUT using the inverse of the

coding scheme used in step1.2. The result is a vector R of N

integers. In the above example, R is: (2 0 1 2 0 0).

Step 2.2): Inverse move-to-front coding

The aim is here to analyze and compute a string L of N

characters, given the move-to-front codes R [0],.R [N-1].

Initialize a list Q of characters to contain the characters of the

alphabet X in the same order as in step 1.1. For each i D

0,…..,N-1 in turn, set L[i] to be the character at position R[i]

in list Y (numbering from 0), then move that character to the

front of Q. The resulting string L is the last column of matrix

M of Algorithm1. The output of this algorithm is the pair (L,

I), which is the input to the decompression Algorithm given

below.

Taking Q = [‘A’,’B’,’N’] initially as Algorithm1, and to

calculate the string L =‘NNBAAA’.

Decompression Algorithm

Based upon the compression Algorithm it’s possible to know

primary index, 4, we know, L[4], i.e. it is the first character to

retrieve backwardly.

Here we consider the Reverse of string S as S’, we should

remember that the complete matrix is not available to the

decompressor; only the strings S, L, and the index I (from the

input) are needed by this step. [3]

The best thing about BWT is that it is not only lossless but

also reversible

We define the matrix S’ formed by rotating each row of S one

character to the right, so for each i = 0…..N-1, and each j =

0…..N-1,

S’ [i, j] =S [i,(j-1)/mod N]

Figure 6: S’ Inverse BWT

Based upon the transformation using alphabetically sort for

each index of the String S, the actual string in the index 4 we

get it using reverse BWT.

Performance Implementation

[1] A B A N A N

[2] A N A B A N

[3] A N A N A B

[4] B A N A N A

[5] N A B A N A

[6] N A N A B A

[1] [2] [3] [4] [5] [6]

[1] A B A N A N

[2] A N A B A N

[3] A N A N A B

[4] B A N A N A

[5] N A B A N A

[6] N A N A B A

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 127

 Michael Burrow and Wheeler have given a performance

implementation of their algorithm with 14 commonly used

files of Calgary corpus which indicates that this algorithm

does well on non-text inputs as well as text inputs. The

compression expression as output is expressed here in the

Table1 is in bits per input character.

Table 1: Results of compressing fourteen files of the Calgary

Compression Corpus.

 Size CPU time/s Compressed bits/
File (bytes) compress decompress size (bytes) char

bib 111261 1.6 0.3 28750 2.07

book1 768771 14.4 2.5 238989 2.49

book2 610856 10.9 1.8 162612 2.13

geo 102400 1.9 0.6 56974 4.45

news 377109 6.5 1.2 122175 2.59

obj1 21504 0.4 0.1 10694 3.98

obj2 246814 4.1 0.8 81337 2.64

paper1 53161 0.7 0.1 16965 2.55

paper2 82199 1.1 0.2 25832 2.51

pic 513216 5.4 1.2 53562 0.83

progc 39611 0.6 0.1 12786 2.58

progl 71646 1.1 0.2 16131 1.8

progp 49379 0.8 0.1 11043 1.79

trans 93695 1.6 0.2 18383 1.57

Total 3141622 51.1 9.4 856233 -

Comparison with another compression
The performance shown here is the comparison of
compression algorithm based CPU time/s for compress and
decompress with three different programmers considering the
same 14 files of the corpus with each individual with each
algorithm and the total of the result is done, bits per character
values are the means of the values for the individual files. The
metric was considered for easy comparison.

The Comparison shown in Table2 is

 Compress is version 4.2.3 of the LZW based tool.

 Gzip is version 1.2.4 of Gailly’s LZ77 based tool.

 Alg-C/D is Algorithms Compression and

Decompression with back end Huffman coder.

 comp-2 is Nelson’s comp-2 coder, limited to a

fourth-order model.

Table 2: Comparison with other compression algorithms

 Total CPU time/s Total compressed Mean

Programme compress decompress size (bytes) bits/char

compress 9.6 5.2 1246286 3.63

gzip 42.6 4.9 1024887 2.71

Alg-C/D 51.1 9.4 856233 2.43

comp-2 603.2 614.1 848885 2.47

The authors concluded that their compression achieves good

statistical modelers which is much closer in speed to coders

based on the algorithms of Lempel and Ziv. Like Lempel and

Ziv’s algorithms, this algorithm decompresses faster than it

compresses. [3]

IV. MODIFICATION ON BWT

Balkenhol and Kurtz [4] showed the improved result on the

modification on BWT algorithm, based on the context tree

model, and the specific statistical properties of the data were

considered for the output of the BWT. The authors presented

and contributed the six important properties, three of which

have not been defined elsewhere which in turn improve the

coding efficiency and also highlighted to compute the BWT

with low complexity in time and space, using suffix trees in

two different representations.

For increasing the efficiency of the BW algorithm they

showed some difference from the original paper in Alphabet

Encoding, modification of MTF, Grouping of symbols.

BWT does not change the entropy of the source but this

Algorithm is attractive for data compression algorithm due to

its low complexity.

Based on Context Tree Model (CT-Model) the following

properties y
n
 transformed text correspond to the real input x

n
.

Property 1: y
n
 is the sequence of independent symbols over

with variable probabilities of occurrence. It resembles an

infinite memory of the source generating, although the

original CT-source has a restricted depth of memory.

Property 2: y
n
 consists of “good” and “bad” fragments

corresponding to good and bad contexts, respectively. Inside

the same fragment, the possibilities of occurrence of symbols

almost not change (in fact, it can be an unnoticeable

concatenation of “close” fragments), but this can change

essentially between two fragments.

Property 3: The statistics of the fragments (i.e. the sets of

different symbols in the fragments) are different.

Property 4: The fragment with a number of different symbols

usually decreases with the actual length of the corresponding

context (specifically, the good fragments consist of

repetitions of one symbol mostly and that is one of the

reasons for using MTF and run length coding as proposed in

the original paper). Therefore the method of multialphabet

coding, which allows adapting to an unknown subset of

symbols in the fragments, should be used; MTF and grouping

of numbers.

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 128

Property 5: The longer the common prefix of two contexts

(the “closer” they are), the smaller the difference of the sets

of symbols generated at any of these contexts. This is one

more reason for applying MTF.

Property 6: At any given CT-source with an increasing

message length at the output, the number of fragments

slightly increases (because for a short message length some

subsequence’s x
n
are empty). Thus the (average) length of the

fragments grows almost linearly with the growing message

length.

The first 3 properties are as mentioned in original BWT but

the next three properties 4, 5, 6 [4] were the contributions by

the authors [Balkenhol and Kurtz].

For the input, sequences are consistently based upon these 6

properties of corresponds to CT Models.

They showed the data compression program using the suffix

tree-based method to compute the BWT of x
n
. Suffix trees are

constructed using the algorithm of McCreight [4]. Two

different representations of the suffix tree were implemented:

1
st
 representation showed edges of suffix tree to be stored in a

linked list. Using the space reduction techniques an average

case of 10n bytes of space is required, this gives better

improvement than the original which gives 19n bytes on

average.

2
nd

 representation stores the edges of the suffix tree in a hash

table. This table implements a function mapping consisting of

a node and a symbol. The hash table is implemented using an

open addressing technique with double hashing to resolve

collisions. [4]

Comparisons and Results of the Experiment

The authors did two experiments in that the 1
st
 program was

compared with other program using the files of Calgary

Corpus.as shown in Table 3 i.e the comparison rate of the

switching method of VW98 of Volf and Willems, CTW

(Context Tree Weighting with PPMDE- Predication by Partial

Matching), PPMDE (improved version of PPM), gzip, BW94

developed by Burrows and Wheeler, of the program F96 by

Fenwick, of the program BK98 developed by Balkenhol and

Kurtz, and of the program BKS98.

The program VW98, PPMDE, and CTW have a better

compression ratio than another program, but computational

resources of these programs are more. If this restricts to the

programs with the same in space and time then their program

shows the best compression rates for most files.

Table3: Compression rates for Calgary Corpus (in bits/bytes)

file Length
VW

98
CTW

PPM

DE
Gzip

BW

94
F96

BK98

BKS

98

bib 111261 81 1.71 1.8 1.84 2.51 2.02 1.95 1.94 1.93

book1 768771 81 2.15 2.2 2.3 3.25 2.48 2.39 2.31 2.33

book2 610856 96 1.82 1.9 1.96 2.7 2.1 2.04 2 2

geo 102400 256 4.53 4.5 4.73 5.34 4.73 4.5 4.49 4.27

news 377109 98 2.21 2.3 2.35 3.06 2.56 2.5 2.49 2.47

obj1 21504 256 3.61 3.7 3.72 3.84 3.88 3.87 3.87 3.79

obj2 246814 256 2.25 2.3 2.39 2.63 2.53 2.46 2.46 2.47

paper1 53161 95 2.15 2.3 2.31 2.79 2.52 2.46 2.45 2.44

paper2 82199 91 2.14 2.2 2.3 2.89 2.5 2.41 2.38 2.39

pic 513216 159 0.76 0.8 0.81 0.82 0.79 0.77 0.74 0.75

progc 39611 92 2.2 2.3 2.35 2.68 2.54 2.49 2.5 2.47

progl 71646 87 1.48 1.6 1.66 1.8 1.75 1.72 1.71 1.7

progp 49379 89 1.46 1.6 1.67 1.81 1.74 1.7 1.7 1.69

trans 93695 99 1.26 1.3 1.44 1.61 1.52 1.5 1.48 1.47

 3141622 2.12 2.2 2.27 2.7 2.4 2.34 2.32 2.3

The second experiment was implemented on the Canterbury

Corpus (including the large files e.coli, bible.txt, and

world192.txt). Therefore, Table 4 shows the compression

rates of gzip, PPM, bzip2, szip, BK98, and finally of BKS98.

The point to be noted that all these programs, except for gzip

and PPM, are based on the BWT. BKS98 gave the best

compression rate on all these files. [4]

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 129

Table 4: Compression rate for the Canterbury Corpus. [4]

File Length M Gzip ppm bred bzip2 Szip BK98 BKS

98
alice29 152089 2.85 2.31 2.55 2.27 2.25 2.23 2.21

ptt5 513216 159 0.82 0.99 0.82 0.78 0.82 0.74 0.75

Fields 11150 90 2.24 2.11 2.17 2.18 2.19 2.11 2.09

Kennedy 1029744 256 1.63 1.08 1.21 1.01 0.84 0.9 0.92

Sum 38240 255 2.67 2.68 2.77 2.7 2.7 2.62 2.57

lcet10 426754 84 2.71 2.19 2.47 2.02 2 1.97 1.96

plrabn12 481861 81 3.23 2.48 2.89 2.42 2.38 2.36 2.35

Cp 24603 86 2.59 2.38 2.5 2.48 2.44 2.43 2.42

grammar 3721 76 2.65 2.43 2.69 2.79 2.6 2.55 2.54

xargs.1 4227 74 3.31 3 3.26 3.33 3.25 3.11 3.12

Asyoulik 125179 68 3.12 2.53 2.84 2.53 2.51 2.49 2.48

e.coli 4638690 4 2.24 2.03 2.16 2.16 2.07 2.04 2

Bible 4047392 63 2.33 1.66 2.09 1.67 1.62 1.63 1.62

world192 2473400 94 2.33 1.66 2.24 1.58 1.6 1.56 1.54

 13970266 2.48 2.11 2.33 2.14 2.09 2.05 2.04

V. EXPLORING THE SECOND STEP OF THE BWT

Sebastian Deorowicz [5] published a paper in which

discussed many of the replacement from the original version

using MTF transform which is the second step in

transformation. He compared different compression and yield

a new better algorithm ratio from the original.

 Several previous works have been done on the Second phase

of the BWTA. Some of them are based on the observation

that the problem is similar to the List Update Problem (LUP).

Exploring of Modification of MTF

1) Fenwick and Schindler [5] explored the suggestion of

Burrow and Wheeler that refraining from moving the current

character to the very first position may be sometimes useful,

but they failed to obtain better compression results.

2) Balkenhol, Kurtz, and Shtarkov proposed a modification

called MTF-1 which improves the compression ratio. Their

only modification to the MTF algorithm is that only the

symbols from the second position in the list L are moved to

the first position. The symbols from higher positions are

moved to the second position. [5]

3) Balkenhol and Shtarkov proposed an additional more

modification to the MTF-1, the symbols from the second

position are moved to the beginning of the list L only when

the previous transformed symbol was at the first position

which was called as MTF-2. [5]

4) One of the best algorithm for List update Problem is Time

Stamp was theoretically analyzed by Albers and

Mitzenmacher. The authors showed that theoretically, the

Timestamp is better than then MTF.[6]

5) Arnavut and Magliveras [5] proposed a completely new

approach called Inversion Frequencies (IF) Algorithm to the

problem of transforming the sequence x
bwt

 to a form that can

be improved compressed by an entropy coder. The IF

algorithm does not solve the LUP. A sequence of x
if

over an

alphabet of integers from the range [0, n−1] is formed. For

each character aj from the alphabet, the algorithm scans the

sequence x
bwt

. When the first occurrence of the character aj is

found it outputs its position in the sequence x
bwt

. For further

occurrences of the character aj the IF outputs an integer which

is the number of characters greater than aj that occurred since

the last request to the character aj. The sequence x
if

is not

sufficient to recover the sequence x
bwt

 correctly. We also have

to know the number of occurrences of each character from the

alphabet in the sequence x
bwt

. This disadvantage is especially

important for short sequences.

 Replacement of MTF with WFC

Sebastian Deorowicz [5] introduced The Weighted Frequency

Count algorithm (WFC) by replacing the Move to Front stage

(MTF) within the Burrows-Wheeler Compression Algorithm

and is a representative of a List Update Algorithm (LUS) just

like MTF.

Weight Frequency Count Algorithm can be reflected as a

generalization of the well-known Frequency Count (FC).)

Formulation of the FC algorithm in an alternative way is

shown in this paper and gave to each character aj appearing

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 130

prior to the i
th

position in the sequence x
bwt

a sum and sort in

descending order the list L according to the value of Wi (aj).

Wi (aj) =∑ 1

 1≤p≤i

 aj =xp

The authors reformulated the above formula by introducing

the weight function w instead of summing 1’s for all

characters that are summed from its relative position in the

sequence x
bwt

.

The formula is as highlighted below

Wi (aj) = ∑ w(i − p).

 1≤p<i

 aj =xp

If two characters have the same value Wi(.), then to find

relative order using the values Wi−1(.), Wi−2(.) and so on, until

the counters are different. On completion, they define W0(aj)

=−j. The algorithm outputting the position of processed

characters in the list L and maintaining the list in the

described above is called the Weighted Frequency Count.

A relation of WFC with a Context Tree sources is also been

discussed since the sequence of x
bwt

 is a concatenation of

Context Tree Component.

Comparison of MTF and WFC

In contrast to MTF, the WFC algorithm takes former symbol

distribution into account by using a weighting scheme for

former symbol occurrences. The WFC stage needs no

additional overhead like the Inversion Frequencies (IF) stage

and which leads to good compression rates in the BWT field.

The main disadvantage of the WFC stage is the time

consumption for the calculation of the weighting scheme.

Comparison of Result of different Weight Function

Examination of many weight function w can be done using

the given below approaches as shown in Fig 7

 W1(t) = 1 , for t=1

0 , for t > 1

W2(t) = q
t
 , for t=1

 0 , for t > 1

 W3(t) = 1/p*t , for 1 < t ≤ tmax

 0 , for t > tmax

 W4(t) = 1 , for t=1

 p*t , for 1<t ≤ tmax

 0 , for t > tmax

 W5(t) = 1 , for t =1

 p*t
q
 , for 1<t ≤ tmax

 0 , for t > tmax

 W6(t) = 1 , for t =1

 1 /p*t , for 1<t ≤ 64

 1 /2*p*t , for 64< t ≤ 256
 1/4 *p*t , for 256<t ≤ 1024

 1/8 * p * t , for 1024 < t ≤ t max

 0 , for t > tmax

Figure 7: Examined Weight Function [5]

Based on the weight function the author has given the best set

of parameters and achieved the best overall result for the w6

function as shown in Table 5.

Table 5: Comparison result of the different weight function
File Size w1 w2

q =

0.7

w3

p = 4

w4

p = 4

w5

p = 0.5,

w6

p = 4

w6q

p = 4

 q = −1.25

Bib 111261 1.915 1.916 1.969 1.916 1.899 1.896 1.896

book1 768771 2.344 2.311 2.28 2.283 2.279 2.273 2.274

book2 610856 1.999 1.98 1.999 1.973 1.962 1.959 1.958

geo 102400 4.235 4.229 4.115 4.121 4.146 4.15 4.152

news 377109 2.464 2.461 2.464 2.415 2.41 2.409 2.409

obj1 21504 3.766 3.757 3.724 3.695 3.695 3.697 3.695

obj2 246814 2.439 2.448 2.492 2.432 2.416 2.413 2.414

paper1 53161 2.42 2.422 2.488 2.424 2.405 2.403 2.403

paper2 82199 2.382 2.37 2.405 2.364 2.351 2.347 2.347

Pic 513216 0.761 0.741 0.703 0.706 0.716 0.718 0.717

progc 39611 2.455 2.461 2.521 2.451 2.431 2.431 2.431

progl 71646 1.684 1.697 1.769 1.682 1.672 1.67 1.67

progp 49379 1.667 1.69 1.787 1.69 1.673 1.672 1.672

trans 93695 1.45 1.483 1.611 1.466 1.456 1.45 1.452

Avg 3141622 2.284 2.283 2.309 2.258 2.251 2.249 2.249

The author has shown the Comparison based on second step

modification of MTF ie. MTF-1, MTF-2, TS (0), DC

(Distance Coding), IF and WFC is shown in Table 6 with

files from Calgary Corpus. The best result is obtained by

WFC and further improvement can be done. [5].

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 131

Table 6: Comparison of different second step algorithms for the files from Calgary Corpus [5]

File Size MTF MTF-1 MTF-2 TS(0) IF DC BS99 WFC

Bib 111261 1.915 1.904 1.904 2.012 1.963 1.931 1.91 1.896

book1 768771 2.344 2.317 2.304 2.308 2.239 2.241 2.27 2.274

book2 610856 1.999 1.983 1.976 2.027 1.964 1.938 1.96 1.958

Geo 102400 4.235 4.221 4.22 4.186 4.19 4.51 4.16 4.152

news 377109 2.464 2.45 2.449 2.586 2.459 2.397 2.42 2.409

obj1 21504 3.766 3.737 3.74 3.9 3.889 3.969 3.73 3.695

obj2 246814 2.439 2.427 2.429 2.637 2.548 2.451 2.45 2.414

paper1 53161 2.42 2.411 2.411 2.588 2.454 2.407 2.41 2.403

paper2 82199 2.382 2.369 2.364 2.458 2.366 2.343 2.36 2.347

Pic 513216 0.761 0.741 0.737 0.732 0.706 0.717 0.72 0.717

progc 39611 2.455 2.446 2.45 2.643 2.5 2.473 2.45 2.431

progl 71646 1.684 1.678 1.681 1.851 1.747 1.692 1.68 1.67

progp 49379 1.667 1.665 1.67 1.887 1.745 1.705 1.68 1.672

trans 93695 1.45 1.448 1.452 1.704 1.557 1.473 1.46 1.452

Avg 3141622 2.284 2.271 2.27 2.394 2.309 2.303 2.26 2.249

VI. BOYER –MOORE WITH BWT TEXT

Andrew Firth, Tim Bell, Amar Mukherjee, and Don Adjeroh

[6] compared the various search algorithm using BWT using

the index and non indexed based algorithm in which they

conferred about the Boyer-Moore algorithm with BWT text.

Boyer Moore Algorithm

The Boyer Moore algorithm is used for string pattern

matching and it is classified into non-index based algorithm.

The Boyer-Moore algorithm (Boyer & Moore 1977) for

searching an ordinary text file is considered as one of the

most efficient pattern matching algorithms due to the ability

to recognizing and skip the certain areas of the text where no

match would be possible [6]. It scans the query pattern from

right to left, making comparisons with characters in the text.

When a mismatch is found, the maximum of two pre-

computed functions, called the good-suffix rule and the bad-

character rule is used to determine how far to shift the pattern

before beginning the next set of comparisons. This shifts the

pattern along the text from left to right, without missing

possible matches, until the required patterns have been

located or the end of the text is reached. The good-suffix rule

is used when a suffix of P has already been matched to a

substring of T, but the next comparison results in a mismatch

[6].

Algorithm for Compressed Domain Search for BWT

Boyer Moore Algorithm to be used in modified compressed

domain search for BWT Compression is achieved by

decoding parts of the text.

The paper refers to the pattern matching problem in terms of

searching for a pattern P of length m in a text T of length n.

The input alphabet will be referred to as Σ; similarly, |Σ| will

denote the size of the alphabet.

The algorithm given requires access to the BWT text which

constructs certain arrays which have been found using BWT

algorithm.

Algorithm1.1: Reconstruct the original text

BWT-DE CODE (L, index)

1 for i ← 0 to 255 do

2 K[i] ← 0

3 end for

4

5 for i ← 1 to n do

6 C[i] ← K [L[i]]

7 K [L[i]] ← K [L[i]] + 1

8 end for

9

10 sum ← 1

11 for ch ← 0 to 255 do

12 M[ch] ← sum

13 sum ← sum + K[ch]

 14 end for

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 132

15

16 i ← index

17 for j ← n downto 1 do

18 T [j] ← L[i]

19 i ← C[i] + M [L[i]]

20 end for

Algorithm 1.2 Construct the BWT transform arrays [6]

BUIL D-TRANSFORM-ARRAYS (L, M)

1 for i ← 1 to n do

2 V [i] ← M [L[i]]

3 W [M [L[i]]] ← i

4 M [L[i]] ← M [L[i]] + 1

5 end for

Algorithm 1.3: Reconstruction of Original Text from left

to right using W Array [7]

BWT-DE CODE0 (L, W, index)

1 i ← index

2 for j ← 1 to n do

3 i ← W [i]

4 T [j] ← L[i]

5 end for

Algorithm 1.4: Construction of auxiliary arrays [7]

BUILD-AUXIL IARY-ARRAYS (W, index)

1 i ← index

2 for j ← 1 to n do

3 H r[j] ← i

4 I[i] ← j

5 i ← W [i]

6 end for

The Summary of an array is been given below in Fig 5, which

is conferred from the BWT transformation Algorithm 1.1,

1.2, 1.3, 1.4 and which is further used in Boyre Moore

Search Algorithm 2.

Table 7: Summary of Important array used in the study [7]
Array Type

Array

Size Algorithm Description first used

Basic arrays T

F
P

N

n

n
m

2.1

2.1

3.1
3.1

Original Text sequence L

of Last characters

Array of First characters
The search Pattern

Counting

Arrays

C

K

M

|∑|

|∑|

|∑|

2.1

2.1

2.1

C[i] = # of occurrence of L[i]

in L[1 . . . i − 1]

K[i] = # of occurrence of i in
L (or T).

Cumulative counts of the

values in K

Transform

Arrays

V

N

2.2

One-to-one mapping between

L and F .

Used to construct text in
reverse order.

W n 2.2 One-to-one mapping between

L and F .

Used to construct text without
reverse.

Auxiliary
arrays

Hr

I

N

n

2.4

2.4

One to one mappings between
F & T

Inverse of Hr

Algorithm 2: Boyer Moore for BWT Text [7]

COMPRESSED-DOMAIN-BOYE R-MOORE -SEARCH

(P, F, and H r)

1 COMPUT E -GOOD-SUFFIX (P)

2 COMPUT E -BAD-CHARACT E R (P)

3 k ← 1

4 while k ≤ n − m + 1 do

5 i ← m

6 while i > 0 and P[i] = F [H r [k + i − 1]] do

7 i ← i − 1

8 end whilea

9 if i = 0 then

10 # Report a match beginning at position k − 1

11 k ← k + <shift proposed by the good-suffix rule>

12 else

13 sG ← <shift proposed by the good-suffix rule>

14 sB ← <shift proposed by the extended bad-character

rule>

15 k ← k + MAX (sG, sB)

16 end if

17 end while

The above algorithm requires access to the text in the

correct order, thus after a file has undergone the Burrows-

Wheeler Transform, an ordinary Boyer-Moore search is no

longer possible without full decompression first. Therefore

the result shows that , Using shift heuristics, it is able to avoid

making comparisons with some parts of the text and it can

produce in the best case a sub-linear performance of O(n m),

although on average comparison it requires O(m+n) and in

the worst case deteriorates to O(mn) time complexity.[7]

VII. BWT WITH SUFFIX SORTING

To understand the BWT with suffix sorting we need to

understand the concept of Suffix Array, Suffix Sorting and

study of the different algorithm implemented based on these

concepts, which is highlighted below.

 Suffix Array

A Suffix array is a sorted array of all suffixes of a given

string. It is similar to a Suffix Tree which is compressed trie

of all suffixes of the given text. Any suffix tree based

https://www.geeksforgeeks.org/pattern-searching-set-8-suffix-tree-introduction/
https://www.geeksforgeeks.org/pattern-searching-set-8-suffix-tree-introduction/

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 133

algorithm and the algorithm that uses a suffix array enhanced

with additional information, both answers the same problem

in the same time complexity.

A suffix array can be constructed from Suffix tree by doing a

DFS traversal of the suffix tree. In fact Suffix array and suffix

tree, both can be constructed from each other in linear time.

Suffix Arrays has advantages over suffix trees which includes

improved space requirements, simpler linear time

construction algorithms (e.g., compared to Ukkonen’s

algorithm) and improved cache locality.

Table 7: Example for Suffix Array (Wiki)

 Let the given string be "banana".

0 banana 5 a

1 anana Sort the Suffixes 3 ana

2 nana ----------------> 1 anana

3 ana alphabetically 0 banana

4 na 4 na

5 a 2 nana

So the suffix array for "banana" is {5, 3, 1, 0, 4, 2}

 Fastest Suffix Sorting[8]

The authors N. Jesper Larssona, Kunihiko Sadakaneb [8]

discussed Suffix sorting which is defined as the problem of

lexicographically ordering all the suffixes of a string. The

suffixes are represented as a list of integers denoting their

starting positions. In the paper “Fastest Suffix Sorting”,

Suffix Sorting has at least two important applications:

a) The first one is the construction of a suffix array (also

known as PAT array), a data structure for pattern matching

that supports some of the operations of a suffix tree, generally

slower than the suffix tree but requiring less space. When

additional space is allocated to supply a bucket array or a

longest common prefix array, the time complexity of basic

operations closely approaches those of the suffix tree.

b) Another application is in data compression. The Burrows-

Wheeler Transform is a transformation which facilitates

compression based on repetition of string which shows better

performance.

Suffix sorting is a in the Burrow Wheeler Transformation

gives a computational problem and an efficient sorting

method is essential for any implementation of this

compression scheme.

Comparative Analysis and Conclusion: The authors have

done a study of alternative approaches of an algorithm based

on suffix sorting and analysis of time complexity of the

algorithm.

The author has highlighted a suffix sorting algorithm which

has good worst-case time complexity and actual running time

using memory with reasonable size.

In theory, the suffix sorting can be done in linear time by

building a suffix tree and gaining the sorted order from its

leaves but it involves significant overhead mostly in space

requirements which makes it too expensive to use it alone.

Here the author considered a string X = x0x1 . . . xn of n + 1

symbols, where the first n symbols include the actual input

string and xn = $ is a unique sentinel symbol. It was

considered to look $, which may or may not be denoted as an

actual

The symbol in the implementation, as having a value below

all other symbols. By Si, for 0 ≤ i ≤ n, It’s denoted with the

suffix of X beginning in position i. Thus, S0 = X, and Sn = $ is

the first suffix in lexicographic order.

The output of suffix sorting is a permutation of the Si,

contained in an integer array I. In the course of the algorithm,

I hold all integers in the range [0, n]. Finally, these numbers

are arranged in an order corresponding to lexicographic

suffix order, i.e., SI [i−1] lexicographically precedes SI [i] for

all i ∈ [1, n − 1]. The final content of I is referred to as the

sorted suffix array. In practical terms, the suffix sorting

means sorting the Integer I according to the corresponding

suffixes.

Among all suffix sorting algorithms with worst-case O

(nlogn) time complexity, the author claims the fastest and the

most space-efficient. Though there exist faster algorithms

than this for many inputs, they do not have good worst-case

time complexity, with the result that their performance will

decrease for some inputs. [8]

 Fast BWT in small space by block wise suffix sorting [9]

The Burrow Wheel Transformation is text reversible method

that has the central role in some of the best data compression

method. The transformed text is easier to compress using a

simple and fast method. Computing time and space is

significantly more for BWT than the other steps of the

compression.

 Another application of BWT is the construction of

compressed full-text indexes, which support fast substring

searching on the text while taking little more space than the

compressed text. Some compressed indexes are directly based

on BWT (for example) while others can be efficiently

constructed from the BWT. It gives more bottleneck for

compressed indexes in computing the BWT

 Usually, the BWT is computed from the suffix array

(SA), the lexicographically sorted array of all the suffixes of

the text. Computing BWT from SA is simple and fast, and a

lot of effort has been spent in developing fast and space-

efficient algorithms for constructing the suffix array, i.e., for

sorting the set of all suffixes. However, all such algorithms

need to store the suffix array, which can be much larger than

the text or the BWT.

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 134

 The suffix array needs Ω(nlogn) bits of space while

the text and the BWT can be encoded using O(nlogσ) bits for

an alphabet size σ. In practice, the size of the suffix array is

usually at least 4n bytes while the text and the BWT typically

need only n bytes each, and sometimes even less, for

example, 2n bits each for a DNA sequence.

In this paper, the author gets rid of the storing the full suffix

array and the suffix array as small piece or block at a time and

compute the corresponding block of BWT and remove the SA

block so no need of space for full suffix array.

 Algorithm Outline

The usual way to compute the BWT is to first construct the

suffix array (SA) and then to use Eq. (1) to compute the

BWT.

BWT[i]= T[SA[i]-1] if SA[i] ≠0
 $ if SA[i]=0 ------------------------------(1)

Here $ is a special character that is distinct from (and usually

considered to be smaller than) all other characters. The

definition is same to the description of common BWT as the

last column in a matrix, whose rows are the rotations (cyclic

shifts, conjugates) of T [0, n) $ in lexicographical order.

 The algorithm uses Eq. (1), too, but the difference is that the

SA is computed in smaller blocks. That is, for some 0=i0 < i1

< i2 < ··· < ir =n+1, At first the algorithm computes SA[0,i1)

and uses it to compute BWT[0,i1), then it computes SA[i1,i2)

and BWT[i1,i2), and so on. The division of SA into blocks is

determined by using a sample of suffixes as splitters. [9]

 Experiments and Result

The Algorithm implemented a program BWT that reads the

text from a file and writes the BWT to another file. BWT is

never stored in memory but is written directly to disk.

There is also a second program used for dnabwt for the four-

letter DNA alphabet that stores the text using just two bits per

character.

Here the author used two algorithms for comparison

a)The first algorithm is (MF) deep-shallow algorithm of

Manzini and Ferragina [9]

b) The second one (BK) is the algorithm of Burkhardt and

K¨arkk¨ainen [10].

The author used 6 text files for studying the running time in

UNIX time command. The memory consumption is the total

size of the process at its maximum as reported by the Unix

top command.

Table 9: Runtime (in seconds) and memory footprint (in GB)
of BWT construction algorithms [9]

 Text size=256 MB Text Size=IGB

Text bwt Dnabwt MF BK bwt Dnabwt

english 546 – 287 573 2746 -

random-
64

511 – 241 605 2566 -

repeat-
64

2994 – 43751 1372 13082 -

DNA 585 1 974 223 589 - -

random-
DNA

574 1 876 237 582 2898 8250

repeat-
DNA

2986 12 619 70125 1323 12555 52668

Memory 0.46 0.23 1.3 1.5 1.8 0.90

The 1GB files are too large for MF and BK. The results show
that bwt is quite competitive in speed. It is 2–3 times slower
than MF for most texts but much faster on repetitive data
while taking barely over one-third of the space. The times for
bwt and BK are very similar because both spend most of their
time in string sorting. The larger slow- down of bwt for
repetitive data is probably due to the larger value of the
parameter v. dnabwt is significantly slower than bwt but still
fast enough for overnight computation of BWT for multi-
gigabyte texts.
The author has presented an algorithm that can compute the
BWT of text with very limited space and with speedy
compression.

VIII. CONCLUSION AND FUTURE SCOPE

This paper has done an investigation on the original BWT
algorithm and its mix match with different other algorithms,
with slight modification. Also exploring the performance level
and time complexity in space and speed. The Paper also
highlights on the second stage of BWT with different variation
and also their performance such as MTF1, MTF2, and IF. The
survey also focused on the fast BWT transformation using a
suffix array and with limited spaces. It can be concluded that
many researchers have practiced on the BWT transformation
using many different algorithms with satisfied performance.
Thereforee the future extensions of this study can also be
focused on the improvements on various search algorithms
and genomic sequence with better compression ratio using
BWT can be analysed.

REFERENCES

[1] David Salomon, “Data Compression the Complete Reference” 3rd

Edition, Spring Verlag, New York, pp.777, 2004

[2] Peter Fenwick, “Burrows–Wheeler compression: Principles and

reflections“, Theoretical Computer Science 387 (2007) pp. 200–

219, 2007 Elsevier.

[3] M. Burrows, D.J. Wheeler. A Block-sorting Lossless Data

Compression Algorithm. DEC Systems Research Center Research

Report 124, May 1994.

[4] Bernhard Balkenhol, Stefan Kurtz, Yuri M. Shtarkov,

“Modifications of the Burrows and Wheeler Data Compression

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 135

Algorithm”, In the Proceedings 1999 Data Compression

Conference, IEEE Computer Society Washington, DC, USA

pp.188-197, April 1999

[5] Sebastian Deorowicz, “Second step algorithms in the Burrows-

Wheeler compression algorithm”, November 22, 2001, Journal of

Software—Practice and Experience, 2002; 32(2): pp. 99–111, 2002

[6] Tim Bell1, Matt Powell1, Amar Mukherjee, Don Adjeroh,

“Searching BWT compressed text with the Boyer-Moore algorithm

and binary search”, Proceeding in 2002 Data compression

Conference, Snowbird, UT, USA, pp. 112-121, 2002.

[7] Andrew Firth, Tim Bell, Amar Mukherjee, and Don Adjeroh “Ä

comparison of BWT Approaches to String Patterns Matching”,

Journal of Software-Practice and Experience, Volume 35, Issue 13,

pp. 1217-1258,10 November 2005.

[8] N. Jesper Larssona, Kunihiko Sadakaneb,∗ “Faster suffix sorting”,

Theoretical Computer Science 387 (2007) pp.258–272, 2007

Elsevier.

[9] Juha K¨arkk¨ainen∗,” Fast BWT in small space by blockwise suffix

sorting “, Theoretical Computer Science 387 (2007) pp. 249–257,

2007 Elsevier

Authors Profile

Mrs. S.Ranjitha pursed Bachelor of

Computer Science from RVS College of

Science & Commerce, Bharathiar University,

Coimbatore. Master of Computer

Application from IGNOU University in the

year 2009. She received his M.Phil in the

field Network Security and is currently

pursuing Ph.D. and currently working as Assistant Professor

in Department of Information Technology, CMS College of

Science and Commerce, Coimbatore, Tamil Nadu India since

2007 onwards. She has 13 years of teaching experience.

Mr. L. Robert received his undergraduate

and postgraduate degrees in Computer

Science from St. Joseph’s College,

Tiruchirappalli, Tamil Nadu, India. He

received his M.Phil and Ph.D.. Degrees in

the field of Data Compression and Security

from PSG College of Technology,

Coimbatore, Tamil Nadu, India. He has been teaching

Computer science for nearly 24 years. He is now working as

Associate Professor in Computer Science, Government Arts

College, Coimbatore, Tamil Nadu, India He has published

more than 20 research papers in national, international

journals and conferences in the area of data compression and

data management. His other areas of interest include

Compiler Design, Web Mining, Cloud Computing, and Big

Data Analytics. He is a reviewer of many international

journals including IJITWE.

https://www.researchgate.net/journal/1068-0314_Proceedings_of_the_Data_Compression_Conference
https://www.researchgate.net/journal/1068-0314_Proceedings_of_the_Data_Compression_Conference

