
 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        1320 

International Journal of Computer Sciences and Engineering    Open Access 

Research Paper                                              Vol.-6, Issue-7, July 2018                                 E-ISSN: 2347-2693 

                 

Implementation of Visual XBI Detector by Comparing RGB Index and 

Histograms 

 
Neha Verma

1*
, C.P. Patidar

2
 

 
1*

Computer Engineering, IET, DAVV, Indore, India 
2
Information Technology, IET, DAVV, Indore, India 

 
*Corresponding Author:   verma.neha1804@gmail.com,   Tel.: +91-9713048596 

 

Available online at: www.ijcseonline.org  

Accepted: 20/Jul/2018, Published: 31/Jul/2018 

Abstract— There are tons of browsers in the market which are being used to surf internet. Each browser has its own DOM 

parser, rendering engine which has its own sense of understanding the content of a webpage pulled from the web server. It 

parses the html tags, images and displays the same accordingly on the screen. This is the main cause of visual xbi’s in different 

browsers. Companies are spending a big lump of money only for the look and feel of the sites. Numerous front-end 

technologies are being developed with time to enhance the web development as independent of different browsers. The main 

intent of this research is to identify the visual difference in how the images are being displayed by different browsers as there 

are different rendering engines in the market. Studying the RBG values of an image at pixel level, generating histograms and 

exploiting the DOM structure to extract co-ordinates of an images helps in studying that how the images in a webpage are 

rendered by different browsers. 

 

Keywords— Browser,CrossBrowserInconsistency,Reliability,Webapplication,DOM,RGB 

I.  INTRODUCTION 

Cross-Browser Inconsistencies (XBIs) are inconsistencies 

between a web application's appearances, conduct, or both, at 

the point when the application is keep running on two 

distinct conditions. Because of the expanding prevalence of 

web applications, and the quantity of programs and stages on 

which such applications can be executed, XBIs are a genuine 

worry for associations that create electronic programming. 

Visual XBIs speak to contrasts in the visual appearance of 

individual page components (e.g., contrasts in the styling of 

content or back-ground of a component crosswise over 

different programs relate to visual-content XBIs). Such 

blunders must be seen in the picture portrayal of the elements 

[1]. Hence, the method measures the separation between the 

shading histograms of the component's screen picture. A web 

program is a product application for recovering, exhibiting, 

and navigating data assets on the World Wide Web. By a 

Uniform Resource Identifier (URL), a website page, picture 

and video a data asset is perceived. The program gets in 

contact with the web server and requirements for data. The 

web server gets the data and showcases it on the PC. The 

significant issues partners with utilizing the web application 

through various web programs are connected with web 

program irregularity. Additionally, web applications are 

being utilized by numerous for all exercises in each field of 

work. Some variety in course of action of components or 

substance of an online application on various programs is 

known as Cross-Browser Inconsistency [2] .When a client 

execute a web application on numerous programs, at that 

point some web application display diverse practices and in 

this manner presents Cross-Browser Inconsistencies (XBIs). 

XBIs display contrasts between a web application's 

appearances, conduct, or both, when it is executed on two 

unique conditions. In the event that cross program 

inconsistencies are not being accurately tried amid the testing 

stage, at that point it can contrarily influence the experience 

of the client of web application [3]. 

The rendering motor will begin parsing the HTML archive 

and turn the labels to DOM hubs in a tree called the 

"substance tree". It will parse the style information, both in 

outside CSS documents and in style components. The styling 

data together with visual directions in the HTML will be 

utilized to make another tree - the render tree.  

The render tree contains square shapes with visual traits like 

shading and measurements. The square shapes are organized 

appropriately to be shown on the screen.  

After the development of the render tree it experiences a 

"format" process. This implies giving every hub the correct 

directions where it ought to show up on the screen. The 

following stage is painting - the render tree will be navigated 

and every hub will be painted utilizing the UI backend layer. 

 



   International Journal of Computer Sciences and Engineering                                      Vol.6(7), Jul 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        1321 

 
 

Fig.1  Flow of web parsing 

 

 

II. CROSS-BROWSER INCONSISTENCIES 

A critical issue in this area is to recognize inconsistencies 

emerging because of the distinction in the application's 

conduct when it keeps running on two unique stages. On 

account of web applications, these inconsistencies can be 

seen when the web application is run on various web 

programs. It brings about Cross-Browser Incompatibilities 

(XBIs) which are errors in a web application's appearance, 

usefulness, or both, when the application is keep running on 

two diverse web program situations. 

As per the work, XBIs can be categorized as three primary 

XBIs: Behavior, Structure and Content. 

 

• Behavior XBI: This XBI demonstrates the distinction in 

the conduct in same component of a website page in various 

programs Case for such XBI is if a catch playing out some 

activity like submitting or continuing to next page yet a 

similar catch performs diverse activity when keep running on 

any another program[4].  

 

• Structure XBI: Such XBIs influence the structure, or 

format, of individual pages. The site page structure is 

basically a specific course of action of components, which if 

there should arise an occurrence of auxiliary XBIs is 

mistaken in a specific program. This current XBI's alludes to 

the distinction in the format of the page. For instance, two 

catches in the pages are organized on a level plane (departed 

to appropriate) in one program, yet vertically in another 

program.  

 

• Content XBI: This sort of XBI is seen in the substance of 

individual segments on a site page. Such contrasts can 

happen, where the visual appearance of a website page 

component, or the printed estimation of a component, are 

distinctive crosswise over two programs. These can be 

additionally delegated visual-substance and content 

substance XBIs. It alludes to the distinction in the substance 

of individual segments of the website page. It can be 

additionally named content substance XBI and visual 

substance XBI. The previous includes the distinction in the 

content estimation of a component, though the last alludes to 

the distinction in the visual part of a solitary component (e.g., 

page title has shadow in Firefox and no shadow in Internet 

Explorer).  

The XPERT device was intended to distinguish the three 

principle kind of inconsistencies. It takes information at that 

point contrast it with various programs and distinguishes 

which kind of inconsistency is present. For the most part 

XPERT focused on content substance XBI to distinguish 

visual inconsistencies they utilized OpenCV toolbox.  

In this paper we will focus around visual inconsistencies and 

will figure out how to distinguish the visual inconsistencies. 

 

 

III.  RELATED WORK 

To the best of our insight, X-PERT is the principal device for 

exhaustive identification of XBIs. Past research devices just 

focused on specific kinds of issues and had low exactness 

and review [5]. Engineers commonly utilize program 

similarity tables, for example, Quirksmode.org and 

CanIUse.com, to check their web applications. Some web 

improvement devices, for example, Adobe Dreamweaver 

(http:// adobe.com/items/dreamweaver.html), give essential 

static examination based insights to help distinguish certain 

issues. However, the issues focused by reference sites and 

advancement devices are constrained to highlights that are 

known to be absent in a specific program. Different 

instruments, for example, BrowserShots (BrowserShots.org) 

and Microsoft Expression Web SuperPreview 

(http://microsoft.com)[6], give pre- perspectives of single 

pages in various programs, while devices such as 

CrossBrowserTesting.com and BrowserStack.com consider 

perusing web applications in various copied environments. In 

the two cases, the correlation of the watched conduct 

crosswise over programs should at present be performed 

physically.     

 

IV. TECHNIQUE OVERVIEW 

We implemented our approach in a crawler called CrawlJax 

which is implemented in Java and accepts a web page and 

extracts images from that web page. CRAWLJAX acts as a 

driver and, by triggering actions on web page elements, is 

able to explore a finite state space of the web application and 

save the model as a state-graph representation. CrawlJax 

extracts an image of the entire webpage and geometrical 

information about the page elements. 

First of all the data store, it saves the images of web page and 

DOM structure of web page and rest of the information too. 

Then it creates the DOM tree of that web page, after that 



   International Journal of Computer Sciences and Engineering                                      Vol.6(7), Jul 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        1322 

image extractor extracts all the images that are available on 

that web page. In this we used the selenium to automate the 

process. We are generating histogram of a particular image 

that is later compared to identify that visual consistency 

occurs or not. 

 

 
 

Fig.2- Flow diagram of VXBI Detector 

 

After that RGB index of an image is inspected the colour of 

an image is expressed as an RGB triplet (r, g, b), each 

component of which can vary from zero to 

a defined maximum value. 

Later, image comparator compares the image which is in the 

form of histogram and DOM is compared. This tool is 

generally working in two different parts, first one is data 

extractor which extracts all the details regarding practical 

which we are performing and second is data analyser which 

analyse all the data. 

Algorithm 1 presents an overview of our VXBI detection 

technique. As shown in the algorithm, our technique takes as 

input the URL of the home page of the web application under 

test, url, and two browsers considered for the testing, B1 and 

B2. The technique outputs the visual difference in images 

VX. 

The technique starts by crawling the web application, in an 

identical fashion, in each of the two browsers B1 and B2. In 

this process, it records the observed behavior as data 

extractor D1 and D2. The model represents the top-level 

structure of the crawled web application. In the model, the 

states correspond to web application screens. In addition to 

this data extractor, we capture the screen image and the 

DOM structure of the elements on each observed screen.  

 

 
 

Fig.4-Algorithm to detect VXBI 

 

The data extractor D1 and D2 are checked for equivalence to 

uncover differences in vision. To do this, the technique uses 

the CrawlJax, which produces a set of differences and a list 

ImageSimilarityList of corresponding web-page pair b1I1 

and b2I2 from pages b1 and b2. ImageSimilarityList contains 

the mapping between corresponding screens across browsers. 

This is implemented by CrawlJax, which compares url b1 

and b2 and extracts the set of available image on that page.  

These XBIs represent differences in the visual appearance of 

individual page elements (e.g., differences in the styling of 

text or back-ground of an element across different browsers 

correspond to visual-content XBIs). Such errors can only be 

observed in the image representation of the elements. Hence, 

the technique crawl the web page and save all the images 

available on that page for two different browsers. After 

extraction the algorithm generates the histogram of two 

corresponding images of two different browsers i.e. chrome 

and explorer. Hence, the technique measures the distance 

between the colour histograms of the image and compares 

the RGB index of images that gives the difference in images. 



   International Journal of Computer Sciences and Engineering                                      Vol.6(7), Jul 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        1323 

V. TOOL DESCRIPTION AND IMPLEMENTATION 

 

 

Fig.3 Architecture of VXBI Detector 

 

 Crawl Jax – CrawlJax is an open source java tool for 

automatically crawling and testing modern web applications. 

CrawlJax can explore any javascript-based ajax web 

application through an even-driven dynamic crawling engine. 

It automatically creates a state-flow graph of the dynamic 

DOM states and the event-based transitions between them. 

 

 Selenium – Selenium is a versatile programming testing 

system for web applications [7]. Selenium gives a playback 

(some time ago likewise recording) apparatus for creating 

tests without the need to take in a test scripting dialect 

(selenium ide).  The tests would then be able to keep running 

against most current web programs. 

 

 Image Extractor – This module parses the state data 

saved using JSoup library and creates a list of images 

present in a state. Further it extracts all images from the state 

and save all the images to CrawlerOuput directory state 

wise.  

 

 Data Store – This component is used to persist and load 

the pages from the file system as XML files. These 

components are implemented using the Object serialization 

support in Java and are essential for the model capture to 

compare components [8]. For instance, model capture might 

be run to collect images from different browsers.  

 

 Histogram Comparator – HistogramGenerator Module 

generates histogram for all the images saved by 

ImageExtractor module using JFreeChart java open source 

library. All the histograms are stored in Histograms directory 

state wise. It compares histograms of corresponding images 

of a specific state using JFreeChart library. 

 

 RGB Index Differential Analysis – RGB index 

differential analysis constructs all the colours from the 

combination of the Red, Green and Blue colours. This 

module generates the RGB index of two same images which 

are extracted from two different browsers. The algorithm 

gets red, green and blue component’s value for each pixel. It 

calculates the difference in two corresponding pixel of three 

components. The difference for all the pixels (N – total 

pixels) is added and divided by below three values – 

 

N – To obtain average difference per pixel 

3 – To obtain average difference per colour component 

255 – To obtain value between 0.0-1.0 

 

lim0->N [(RedA- RedB)+(GrnA-GrnB)+(BLuA-BluB)] * 100 

                                 3 * N * 255 

 

 Image Comparator – It compares screen images of the 

corresponding elements on the webpage. Specifically, this 

image comparison measures the distance between their 

colour histograms to detect image-content XBIs. 

 

  
Fig.5–Histogram for DSC_workshop080618.jpg 

http://www.dauniv.ac.in/ 

 

 
Fig.6–Histogram for DSCConvocation.jpg 

http://www.dauniv.ac.in/ 

 

 Dom Comparator – It compares DOM tree of two 

different web pages. This module matches comparing 

components on renderings of a site page over the different 

browsers by computing the match file metric. 

VI.   EVALUATION 

To assess the usefulness of VXBI detector, website 

(http://www.dauniv.ac.in/) was tested. The process is divided 

in four groups: the first shows the states of the link, second 



   International Journal of Computer Sciences and Engineering                                      Vol.6(7), Jul 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        1324 

shows the RGB difference of these images, third shows the 

histogram difference and fourth shows the coordinate 

difference. 

Our experiments were performed using the latest stable 

versions of Internet Explorer (v9.0.9) and Google chrome 

[v14.0.1]. the results of our investigation of VXBI’s 

effectiveness are shown in Fig-4, which lists, for each input 

the VXBI reported difference in percentage and the term size 

mismatch. As shown in the table, VXBI is effective in 

finding the visual difference in different images. 

VII.   RESULT 

  

Fig.7 -VXBI tool Report 

 

 
 

Fig.8-The VXBI Difference result for states 

 

Result shows the RGB diference which is calculated by 

given formula(RGBIndexDifferentialAnalysis),the histogram 

difference Which is calculated by comparing two same 

images from two different browser and the coordinate 

difference which is calculated by comaparing the coordinates 

of two same images of different browsers.  

 

 
Fig.9-The VXBI Difference result for images in states 

 

 

 
 

Fig.10-The state graph for http://www.dauniv.ac.in/ 

 

This is the state graph of DAVV website which is given as 

an input to crawler. The crawler saves all the visited states. 

We can change the number of states to be visited. 

    

  Crawl Result 

  
Fig.11- Result Statistics 

 



   International Journal of Computer Sciences and Engineering                                      Vol.6(7), Jul 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        1325 

The result statistics shows that how much time was taken to 

crawl the website, It keeps the count of states, It maintains 

the track of exit status, number of edges, number of crawl 

path, failed event and average DOM length and the visited 

URL. 

VIII.      CONCLUSION 

Cross-program inconsistencies (XBIs) are a genuine problem 

for web designers. Current modern practice depends on 

(costly and blunder inclined) manual investigation to 

discover these issues. Existing exploration devices, on the 

other hand, just target standard particular parts of XBIs and 

can report a significant number of false positives and 

negatives. To address these limitations, we displayed this 

paper on an open source apparatus for comprehensive VXBI 

recognition. Our exact assessment appears the effectiveness 

of this device over the cutting edge. This show introduces the 

subtle elements of the usage of apparatus and outlines how it 

is completely robotized and simple to use through its web 

interface. What's more, apparatus generates simple to 

understand and significant reports for the engineer, hence 

enabling them to address visual XBIs effectively. 

 

REFERENCES 

[1]C.P.Patidar and Meena Sharma ,”An automated approach for cross 

browser inconsistencies(XBI) detection”, Ninth annual ACM India 

conference organized by ACM India, Oct 21-23,2016.  

[2]Nepal Barskar, C.P.Patidar and Meena Sharma, “Analysis and 

Identification of Cross Browser Inconsistency Issues in Web 

Application using Automation Testing”, International Journal of 

Computer Science and Information Technology & Security (IJCSITS), 

ISSN: 2249-9555Vol.6, No3, May-June 2016.  

[3] A. Mesbah and M. R. Prasad, “Automated cross-browser 

compatibility testing,” in Proceeding of the 33rd International 

Conference on Software Engineering, ser. ICSE ’11. New York, NY, 

USA: ACM, 2011, pp. 561–570. 

[4] Choudhary, S. R., Prasad, M. R., & Orso, A., “X-PERT: A    Web 

Application Testing Tool for Cross-Browser Inconsistency Detection”, 

2014.  

[5] S. Roy Choudhary, M. R. Prasad, and A. Orso. X-PERT: Accurate 

Identifcation of Cross-browser Issues in Web Applications. In 

Proceedings of the 2013 International Conference on Software 

Engineering, ICSE '13, pages 702-711. IEEE Press, 2013.  

[6]S. R. Choudhary, M. R. Prasad, and A. Orso. X-PERT: Accurate 

Identification 

of Cross-Browser Issues in Web Applications. In Proceedings of the 35th 

IEEE and ACM SIGSOFT International Conference on Software 

Engineering (ICSE 2013), pages 702–711, May 2013. 

[7]S. Mahajan and W. G. Halfond. Root Cause Analysis for HTML 

Presentation Failures Using Search-based Techniques. In Proceedingsof 

the 7th International Workshop on Search-Based Software 

Testing(SBST), Hyderabad, India, June 2014 

[8] S. Roy Choudhary and A. Orso, “Webdiff: Automated identification 

of cross-browser issues in web applications,” in ICSM ’10: Proceedings 

of the International Conference on Software Maintenance. IEEE, 

September 2010.  

[9]Sonal Mahajan and William G. J. Halfond. 2015. Detection and 

Localization of 

HTML Presentation Failures Using Computer Vision-Based Techniques. 

In Proceedings 

of the 8th IEEE International Conference on So.ware Testing, Verifcation 

and Validation (ICST). 

[10]Mesbah, A., & Prasad, M. R., “Automated cross-browser 

compatibility testing”. 33rd International Conference on Software 

Engineering, ACM Proceedings, pp. 561-570, 2011.  

[11]C.P.Patidar and Meena Sharma ,”An automated approach for cross 

browser inconsistency(XBI) detection”, Ninth annual ACM India 

conference organized by ACM India, Oct 21-23,2016.  

[12] Nepal Barskar, C.P.Patidar and Meena Sharma, “Analysis and 

Identification of Cross Browser Inconsistency Issues in Web 

Application using Automation Testing”, International Journal of 

Computer Science and Information Technology & Security (IJCSITS), 

ISSN: 2249-9555Vol.6, No3, May-June 2016.  

[13] Shauvik Roy Choudhary,”Detecting Cross-browser Issues in Web 

Applications”, ICSE ’11, Waikiki, Honolulu, HI, USA, ACM 978-1-

4503-0445-0/11/05, May 21–28, 2011.  

[14] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William 

G.J. Halfond. 

2017. XFix: Automated Tool for Repair of Layout Cross Browser Issues. 

In Proceedings of the 26th International Symposium on So.ware Testing 

and Analysis (ISSTA) – Tool Track. 

 
 

 


