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Abstract- CPU scheduling defines the policy for deciding which of the available process in ready queue will be dispatched next 

to CPU by the  scheduler; so that the resource utilization and overall performance of the system could be improved. Many 

traditional CPU scheduling algorithms have been proposed by several authors. Lottery scheduling is one of the well organized 

random based scheduling algorithms. It has random based   ticket   allocation algorithm in which one or more tickets are 

randomly assigned to each Process and when CPU becomes available the winner process is selected next for assignment. In 

this paper, we calculated the performance of  the deadlock condition. The state transition from one process to another process is 

done by using Markov chain model and also data set based approach is used to study different transition states. The overall 

performances in terms of unequal and equal numerical data set are analyzed and then comparative analysis is performed to 

justify the results. 

 

Keyword:- Multiprocessing Environment ,Markov chain, CPU- scheduling, lottery scheduling, Process ,Deadlock Condition. 

 

I. INTRODUCTION 

 

In multiprogramming environment, many processes may be executing and requesting a restricted number of common resources 

at the same time. When few resources are requested by a process and if that resources are not available at that time, then the 

process enters into a rest state. That process will never be again able to modify state because of unavailability of required   

resources that are detained by other resting processes. This condition is called deadlock. Since deadlocked processes remain 

blocked for an infinite period of time and this condition affects user performances [1], [2], [3] hence it must be keep in mind 

while designing CPU scheduling algorithms. 

 

Many reasons have been found in operating systems that are responsible for deadlock conditions.  

1. Mutual exclusion: - any resources can be hold by one process at a time in a non-sharable mode.  

2. Wait and hold: - processes are holding few resources and waiting for another one that is currently being held by some other 

waiting process in the same system. 

3. No preemption: - any acquired   resource cannot be preempted.  

4 .Circular wait:- A closed chain of processes exists, such that each process holds one or more resources that are being 

requested by the next process in the chain.  

 

The existence of all these conditions is responsible for the state of deadlock. Thus a deadlock condition may occur at any state 

during execution. CPU Scheduling algorithms manages allocation of different resources to process to avoid deadlock 

condition.  

 

Lottery scheduling is one of the well-organized CPU scheduling algorithms in which at least one ticket is assigned to each 

process and the lottery scheduler draws random ticket to select the process. In lottery scheduling, when large number of the 

cooperating process are executing concurrently then due to occurrence of above mentioned condition none of the process may 

able to execute towards   completion as there are some resources that are commonly used by them and may be required by 

other processes to complete their execution but due to unavailability of these resources all the process are reached to deadlock 

state. Under these situations the process is permanently blocked [4],[5],[6].[7]. In this paper lottery scheduling schemes with 

deadlock possibility is designed and its performance is evaluated under the two different assumptions of Markov Chain model 

by using equal and unequal data model approach.  
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II. RELATED WORK 

 

Several researchers have analyzed the behaviors of the CPU Scheduling algorithms by using   Markov chain model. Revelioits 

and Fei  et al. [8] developed   a novel version of the resource allocation systems to avoid the deadlock Problem and described a 

new decomposed operational model with new policies on different data set for particular resources . Kawadkar et al. [9 ]  

introduced deadlock as an complex   condition where processes of a set of states that hold schedulers are locked for an 

indefinite period from access to schedulers held by other Processes within the states. No processes of the states can release its 

own schedulers before implementation its household tasks. so, the deadlock will last forever, unless a deadlock resolution 

Procedure is performed. They   aslo proposed a different types of anomalies found in deadlock and described  various models 

for particular defined deadlock condition and also provided Banker’s algorithm for avoiding deadlock  condition  and improved  

the waiting state processes over there. Srinivasan & Rajaram [10] and Pandey & Vandana [11 ] developed a  deadlock 

detection technique using wait for graph through propagating messages along the edges of wait for graph and also provide a 

deadlock resolution algorithms.  Yadgiri and Jadhav  [12] and Cai  and Chain.[13] Presented  algorithm for deadlock detection 

at local and global level. Some other authors have also described the deadlock detection technique which eliminates removable 

lock dependencies into thread specific partitions, consolidates equivalent lock dependencies and searches over the set of lock 

dependency, and analyzed  numerical based results. Brzezinski et al.[14].  developed  a hierarchy of deadlock models and 

deadlock detection Problems and  also done  a comparative study between deadlock models and deferent types of gates (OR, 

AND, etc.) models. Nazeem et al. [15] developed a  deadlock-based study for timed Rebecca models and checked scheduler 

and analyzed a events-based behavior for actor’s action and Predicted some experimental result for that .Y.Rose et al. [16]. 

described a  different approaches to solve the state space explosion problem using heuristic and met heuristic algorithms and  

and proposed two new algorithms to finding deadlock in complex software systems and produced some experimental solution 

for that .  Vyash and Jain.[17] developed   a data set based  hybrid Markov chain model for lottery scheduling. Authors also 

done  a simulation study with various schemes to analyze these behavior. Vyash and Jain.[18] also developed a data sets based 

model for extensive round robin and done simulation study over different scheme. Shukla and Jain [19] proposed a K-

Processing environment with different schemes, which used a random process without any replacement method . Shukla and 

Jain [20] Proposed and described a lottery scheduling algorithms for typical OS schedulers to improve interactive response 

time and also to reduce kernel lock collision, and implemented the state forward technique for LS which enabled contention 

over process execution rates and processor load. Singhai et al.[21] proposed and suggested a novel mechanism that provides 

efficient and responsive control over the relative executive execution rates of computations using lottery scheduling. Some 

other researchers compared and analyzed with different scheduling algorithms for Markov chain model [22],[23], [24], 

[25],[26],[27],[28],[29],[30].  In this paper, we have  proposed a lottery based Markov chain model with deadlock state by 

considering  two types of schemes and analyzes their performance of lottery scheduling over different data sets.  

 

III. ASSUMPTIONS OF THE MODEL 

 

In the proposed system, there are four processes residing in ready queue and waiting for their chance for assignment to the 

CPU.  There is one more queue Pw (waiting/ blocked queue) where processes whose executions were suspended are residing.  

The selection of processes from ready queue is being done according to lottery scheduling.  When a new process joins ready 

queue then Operating system assigns one or more lottery tickets for that process. Each process may have minimum one ticket 

thus by giving at least one lottery ticket to each process the operating system ensures that each process has non-zero probability 

of being selected during each scheduling cycle. We have also introduced a deadlock condition in the proposed system, where 

the execution of processes is permanently blocked. When CPU becomes available, the scheduler generates a random ticket and 

the process having that ticket will get the chance of execution for the assigned time quantum. If assigned process completes its 

execution within predefined time quantum then the process get exit from the system and new process is selected according to 

proposed lottery algorithm and if the assigned process is partially completed in given time quantum then on completion of time 

quantum process execution is stopped and new process is selected in proposed fashion so in either case random based selection 

is done by lottery scheduler.     

 

The following assumptions are considered in proposed model. 

1. The lottery scheduler has a random movement over  all states including waiting state and deadlock state. 

2. In lottery scheduling, the process whose execution is suspended due to any reason are moved to waiting state thus (waiting 

queue Pw). 

3. The lottery scheduler picks any of the ready process with probability Pba. (Where a =1,2,3,4). 

4. Since the selection of next process is done randomly by the lottery scheduler hence it is possible that the same process may 

be selected again immediately after completion of its former time quantum.  

5.When any process has long waiting time (time limit exceed)  then this process may move to deadlock state. 
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 6. State P5 and P6 are denoted as waiting state and deadlock state respectively  

7. The return back transition over deadlock state is not considered feasible. 

The transition diagrams of proposed system under given assumptions are as follows:- 

 

 

Figure:-1: Transition Probability Matrix 

IV. MARKOV CHAIN MODEL 

 

Let (X(n), n ≥ 1) be a Markov chain where X (n) denotes the state of the lottery based scheduler at different quantum of time. 

The state space for the random variable X (n)   is {P1, P2, P3, P4, Pw, PD} where P5 is waiting state and P6 is a deadlock state. The 

scheduler X   randomly (lottery    based) moves over different processes (state), waiting state and deadlock state for different 

quantum of time.  

 

Predefined selections for initial Probabilities of states are: 

 

 [       ] =PB1, [ 
      ] =PB2, [ 

      ] = PB3 ,  [ 
     ] =PB4 

                                                                                                                                  ……….3.1 

 [       ] =PB5,  [ 
      ] =PB6 

With  

                +      +   +    +         =  ∑     
 
    =1 where   initially             =0        

 

 Let Pa,b  (a,b=1,2,3,4,5,6)   be the unit step transition probabilities of hybrid random based lottery scheduler over six assumed 

states then transition probability matrix can be given as: 

                                                  X
 (n)   

 

 

 

 

 

 

  P1 P2 P3 P4 P
5

(W)
 

P
6

(D)
 

 P1 Py11 Py12 Py13 Py14 Py15 Py16 

 P2 Py21 Py22 Py23 Py24 Py25 Py26 

X
(n-1)

 P3 Py31 Py32 Py33 Py34 Py35 Py36 

 P4 Py41 Py42 Py43 Py44 Py45 Py46 

 P
5

(W)
 Py51 Py52 Py53 Py54 Py55 Py56 

 P
6

(D)
 Py61 Py62 Py63 Py64 Py65 Py66 

P4 

 

Pw 

 
PD 

 

P3 

 

P2 

 

P1 
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Figure:-3.1: Transition Probability Matrix 

lottery based transition processing for X
(n)

 will be 

         Pa,b=     P[X
(n

)=Pa / X
(n-1) 

 =Pb ]   

Unit step transition probability   for waiting state W are as follow 

The state probabilities, after first quantum can be obtained by a simple relationship 

  P[X
(1)

=P1]     =   P[X
(0)

=P1] .P[X
(1)

=P1/ X
(0)

=P1 ] + P[X
(0)

=P2].P[X
(1)

=P1/ X
(0)

=P2 ] +       

                             P[X
(0)

=P3].P[X
(1)

=P1/ X
(0)

=P3 ]  +P[X
(0)

=P4].P[X
(1)

=P1/ X
(0)

= P4 ]  +  

                             P[X
(0)

=P5].P[X
(1)

=P1/ X
(0)

=P5 ]  +  P[X
(0)

=P6].P[X
(1)

=P1/ X
(0)

= P6 ]   

      P[X
(1)

=P1]       =    ∑    
 
         

    P[X
(1)

=P2]      =  P[X
(0)

=P1] .P[X
(1)

=P2/ X
(0)

=P1 ] + P[X
(0)

=P2].P[X
(1)

=P2/ X
(0)

=P2 ]  +  

                              P[X
(0)

=P3].P[X
(1)

=P2/ X
(0)

=P3 ]  +   P[X
(0)

=P4].P[X
(1)

=P2/ X
(0)

= P4 ]  +             

                                P[X
(0)

=P5].P[X
(1)

=P2/ X
(0)

=P5 ]  +P[X
(0)

=P6].P[X
(1)

=P2/ X
(0)

= P6 ]   

P[X
(1)

=P2]        =      ∑    
 
         

Hence we obtained the following: 

                           
       P[X

(1)
=P1]       =  ∑    

 
         , P[X

(1)
=P2]       =  ∑    

 
         

                                                                                                                         ……………….3.3                                                                          

       P[X
(1)

=P3]       =  ∑    
 
         , P[X

(1)
=P4]       = ∑    

 
         

       P[X
(1)

=P5]       =  ∑    
 
             P[X

(1)
=P6]       =  ∑    

 
         

  

Similarly after second quantum, the state probabilities can be determined by the following 

expressions: - 

      P[X(
2
)=P1]           =        ∑ {∑             

 
   

 
   }Pyb1,    ,  P[X(

2
)=P2]            =             ∑ {∑             

 
   

 
   }Pyb2 

     P[X(
2
)=P3]           =       ∑ {∑             

 
   

 
   }Pyb3,    ,       P[X(

2
)=P4]            =               ∑ {∑             

 
   

 
   }Pyb4 

     P[X(
2
)=P5]           =         ∑ {∑             

 
   

 
   }Pyb5,      P[X(

2
)=P6]           =               ∑ {∑             

 
   

 
   }Pyb6 

 

P16=   1-∑     
 
    , P26=   1-∑     

 
    , P36=   1-∑     

 
   , 

 P46=   1-∑     
 
    , P56=   1-∑     

 
    , P66=   1-∑     

 
    

 

       0  Pab 1 

                                         

          

          ……..3.2                                                                   
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In a similar way, the generalized equations for the n
th   

 quantum are:- 

P[X
(n)

=P1]= ∑    
    ∑ { 

   ∑ { 
   ∑ { 

   ∑ { 
   ∑ {∑              

 
   

 
   }Pybc}Pycd}Pyef}Pyf1….. Pyq1   

P[X
(n)

=P2]=  ∑    
    ∑ { 

   ∑ { 
   ∑ { 

   ∑ { 
   ∑ {∑              

 
   

 
   }Pybc}Pycd}Pyef}Pyf1….. Pyq2   

P[X
(n)

=P3]=      ∑    
    ∑ { 

   ∑ { 
   ∑ { 

   ∑ { 
   ∑ {∑              

 
   

 
   }Pybc}Pycd}Pyef}Pyf1….Pyq3  ….3.4 

P[X
(n)

=P4]=      ∑    
    ∑ { 

   ∑ { 
   ∑ { 

   ∑ { 
   ∑ {∑              

 
   

 
   }Pybc}Pycd}Pyef}Pyf1….. Pyq4   

P[X
(n)

=P5]=      ∑    
    ∑ { 

   ∑ { 
   ∑ { 

   ∑ { 
   ∑ {∑              

 
   

 
   }Pybc}Pycd}Pyef}Pyf1….. Pyq5   

P[X
(n)

=P6]=      ∑    
    ∑ { 

   ∑ { 
   ∑ { 

   ∑ { 
   ∑ {∑              

 
   

 
   }Pybc}Pycd}Pyef}Pyf1….. Pyq6     

 

V. DEADLOCK ANALYSIS OF  LOTTERY SCHEDULING SCHEMES. 

 

Following  Schemes can be obtained by imposing restrictions and conditions over different states in the given generalized 

model while considering  deadlock condition :- 

5.1   Scheme –I  

It is assumed that initially process 

1. Join the ready queue in FIFO order and lottery scheduler select the oldest process i.e. P1 and dispatched this process to CPU 

where it is executed for a given period of time. and on completion of time quantum if it is partially executed then it again joins 

ready queue otherwise if its execution is completed successfully then the process will exit from system. in both cases the next 

process is selected by given lottery mechanism. Thus it is possible that same process may be selected immediately next after 

completion of former quantum. 

2. State P5 is waiting state. Where process execution is suspended and process is waiting for occurrence of the event or 

completion of the requests condition. 

3 .Any process that is waiting for long time (time limit exceeded) many reach to deadlock state. 

4. State P6 is deadlock state where the execution of process cannot progress towards completion. 

 

 

 

Figure:-5.1.1: Transition Diagram Scheme -I 
 

Initial Probability for selection of processes under the scheme-I are:- 

  

P[X
(0)

=P1] = 1,P[X
(0)

=P2] = 0,P[X
(0)

=P3] = 0,P[X
(0)

=P4] = 0,P[X
(0)

=P5] = 0,P[X
(0)

=P6] = 0 

P4 

 

PW 

 
PD 

 

P3 

 

P2 

 

P1 
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                                                  X
 (n) 

 

 

 

 

 

 

 
 

 

                                Transition Matrix for Scheme-II 

Define indicator functions   ha,b, ( a,b=1,2,3,4,5) such that 

ha,b     =0  When(   a=6,b= 1,2,3,4,5, for P6)  

ha,b      =1, Otherwise 

 

Remark   5.1.1: - Using equation 3.3 State probability after the first quantum for scheme –I are as below. 

 

P[X
(1)

=P1]     =      P[X
(0)

=P1] .P[X
(1)

=P1/ X
(0)

=P1 ] +  P[X
(0)

=P2].P[X
(1)

=P1/ X
(0)

=P2 ]  +    P[X
(0)

=P3].P[X
(1)

=P1/ X
(0)

=P3 ]   +  

P[X
(0)

=P4].P[X
(1)

=P1/ X
(0)

= P4 ]  +P[X
(0)

=P5].P[X
(1)

=P1/ X
(0)

=P5]  + P[X
(0)

=P6].P[X
(1)

=P1/ X
(0)

= P6 ]   

P[X
(1)

=P1]       =         Py11    h11      

Hence for the first   quantum ,we have the following outcomes 

P[X
(1)

=P1] = Py11 h11      ,P[X
(1)

=P2] = Py12 h12       ,P[X
(1)

=P3] = Py13  h13    ,P[X
(1)

=P4] = Py14 h14       ,P[X
(1)

=P5] = Py15  h15     

,P[X
(1)

=P6] = Py16    h16 

Remark   5.1.2: Using equation 3.4  the State probability after the first quantum for sachem –I are 

Hence the   generalized expression for   nth quantum of scheme-I are 

P[X
(n)

=P1] =∑    
     ∑ { 

   ∑ { 
   ∑ {∑           

   
 
   }Pyab hj1 } …. Pyq1 hq1  

P[X
(n)

=P2] =∑    
     ∑ { 

   ∑ { 
   ∑ {∑           

   
 
   }Pya b hb2 } …. Pyq1 hq2  

P[X
(n)

=P3] =∑    
     ∑ { 

   ∑ { 
   ∑ {∑           

   
 
   }Pyab hb13} …. Pyq1 hq3  

P[X
(n)

=P4] =∑    
     ∑ { 

   ∑ { 
   ∑ {∑           

   
 
   }Pyab hb4 } …. Pyq1 hq4  

P[X
(n)

=P5] =∑    
     ∑ { 

   ∑ { 
   ∑ {∑           

   
 
   }Pyab hb6 } …. Pyq1 hq5  

P[X
(n)

=P6] =∑    
     ∑ { 

   ∑ { 
   ∑ {∑           

   
 
   }Pab hb6 }…. Pyq1 hq6  

5.2   Scheme II:- It is assumed that : 

1.  Lottery scheduler initially always dispatched the process P1 for the execution.  

2. After completion of the time quantum lottery scheduler select next process  in sequentially manner. 

3.  Lottery scheduler cannot reach to P4 without passing through P2 and p3  in order. 

4.  Lottery scheduler comes to P4 only   P1   P2 to P3  are not ready states thus it restricts the transition from P2  to P3 and 

p4 how ever transition from P4 to p1 happens only when process P1 is in ready state. 

5.  The lottery scheduler is ideal when none of the process is in ready state. Otherwise it continues in same fashion.  

6. When any process has long waiting time. then process is  move  to deadlock state  

7. The D is an Deadlock   state and the transition from P6 to Pa ( a=1,2, 3, 4) is not possible. 

      The Transition model according to above    assumption is down below. 

  P
1
 P

2
 P

3
 P

4
 P

5
(W) P

6
(D) 

 P1 Py12 Py13 Py14 Py15 Py15 Py16 

 P2 Py21 Py22 Py23 Py24 Py25 Py26 

X(n-1) P3 Py31 Py32 Py33 Py34 Py35 Py36 

 P4 Py41 Py42 Py43 Py44 Py45 Py46 

 P
5

(W)
 Py51 Py52 Py53 Py54 Py55 Py56 

 P
6

(D
 0 0 0 0 0 1 
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Figure:-4.2.1: Transition Diagram Scheme –II 

 

thus the initial probability are 

 
P[X

(0)
=P1] = 1,P[X

(0)
=P2] = 0,P[X

(0)
=P3] = 0,P[X

(0)
=P4] = 0,P[X

(0)
=P5] = 0,P[X

(0)
=P6] = 0 

                                             X
 (n) 

 

 

 

 

 

Transition Matrix for Scheme-II 

 

Define an indicator function 

gab =0 ,     (a=1,b=1,3,4), ( a=2,b =2,4),  ( a=3,b=2,3) 

              (a=4,b=2,3,4),(a = 6,b=2,3,4,5) 

                 (a = 6,b=1,2,3,4,5) 

               Otherwise      gab =1 

The state probabilities after the first quantum are:- 

P[X
(1)

=P1]  = P[X
(0)

=P1] .P[X
(1)

=P1/ X
(0)

=P1 ] +   P[X
(0)

=P2].P[X
(1)

=P1/ X
(0)

=P2 ]  +  P[X
(0)

=P3].P[X
(1)

=P1/ X
(0)

=P3 ]     

+P[X
(0)

=P4].P[X
(1)

=P1/ X
(0)

= P4 ]  +  P[X
(0)

=P5].P[X
(1)

=P1/ X
(0)

=P5 ]  + P[X
(0)

=P6].P[X
(1)

=P1/ X
(0)

= P6 ]   

P[X
(1)

=P1]           =                Py11  g11      

Hence for the first quantum, we obtained  

  P1 P2 P3 P4 P5(W) P6  (D) 

 P1 0 Py12 0 0 Py15 Py16 

 P2 Py21 0 Py21 0 Py25 Py26 

X
(n-1)

 P3 Py31 0 0 Py34 Py35 Py36 

 P4 Py41 0 0 0 Py45 Py46 

 P5(W) Py51 0 0 0 0 Py56 

 P6  (D) 0 0 0 0 0 1 

P4 

 

PW 

 
PD 

 

P3 

 

P2 

 

P1 
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P[X
(1)

=P1] = Py11  g11    ,P[X
(1)

=P2] = Py12  g12   ,P[X
(1)

=P3] = Py13  g13      ,P[X
(1)

=P4] = Py14  g14       ,P[X
(1)

=P5] = Py15  g15            

,P[X
(1)

=P6] = Py16  g16                             

Then using (3.3) state Probability after second quantum for  scheme-II are 

P[X
(2)

=P1 ]         =∑     
 
    gb1) (    gb1)  ,     P[X

(2)
=P2]          =∑     

 
    gj2) (   gb2)   

P[X
(2)

=P3]          =∑     
 
    gb3) (    gb3)  ,    P[X

(2)
=P4]          =∑     

 
    gb4) (    gb4)   

P[X
(2)

=P5]          =∑     
 
    gb5) (    gb5)  ,     P[X

(2)
=P6  ]=       ∑     

 
    gb6) (    gb6)   

Remark 5.2.4: using (3.4) the generalized expression for n quantum of scheme-II are 

P[X
(n)

=P1] =∑    
     ∑ { 

   ∑ { 
   ∑ {∑           

   
 
   }Pyab gb1 }Pyb1 gb1 …. Pyq1 gq1  

P[X
(n)

=P2] =∑    
     ∑ { 

   ∑ { 
   ∑ {∑           

   
 
   }Pyab gb1 }Pyb1 gb1 …. Pyq1 gq1  

 P[X
(n)

=P3] =∑    
     ∑ { 

   ∑ { 
   ∑ {∑           

   
 
   }Pyab gb1 }Pyb1 gb1 …. Pyq1 gq1  

P[X
(n)

=P4] =∑    
     ∑ { 

   ∑ { 
   ∑ {∑           

   
 
   }Pyab gb1 }Pyb1 gb1 …. Pyq1 gq1  

P[X
(n)

=P5] =∑    
     ∑ { 

   ∑ { 
   ∑ {∑           

   
 
   }Pyab gb1 }Pyb1 gb1 …. Pyq1 gq1  

P[X
(n)

=P6] =∑    
     ∑ { 

   ∑ { 
   ∑ {∑           

   
 
   }Pyabgb1 }Pyb1 gb1 …. Pyq1 gq1  

6. Simulation study 

The following simulation study has performed to compare proposed two schemes mentioned in selection 4.1.1 and 4.2.1   

under a uniform setup of Markov chain model with equal and unequal transition elements probability. Lets us consider the 

following data sets. 

6.1Data Set-I 

Scheme-1: Let initial probability are   PB1 =0.2, PB2 =0.1, PB3 =0.33, PB4 =0.1, PB5 =0.27 

The unequal and equal transition probability Matrices are given as below:-  

 
                                                         

Unequal                                                                                             Equal                                                                                                  
                             

                                                 X (n)                                                                                                            X (n)   
 

 

 
  P1 P2 P3 P4 P5 P6 

 P1 
0.15

 
0.15

 
0.15

 
0.15

 
0.25

 
.0.15

 

X(n-1) 
P2 

0.15
 

0.15
 

0.15
 

0.15
 

0.25
 

0.15
 

 
P3 

0.15
 

0.15
 

0.15
 

0.15
 

0.25
 

0.15
 

 
P4 

0.15
 

0.15
 

0.15
 

0.15
 

0.25
 

0.15
 

 
P5 

0.15
 

0.15
 

0.15
 

0.15
 

0.25
 

0.15
 

 
P6 

0
 

0
 

0
 

0
 

0
 

1
 

 
  P1 P2 P3 P4 P5 P6 

 
P1 

0.11 0.12 0.16 0.13 0.36 0.12 

 
P2 

0.12 0.11 0.13 0.16 0.34 0.14 

X(n-1) 
P3 

0.1 0.09 0.12 0.13 0.46 0.1 

 
P4 

0.1 0.07 0.09 0.12 0.46 0.16 

 
P5 

0.07 0.1 0.16 0.45 0.13 0.09 

 
P6 

0 0 0 0 0 1 
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Table 6.1.1 Below, The Transition Probability for unequal and equal cases. 

 

 

Graphical pattern for Unequal   and Equal 

Data Set-I,  Scheme-I- Unequal 

 

Scheme-I- Equal 

 

No. Of quantum 

Figure 6.1.1 

No. Of quantum 

Figure 6.1.2 

 

Unequal: - The state Probability P1, P2, P3, P4, P6, and P6 of the lottery scheduling makes constant pattern when number of 

quantum n>=3 but for two and n<3 it reflects changing in the pattern. The key point is that the probability of deadlock state P6 

is higher in this data set then the other state Probabilities as shown in figure 6.1.1, but also waiting state P5 is very high over 

remaining state P1, P2, P3, P4. The Probability of scheduler in the  state P4 is a little higher value as compare to other states (P1, 

P2, P3) over different quantum which is a sign of increasing the performance efficiency of the lottery scheduler in the data sets. 

Equal: - Graphical pattern (figure 6.1.2) reveals initially higher probability of the P6 (deadlock   state) than the other states (P1, 

P2, P3, P4, and P5) but after few quantum, it decreased and follow the stable pattern. and All remaining states are showing 

independent behavior. 

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8

P1

P2

P3

P4

P5

P6 0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8

P1

P2

P3

P4

P5

P6

  P1 P2 P3 P4 P5 P6 

N=1 0.11 0.12 0.16 0.13 0.36 0.12 

N=2 0.081 0.086 0.119 0.267 0.264 0.186 

N=3 0.077 0.075 0.103 0.217 0.274 0.26 

N=4 0.069 0.07 0.096 0.129 0.239 0.323 

N=5 0.056 0.059 0.08 0.18 0.187 0.371 

N=6 0.053 0.052 0.071 0.151 0.187 0.421 

N=7 0.053 0.052 0.071 0.151 0.187 0.421 

 N=8 0.053 0.052 0.071 0.151 0.187 0.421 

Unequal 

  P1 P2 P3 P4 P5 P6 

N=1 0.15 0.15 0.15 0.15 0.25 0.15 

N=2 0.127   0.127   0.127   0.127   0.212 0 .277 

N=3  0.108  0.108  0.108  0.108  0.18 0.385 

N=4  0.091  0 .091  0 .091   0.091  0.153  0.476 

N=5  0.077   0.077   0.077   0.077  0.129 0.553 

N=6  0.065  0 .065   0.065   0.065  0.110 0.619 

N=7  0.056  0.056  0.056  0.056  0.093  0.675 

N=8 0.048 0.048 0.048 0.048 0.085 0.723 

Equal 
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Scheme-II: Let initial probability are: PB1 =1.0, PB2 =0.00, PB3 =0.00, PB4 =0.00, PB6 =0.00. 

Unequal and equal probability Matrix is follow:- 

 
Table 6.1.1 Below,  The Transition probability for unequal and equal cases. 

Graphical pattern for Unequal   and Equal 

Unequal                                                          Unequal 
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Unequal: - We empirical that, the probability of a system moving to absorbing state (deadlock state) is high as compared to 

other states. As no of quantum n ≥ 3, scheduler reflect changing in the pattern and the probability of execution of  (P1, P2, P3, 

P4. ) and waiting state gets low but probability of P1 is high over the all reaming in state(P2, P3, P4, P5). Therefore, we find that 

equal chance of receiving the job of lottery scheduler. 

Equal: -  The state probability is moved independently of the quantum variation because the pattern of distribution of state 

probabilities is almost similar including deadlock state (P6) in this figure (6.1.4). the probability of the lottery scheduler in the 

waiting  state is very high as compared to other states. The special remark for this process scheduling is that probability for the 

state P6 is very high. 

 

6.2 Data Set- II 

Scheme-1: Let initial probability are PB1 =0.21, PB2 =0.34, PB3 =0.41, PB4 =0.03, PB6 =0.01,  

Unequal and equal probability  Matrix are follow  
                                                         

Unequal                                                                                             Equal                                                                                                  
                             

                                                 X (n)                                                                                                            X (n)   
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Data Set-I,  Scheme-II- Unequal 

 

No. of quantum 

Figure 6.1.3 

    Scheme-II- Equal       

 

No. of quantum 

Figure 6.1.4 

  P1 P2 P3 P4 P5 P6 

 P1 0.13 0.13 0.13 0.13 0.35 .0.13 

X(n-1) P2 0.13 0.13 0.13 0.13 0.35 0.13 

 P3 0.13 0.13 0.13 0.13 0.35 0.13 

 P4 0.13 0.13 0.13 0.13 0.35 0.13 

 P5 0.13 0.13 0.13 0.13 0.35 0.13 

 P6 0 0 0 0 0 1 

  P1 P2 P3 P4 P5 P6 

 P1 0.15 0.08 0.11 0.11 0.16 0.47 

 P2 0.06 0.1 0.16 0.19 0.19 0.3 

X(n-1) P3 0.16 0.11 0.16 0.2 0.2 0.17 

 P4 0.1 0.12 0.18 0.29 0.1 0.21 

 P5 0.09 0.1 0.16 0.25 0.19 0.21 

 P6 0 0 0 0 0 1 

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

P1

P2

P3

P4

P5

P6 0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

P1

P2

P3

P4

P5

P6
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Table 6.2.1  Transition probability below for Unequal cases and Equal Cases. 

Graphical pattern for Unequal and Equal 

Unequal                                                                          Equal 

 
 

  Unequal:- - It comes to know that the probability of a system moving to deadlock state) is high as compared to other states. 

And all reaming state is showing equal performance including waiting state . Therefore, we find that equal chance of receiving 

the job of lottery scheduler. 

 Equal :- We analyzed that, the probability of the scheduler in the absorbing (deadlock) state is very high value as compared to 

other states over different quantum which is a sign of increasing the performance efficiency of the lottery scheduler in the data 

sets. The probability of state P2 is higher than the other states (P1, P2, P3, P4). Most of the transition   probabilities are almost 

equal in fig. (6.2.2). Therefore, this dataset Provides chance for job Processing in deadlock state as well. 

 

Scheme-II: Let initial probabilities are PB1 =1.0, PB2 =0.00, PB3 =0.00, PB4 =0.00, PB5 =0.00, Unequal and equal probability 

Matrix is follow: 

 

 

 

Data Set –II, Scheme-I-Unequal 

 

Scheme-I-Equal 

 

No. Of quantum 

Figure 6.2.1 

No. Of quantum 

Figure 6.2.2 

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

P1

P2

P3

P4

P5

P6
0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8

P1

P2

P3

P4

P5

P6
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Unequal                                                                                             Equal                                                                                                  

                             

                                                 X (n)                                                                                                            X (n)   
 

 

 

 

 

 

 

 

 
 

 

 

 

Table 6.2.1  Transition Probability below for Unequal cases and Equal Cases. 

  P1 P2 P3 P4 P5 P6 

 P1 0 0.13 0 0 .74 0.13 

X(n-1) P2 0.12 0 0.13 0 0.61 0.13 

 P3 0.13 0 0 0.13 0.61 0.13 

 P4 0.13 0 0 0 0.74 0.13 

 P5 0.13 0 0 0 0 0.87 

 P6 0 0 0 0 0 1 

  P1 P2 P3 P4 P5 P6 

 P1 0 0.20 0 0 0.50 0.30 

 P2 0.35 0 0.20 0 0.20 0.25 

X(n-1) P3 0.50 0 0 0.20 .15 0.15 

 P4 0.40 0 0 0 0.30 0.30 

 P5 0.80 0 0 0 0 0.20 

 P6 0 0 0 0 0 1 

 P1 P2 P3 P4 P5 P6 

N=1 0 0.2 0 0 0.5 0.3 

N=2 0.47 0 0.04 0 0.04 0.45 

N=3 0.052 0.094 0 0.008 0.241 0.605 

N=4 0.229 0.011 0.019 0.08 0.048 0.695 

N=5 0.052 0.046 0.005 0.004 0.119 0.779 

N=6 0.116 0.011 0.01 0.001 0.038 0.832 

N=7 0.039 0.024 0.003 0.003 0.062 0.879 

N=8 0.061 0.008 0.005 0.006 0.026 0.911 

Unequal 

 P1 P2 P3 P4 P5 P6 

N=1 0 0.13 0 0 0.74 0.13 

N=2 0.114 0 0.017 0 0.079 0.791 

N=3 0.013 0.015 0 0.003 0.095 0.877 

N=4 0.015 0.002 0.002 0 0.021 0.964 

N=5 0.004 0.002 0.0003 0.0003 0.014 0.985 

N=6 0.003 0.000

6 

0.0003 0.00004 0.005 0.998 

N=7 0.000

8 

0.000

4 

0.000008 0.00004 0.003 0.986 

N=8 0.000

5 

0.000

2 

0.00006 0.00002 0.000

9 

0.988 

Equal 

Data Set II, Scheme –II-Unequal Data Set II, Scheme –II-equal 
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Graphical pattern for Unequal and Equal 

 

Unequal:- all state Probabilities are shown independent behavior over the all quantum variance including deadlock state. But 

the special remark is that P1 state is  P4 increasing   manner after few quantum. And P2 is also high as compared to other state ( 

P3, P4,  P5) So this is a good sign for lottery scheduling. 

 Equal:- We intended that, the probability of the scheduler in the absorbing (deadlock) state is low to  high value as compared 

to other states (p1, p2, p3, p4,p 5) over different quantum which is a sign of increasing the performance efficiency of the lottery 

scheduler in the data sets. And the Probability of state P6 is higher than the other data sets. 

6.3 Data Set –III 

Scheme-1.: let initial Probability are PB1=.20, PB2=.34, PB3=.40, PB4=0.03, PB5=.03 

Unequal and equal Probability Matrix are follow:  
                                                         

Unequal                                                                                             Equal                                                                                                  
                             

                                                 X (n)                                                                                                            X (n)   
 

 

 

  

No. Of quantum 

Figure6.2.3 
No. Of quantum 

Figure6.2.4 

  P1 P2 P3 P4 P5 P6 

 P1 .18 .18 .18 .18 .1 .18 

X(n-1) P2 .18 .18 .18 .18 .1 .18 

 P3 .18 .18 .18 .18 .1 .18 

 P4 .18 .18 .18 .18 .1 .18 

 P6 .18 .18 .18 .18 .1 .18 

 P6 0 0 0 0 0 1 

  P1 P2 P3 P4 P5 P6 

 P1 0.06 0.2 0.13 0.13 0.24 0.24 

 P2 0.04 0.14 0.16 0.16 0.2 0.3 

X(n-1) P3 0.15 0.05 0.16 0.27 0.19 0.26 

 P4 0.1 0.14 0.2 0.26 0.19 0.11 

 P5 0.06 0.16 0.27 0.16 0.22 0.13 

 P6 0 0 0 0 0 1 

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

P1

P2

P3

P4

P5

P6
0

0.2
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0.6

0.8
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1 2 3 4 5 6 7 8
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P3

P4

P5

P6
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Table 6.3.1The Transition   Probabilities for Unequal and Equal Probabilities  

 

Graphical pattern for Unequal and Equal 

 

Data Set –III, Scheme-I-Unequal 

 

Scheme-I-Equal 

 

No. Of quantum 

Figure 6.2.1 

No. Of quantum 

Figure 6.2.2 

 

 

Unequal:- We experiential that, the probability of a system moving to absorbing state (deadlock state) is high as compared to 

other states. As no of quantum n ≥ 2, the scheduler  reflect changes in the pattern and the probability of working (P1, P2, P3, P4. 

) and waiting state gets high over the other states (P1, P2, P3, 4).Therefore, we find that equal chance of receiving the job of 

lottery scheduler. 

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

P1

P2

P3

P4

P5

P6
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

P1

P2

P3

P4

P5

P6

 P1 P2 P3 P4 P5 P6 

N=1 0.06 0.2 0.13 0.13 0.24 0.24 

N=2 0.059 0.101 0.152 0.148 0.157 0.394 

N=3 0.055 0.071 0.121 0.129 0.126 0.515 

N=4 0.045 0.066 0.098 0.105 0.103 0.612 

N=5 0.037 0.055 0.081 0.087 0.086 0.694 

N=6 0.031 0.046 0.068 0.072 0.071 0.762 

N=7 0.026 0.038 0.056 0.06 0.059 0.819 

N=8 0.021 0.031 0.047 0.049 0.049 0.866 

Unequal Equal 

 P1 P2 P3 P4 P5 P6 

N=1 0.18 0.18 0.18 0.18 0.1 0.18 

N=2 0.148 0.148 0.148 0.148 0.129 0.31 

N=3 0.13 0.13 0.13 0.13 0.12 0.417 

N=4 0.116 .116. 0.116 0.116 0.107 0.511 

N=6 0.103 0.103 0.103 0.103 0.095 0.595 

N=6 0.092 0.092 0.092 0.092 0.085 0.67 

N=7 0.082 0.082 0.082 0.082 0.076 0.734 

N=8 0.073 0.073 0.073 0.073 0.068 0.794 
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Equal: - We observed that, the probability of  system moving to absorbing state (deadlock state) is high as compared to other 

states (P1, P2, P3, P4,P5) and also P2 is little bit high over the remaining states.. Therefore, we find that  there is less equal 

chance of receiving the job of lottery scheduler. 

 

Scheme-II: - Let initial Probability arePB1 =1.0, PB2 =0.00, PB3 =0.00, PB4 =0.00, PB5 =0.00. 

Unequal and equal Probability Matrix are follow:  

 
                                                         

Unequal                                                                                             Equal                                                                                                  
                             

                                                 X (n)                                                                                                            X (n)   
 

 

 

 

 

 

 

 

 

 

 

Table 6.3.2The Transition   probabilities for Unequal and Equal Probabilities  

 

  P1 P2 P3 P4 P5 P6 

 P1 0 0.18 0 0 0.84 0.18 

X(n-1) P2 0.18 0 0.18 0 0.46 0.18 

 P3 0.18 0 0 0.18 .46 0.18 

 P4 0.18 0 0 0 0.64 0.18 

 P6 0.18 0 0 0 0 0.82 

 P6 0 0 0 0 0 1 

  P1 P2 P3 P4 P5 P6 

 P1 0 0.50 0 0 .25 0.25 

 P2 0.55 0 0.15 0 .15 0.15 

X(n-1) P3 0.25 0 0 0.25 0.25 0.25 

 P4 0.35 0 0 0 0.35 0.30 

 P5 0.90 0 0 0 0 0.10 

 P6 0 0 0 0 0 1 

 P1 P2 P3 P4 P5 P6 

N=1 0 0.5 0 0 0.25 0.25 

N=2 0.5 0 0.075 0 0.075 0.35 

N=3 0.087 0.25 0 0.019 0.144 0.502 

N=4 0.274 0.044 0.038 0 0.066 0.582 

N=5 0.094 0.137 0.007 0.009 0.085 0.674 

N=6 0.157 0.047 0.021 0.002 0.049 0.731 

N=7 0.076 0.079 0.008 0.006 0.053 0.789 

N=8 0.096 0.096 0.012 0.002 0.055 0.829 

Unequal Equal 

 P1 P2 P3 P4 P5 P6 

N=1 0 0.18 0 0 0.64 0.18 

N=2 0.147 0 0.033 0 0.083 0.737 

N=3 0.201 0.027 0 0.006 0.109 0.8 

N=4 0.026 0.037 0.005 0 0.145 0.968 

N=5 0.034 0.005 0.007 0.0009 0.036 0.932 

N=6 0.009 0.007 0.009 0.002 0.028 0.969 

N=7 0.009 0.002 0.002 0.002 0.002 0.97 

N=8 0.002 0.002 0.0004 0.0004 0.009 0.975 
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Graphical pattern for Unequal and Equal 
Data Set-III,  Scheme-II- Unequal 

 

Scheme-II- Equal 

 
No. Of quantum 

Figure 6.3.3 

No. Of quantum 

Figure 6.3.4 

 
Unequal:- In this graphical pattern (figure 6.3.3), we observed that state probability P1 and P2 is showing the best performance 

as compared to other states (P3, P4, P5). The special remark is that state probability P3 also perform little bit high as compared 

to other processes (P4). Although the scheduler execute more jobs as compared to previous one. But it still shows excellent 

performance, efficiency under this data set due to higher probabilities of waiting state and lower Probabilities for the stateP1, 

P2, P3, P4and P5 as compared to state P6 with Unequal data set. 

Equal:- In this graphical pattern (figure 6.3.4), we observed that state probability P1 is showing the best performance as 

compared to other states (P2, P3, P4,). The special remark is that state probability P3  also perform little bit high as compared to 

other processes (P2, P3). Thus the scheduler executes more jobs as compared to other data sets. But it still shows average 

performance, efficiency under this data set due to low  Probabilities of waiting state and lower probabilities for the stateP1, P2 

as compared to state P6 in equal data set. Therefore   this situation is good for lottery scheduling. 

 

CONCLUSION 

 

The purpose of this work describe the performance of a lottery scheduling algorithm by introducing deadlock condition and did 

a comparative analysis of two type of schemes which using Markov chain model and analyzed unequal and equal probability 

matrix with a three different data sets.  and we calculated the probability of variation over quantum in the there three datasets 

(Data set-I, Data Set II and Data Set III).  And also obtained that with decreased values in terms of number of quantum the 

probability of occurrence of deadlock also decreased proportionally that means for shorter process that requires less number of 

quantum the probability of occurrence deadlock is also proportionally less, Therefore, there are more chance to get executed 

for jobs contained in state Data set I and Data set III. Further, the transition state for higher value, probability lead to quantum 

Independence and the information overlapping occurrence in data sets (Data set-II), which shows a loss of system efficiency 

and serious degradation in performance of deadlock analysis of LR scheduling algorithms. Therefore, data sets (Data set-II) are 

not recommended for perfect utilization. Hence it is concluded that the state probabilities of the lottery-based system over these 

scheme-II are very useful that leads to improved performance. 
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