

 © 2018, IJCSE All Rights Reserved 1344

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-6, Jun 2018 E-ISSN: 2347-2693

Stack improving optimization feed with multi core task display interface

Sumalatha Aradhya

1*
, N.K. Srinath

2

1Computer Science and Engineering, R V College of Engineering, Mysuru Road, Bengaluru, Karnataka, India
2Department of Computer Science and Engineering, R V College of Engineering, Mysuru Road, Bengaluru, Karnataka, India.

*sumalatha.aradhya@cedlabs.in, Tel.: +91 9900609254

Available online at: www.ijcseonline.org

Accepted: 21/Jun/2018, Published: 30/Jun/2018

Abstract— The real time embedded software development requires expertise for developing critical software. The safety

critical embedded development has major concerns as the final target code should execute with less size and more speed. The

increased stack size and reduced execution speed lowers the performance of embedded software. In the paper, a method to

overcome the rapid growth of the stack is proposed and multicore load balancing issues are addressed. The model for stack

improving optimization feed and multi core task balancing display interface is derived in the paper. A unique approach with the

method of providing optimization hints during the development phase through interactive display interface is suggested in the

paper. The experiment is conducted by considering a concave set of functions with a task dependency derivation cost. The best

execution result being obtained by using stack, improving optimization feed interface.

Keywords—Embedded software, interactive, display interface, multicore task balancing, parallelism, programmer,

optimization, task dependency

I. INTRODUCTION

The scarcity of advanced programming tools and safety

critical environments enforces programmer to rewrite

sequential programs into parallel programs [1]. The details of

the optimization are abstracted with 20% of the code is

optimized as per Eigenmann et al. [2]. The code optimization

through compiler optimization is not opted in safety critical

systems due to the criticality of embedded software

requirements. This is because the compiler induces

extraneous code and this leads to deviation in the result. This

triggers the requirement of the programmer not only with

parallel coding proficiency, but also with code optimization

skill set. To overcome the issues, the proposed solution is to

provide an interactive display interface to the programmer

suggesting possible optimization corrections to the code. The

proposed interactive interface provides further scope of task

balancing across multiple cores while programming.

Hall et al. [3] mentioned that the existing embedded

compilers do not provide the features of designated

initializations. Hence, code automation through scripting

languages or through manual effort is a difficult task.

Pennycook et al. [4] stated that cores were kept serialized

frequently due to resource sharing conflict and

communication overheads. The existing method to resolve

these issues is through the thread-checker tools and thread

profile tools. Intel’s Thread Building Blocks [5], Terra [6],

valgrind [7] and gprof [8] are to name a few existing thread

checker and profiling tools. Thread checker and profiler tool

helps to improve the correctness of threaded applications.

However, the tools induce complexities in the hybrid

architecture environment. The complexities occur due to

inefficient task distribution and improper utilization of

processors as mentioned by Kaur et.al [9]. A task scheduling

simulator with multiple scheduling algorithms is suggested

by Vasiliu et al. [10]. Such optimization is analytically too

complex. Hence, simulation approach is a new requirement

of the critical embedded applications as the next era belongs

to code modernization. The related work of the proposed

model is discussed in section II. The mathematical model to

derive the stack optimization and task balancing logic is

discussed in section III. A. The working principles and

analysis of the derivation model is discussed in section III.B.

The section IV covers the experimental setup and discussion

of results obtained.

II. RELATED WORK

Chmaj et al. [11] and Ró˙zycki et al. [12] proposed

optimization of task balancing across cores. But, the core

wise task distribution logic had low data processing and

transmission rates. The Mathwork’s Simulink model [13] has

the continuous simulation, although it is impossible over a

digital hardware. Modelica tool proposed by Fritzson et al.

[14] addresses the simulation of industrial system

applications and automations. But, Modelica tool is not

recommended for measuring the interactive process and it

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1345

needs many external libraries [15]. Seidewitz [16] proposed

an Abstract Language Framework (ALF) tool that has the

model with more complex, stricter and more behavioural

semantics, but cannot be expressed using graphical notation.

Colored Petri as proposed by Roy et al., [17] were partly

used, though are better than Simulink as they have clear and

formal semantics. The Feedbags [18] is an application that

generates a pass-through code. Nevertheless, ReSharper and

Feedbags applications require class, interface R# and lack

interactive feedback for task balancing. Eclipse [19] is

widely used in the embedded world, but lacks interactive

suggestions to the programmer.

SWIFT is a loop interactive feedback driven framework [20].

This framework acts as a plug in compiler for any setup.

However, the users need to have a detailed knowledge of

internal representation of the optimizer. Java’s application

tool by name PMD [21] and IntelliJ IDEA tool [22] provides

stack analysis of the code, but lacks interaction with the IDE

for core load balancing. The TenAsys’s InTime [23] is an

interactive tool and determines the exact sequence and

precise timing of real time code execution. However, the tool

does not show the core balancing statistics at the front end.

The Irisa’s Salto tool [24] determines the exact sequence and

precise timing of real time code execution. The Salto tool

also suggests the interactive assembly logics to the

programmer. But, Salto tool does not show the graphical

representation of the core loads. All the tools mentioned,

namely PMD [21], IntelliJ IDEA [22], Swarm [20], InTime

[23], and Salto [24] do not suggest the stack improving

optimization logics to the programmer while coding. These

drawbacks provided motivation to design interface with

interactive displays.

III. METHODOLOGY

The embedded programmer should design and implement the

logic with respect to specific system requirements and

functional requirements. To help the programmer, an

interactive display interface has been proposed in the paper

and its logics are discussed next.

A. Derivation Model

The core wise task balancing is NP-hard (Non-Deterministic

Polynomial) optimization problem[9]. Effective load

balancing is needed to improve the performance and keep the

system in stable condition [25]. The existing optimization

logic for parallel computation of tasks is the generalization of

partitioning problem using an LPT algorithm (Longest

Processing Time) as proposed by Abdullah et al. [26]. The

derivation logic is represented by using following system

model terms.

 n:Total number of processors

 γ: The symbol represents the list with task

dependencies.

 Proci: The processor available to take the load and i
represent processors in the list and the value ranges
from 0 to n-1 where each i represents a single core

 σ: Existence of similar function set core wise

 Funciexists: No of function set mapped with similar
task dependencies

 Funcjexists: Function set to be swapped with similar
task dependencies

 S: Capacity size of the processor

 MinAvailCores: Amount of contiguous resource
available to load function mapped

Referring to look ahead selective sampling algorithm

proposed by Abdullah et al. (2016) [26], sampling set of

dependency list is obtained and formula for obtaining task

dependency list γ is represented in Eq. (1). The set of cores

available with a similar set of functions is sampled at the

interval 0.25. The sample rate of 0.25 is proven as the

minimum interval for load balancing algorithm by Falco et al

[27]. The probability of occurrence of a function to be

swapped with function in given software is an exponential

growth. The ratio of available processor and the existence of

swappable function provide the set of the dependent tasks.

Thus, with the minimal available set of cores Proci with

function data mapped to tasks, Funciexists, the task

dependency list γ is derived as follows [26]:

   





i
iexists

proc
eFunc 25.0 (1)

Where, σ represent occurrence of function and derived by

considering processor available with probability of delta

changes from its previous state.

A linearity check is done between the function set exists

between successor processors available in task distribution

list. That is, the function to be mapped in one core is

compared with another core available next. The cores are

mutually exclusive if the tasks cannot occur simultaneously.

That is, the tasks are independent and distinct. A linear

dependency equation for identical function occurrence is

derived as shown in Eq. (2).

  0)1( jexitsiexists FuncFunc (2)

Consider two sets of cores where one set of cores represents

a function to be swapped and another set of cores with the

function to be mapped. The function to be swapped and

mapped is checked across n and m set of processors. The

function is swapped by considering the size of the memory

available at that core. The formula for distribution logic

represented in Eq. (3) [27,28]

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1346

resMinAvailCo)(
1

 
nFuncProc

n

i
jexistsi (3)

The constraint for minimal set Proci requires that each task j

in function Funcjexists is assigned to at least one core in Proci

list. Therefore, balancing j task for Funcjexists must satisfy the

constraint that the sum of cores in the Proci list must not

exceed the capacity size S. From Eq. (3), it is clear that the

distribution of function task that exists in any core lies within

the range of 1 to a maximum capacity size, S. Thus, derive

minimal available set of cores, MinAvailCores as shown in

Eq. (4).

Si

mn

ji

jexist ocFunc 





 Pr

1,

1,1

 (4)

There has to be at least one minimum resource available at

MinAvailCores list to schedule independent function tasks.

The availability of resources is arbitrary constant and when

allocated is represented by using the value 1. Hence, the

default value of the dependency cost is considered as 1 when

the task depends on other core’s task, otherwise is set to 0.5

when shifted. Once the sampling set of independent and

dependent function tasks across cores are derived, final task

distribution cost of the tasks is derived.

B. Working Principles And Analysis Of The Derivation

Model

The task path shown in Fig.1 emphasizes cores with pool of

tasks. Few tasks exists in the task pool are completed only

after the completion of other tasks in other core’s task pool.

This induces dependency cost across the cores and increases

the waiting time of the task before executing next task in the

pool. The core’s task dependency cost is reduced when the

task executing in another core’s task pool is added to the

current task pool. Such linear dependency of tasks across

cores is checked and moved to or from the existing task

pools by using Eqs. (3) and (1) respectively. For further

illustration, consider example shown in Fig. 2. Core, C1 has

task pool with 9 tasks. Core C2 has task pool with 15 tasks.

Core C3 has task pool with 11 tasks and Core C4 has task

pool with 13 tasks as Fig.1

By applying eq. (2), a linear check of tasks is performed. The

task that is independent in its parent core, but linear

dependent on task in other core can be added to the mapping

list. The mapped tasks can be added to new task pool of

cores available in MinAvailCore set. The MinAvailCore set,

that is, minimum sets of cores ready to be balanced are

identified by applying Eq. (4).

Figure 1. Existing task pool across multicore before optimization

After applying distribution logic, the optimized task pool at

multicore are represented as shown in Fig. 2. Figure 2

represents new task pool and newly added tasks are shown in

red colour.

Figure 2. Existing task pool across multicore before optimization

The task balancing logic is derived through four cases.

 Case1: T2-T23 balancing at core C1. Tasks T6 and

T9 exempted from core C1. Tasks T23, T10 and T11

added newly to the core C1. Tasks T10 and T11 are

added as they are not linearly dependent on any tasks.

This extra addition reduces the load of core C2

 Case 2: T13-T34, T17-T35 balancing at core C2.

Task T23 is exempted from core C2. Tasks T34 and

T35 are added newly to the core C2. Through Eq. (3),

it is found that the capacity of core C2 was exceeding.

Both predecessor and successor cores are compared

by referring to the task distribution list obtained using

Eqs. (1) and (2). The independent tasks that available

next to execute in the task distribution list are

considered for such cases. The minimal sets of cores

available for loading are derived by using Eq. (4).

The core with least load considered for loading extra

tasks

 Case 3: T26-T6 balancing at core C3. Tasks T34 and

T35 are exempted from core C3. Task T6 is added

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1347

newly to the core C3. Task T35 was needed by task

T17 at core C2 and by task T43 at core C3. Based on

the derivation logic discussed, the task is added to the

task pool of core C2. That is, by mapping the task set

using Eqs. (1) and (3).

 Case 4: T29-T9 balancing at core C4. None of the

tasks are exempted from core C4 and task T9 is added

newly to the core C4.

The analysis of the multi core task balancing similar to above

cases along with task dependency cost matrix are shown in

Figs.3 and 4

C o re 1
Ta s k

C o s t

De p e n d

e n c y

C o s t

C o re 2
Ta s k

C o s t

De p e n d e

n c y C o s t
C o re 3

Ta s k

C o s t

De p e n d

e n c y

C o s t

C o re

4

Ta s k

C o s t

De p e n d

e n c y

C o s t
T1 1 T12 1 T25 1 T36 1

T2 1 1 T13 1 1 T26 1 1 T37 1

T3 1 T14 1 T27 1 T38 1 1

T4 1 T15 1 T28 1 T39 1

T5 1 T16 1 T29 1 T40 1

T6 1 T17 1 T30 1 T41 1

T7 1 T18 1 T31 1 T42 1 1

T8 1 T19 1 T32 1 T43 1

T9 1 T20 1 T33 1 T44 1

T10 1 T21 1 T34 1 T45 1

T11 1 T22 1 T35 1 T46 1

T12 1 T23 1 T47 1

T14 1 1 T24 1 T48 1

T15 1

Core 1

Load
16

Core 2

Load
14

Core 3

Load
12

Core 4

Load
15

Task Dependency Cost Matrix –with no core load balancing

Figure 3. Task Depencency Cost Matrix –with no core load balancing

In Figure 3, four cores with existing task pool are shown.

With the mutual exclusion of tasks by cores, independent

tasks are shifted to corresponding core. The optimized core

task load balancing analysis is shown in Fig. 4.

In Figure 4, the tasks are balanced across cores. The tasks

shifted are available next to the corresponding linear

dependent task to the pool. When task dependency cost across

cores gets reduced, an effective task balancing is achieved.

Figure 5 represents the best approximation solution achieved

through core load balancing. The vertical axis shows the task

dependency cost and horizontal axis shows the cores in the

list. The red bar represents reduced task dependency cost core

wise and the blue bar represents a task dependency cost

without core load balancing. This approximation solution is

provided to the display interface library.

C o re 1
Ta s k

C o s t

De p e n d

e n c y

C o s t

C o re 2
Ta s k

C o s t

De p e n d e

n c y C o s t
C o re 3

Ta s k

C o s t

De p e n d

e n c y

C o s t

C o re

4

Ta s k

C o s t

De p e n d

e n c y

C o s t
T1 1 T12 1 T25 1 T37 1

T2 1 0.5 T13 1 T26 1 T38 1 1

T23 1 T34 1 T9 1 0.5 T39 1

T3 1 T14 1 T27 1 T40 1

T4 1 T15 1 T28 1 T41 1

T5 1 T16 1 T29 1 T42 1 1

T6 1 T17 1 T30 1 T43 1

T7 1 T35 1 T31 1 T44 1

T8 1 T18 1 T32 1 T45 1

T10 1 T19 1 T33 1 T46 1

T11 1 T20 1 T36 1 T47 1

T22 1 T21 1 T24 1 T48 1

Core 1

Load
12.5

Core 2

Load
12

Core 3

Load
12.5

Core 4

Load
14

Task Dependency Cost Matrix –with core load balancing

Figure 4. Task Depencency Cost Matrix –with core load balancing

Figure 5. Best Approximation Solution across cores

IV. RESULTS AND DISCUSSION

For testing or research purpose, single core ARM processor

from ARDUINO UNO board is considered and environment

test set up as shown in Fig.7. In the experiment, single core

functional balancing is used to prove the concept that the

multi core load balancing achieved is as similar to balancing

the single core. In the experiment by referring to the single

core task balancing, simple concept of toggling GPIO pins is

used. The GPIO pins are toggled with a delay of 10

microseconds by enabling and disabling the GPIO through

nested function calls and without nested function calls.

The timing analysis of the scenario with a nested function

call is captured in CRO snapshots as depicted in Fig. 7.

Similarly, the timing analysis of the scenario without a

nested function call is captured in CRO snapshots as depicted

in Fig. 8. The scenario produced with nested function calls

resulting in rapid stack growth attains the execution time of

3.120 ms as shown in Fig. 7.

Figure 6. Test Envoirment setup

The scenario produced without nested function calls resulting

in execution time of 1.000 ms as shown in Fig. 8. The

compiler does not optimize the code because in every calling

function few tasks are running. Hence, by the time required

function is called, an extra time of 2.120 ms is elapsed.

Overall, debugging the cause of 2.120ms delay in real time

critical system impacts the time and cost of the programmer

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1348

Figure 7. Senario with nested function calls- increasing in rapid stack

Resolving time related issues at the stage of code

development avoids extensive core overloading and is

evident from the result shown in Figs. 7 and 8.

Figure 8. Senario with nested calls- decrease in rapid stack growth

The call stack depth becomes less and returns from the stack

frame with unwanted memory references are skipped. Such

optimal solution when given through the interactive

suggestions and core load chart as shown in Fig. 9, the

programmer can write an optimized code while coding. The

Figure 9 shows the core load chart to hint programmer to set

task affinity with further scope of optimizing the load across

cores. The bar chart with no core balancing displays 13%

task load at the core. The bar chart with 5% core load

balancing displays 5% of task load at the core. It is evident

from the result that with the reduction of call stack depth and

with the appropriate task load distribution at the cores, the

task load on the core is reduced by 8%. The overall task

execution time at the target is optimized due to optimal task

load at the core. Hence, the best approximation solution is

achieved. The interactive display interface acts as an

optimization, carrier at the front end and at every phase

completion of the code. The interactive IDE generates the

report with graphical representation while the development is

in progress.

Figure 9. Intractive display interface to the programmer

V. CONCLUSION AND FUTURE SCOPE

A unique idea to help programmer through interactive display

interface is proposed in the paper. The interface provides

statistics of task balancing of multi cores during the

development stage. The objective to achieve best execution

speed is attained by using a derivation model of stack

improving optimization feed interface. The stack growth is

reduced by optimizing the task balancing logic across cores

and experiments are conducted by considering function calls

in use. The multi core task balancing derivation logic

discussed in the paper provides the best approximation

solution to obtain decreased stack size and increased

execution time. The interactive display interface provides

further scope of code optimization logic along with core wise

load chart representation of the display. The multicore task

balancing interface hints the programmer to allocate the cores

with balanced loads. By referring to the interactive display

interface, programmers can write optimized code while

coding. Thus, this paper contributes successfully for the

future embedded programming world. The next scope of

work is to derive worst case task distribution logic for the

stack improving optimization feed.

VI. REFERENCES

[1] Bahl, A. K.; Baltzer, O.; Rau-Chaplin, A.; and Varghese, B.

(2012). Parallel Simulations for Analysing Portfolios of

Catastrophic Event Risk. Workshop Proceedings of the

International Conference of High Performance Computing,

Networking, Storage and Analysis (SC12).

[2] Eigenmann, Rudol.; Hoeflinger, Jay.; and Padua, David, (1998).

On the Automatic Parallelization of the Perfect Benchmarks. IEEE

Transactions on Parallel and Distributed Systems, volume 9,

number 1, January 1998, pages 5-23.

[3] Hall, Mary; Padua, David.; and Pingali, Keshav. (2009). Compiler

Research: The Next 50 Years, FEBRUARY 2009 VOL. 52,

COMMUNICATIONS OF THE ACM, pp. 60-67,

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1349

[4] Pennycook, S.J.; Hughes, C.J..; Smelyanskiy, M.; and A, S.

(2013). Exploring SIMD for Molecular Dynamics Using Intel R

Xeon Processors and Intel R Xeon PhiTMCoprocessors , Parallel

Computing Lab, Intel Corporation, IEEE publication, 2013

[5] Contreas, G., and Martonosi, M. (2008) Characterizing and

improving the performance of Intel threading building blocks. In

4th International Symposium on Workload Characterization

(IISWC 2008), Seattle, Washington, USA, September 14- 16,

2008 (2008), pp. 57–66

[6] DeVito, Zachary.; Hegarty, James.; Aiken, Alex.; Hanrahan, Pat.;

and Vitek, Jan. (2013). Terra: A Multi-Stage Language for High

Performance Computing PLDI13 June 16-22, 2013, ACM

[7] Nethercote, Nicholas; Seward, Julian. (2007). "Valgrind: A

Framework for Heavyweight Dynamic Binary Instrumentation".

Proceedings of ACM SIGPLAN 2007 Conference on

Programming Language Design and Implementation (PLDI 2007).

[8] Graham, Susan L.; Kessler, Peter B.; and Mckusick, Marshall

K.(1982). gprof: a Call Graph Execution Profiler, Proceedings of

the SIGPLAN '82 Symposium on Compiler Construction,

SIGPLAN Notices, Vol. 17, No 6, pp. 120-126

[9] Sapinderjit Kaur, Kirandeep. Kaur, Amit.Chhabra, Parallel Job

Scheduling Using Grey Wolf Optimization Algorithm for

Heterogeneous Multi-Cluster Environment, International Journal

of Computer Sciences and Engineering (IJCSE), Volume 5, Issue

10, E-ISSN: 2347-2693, Oct 2017, pp 44-53.

[10] Vasiliu, Laura.; Pop, Florin.; Negru, Catalin.; and Mocanu,

Mariana, (2017). A hybrid scheduler for many task computing in

big data systems. Int. J. Appl. Math. Comput. Sci., 2017, Vol. 27,

No. 2, m`, 385–399

[11] Chmaj, G.; Walkowiak, K.; Tarnawski, M.; and Kucharzak,

M.(2012). Heuristic algorithms for optimization of task allocation

and result distribution in peer-to-peer computing systems,

International Journal of Applied Mathematics and Computer

Science 22(3): 733–748,

[12] Ró˙zycki, R.; Waligóra, G.; and Weglarz, J.(2016). Scheduling

preemptable jobs on identical processors under varying availability

of an additional continuous resource, International Journal of

Applied Mathematics and Computer Science 26(3): 693–706,

[13] Mathwork’s Simulink Tool R2017b (2017). Generate C and C++

code optimized for embedded systems, MathWorks.

[14] Fritzson, Peter.; Bachmann, Bernhard.; Moudgalya, Kannan,;

Casella, Francesco.; Lie, Bernt.; Kofranek, Jiri,.; Haumer,

Anton,.; Geusen, Christoph.Nytsch.; and Vanfretti, Luigi (2017).

Introduction to Modelica with Examples in Modeling Technology,

and Applications, Modelica Publication, 2017

[15] Frenkel, Jens.; Schubert, Christian.; Kunze, Günter.; Fritzson,

Peter .; Sjölund , Martin.; and Pop, Adrian (2011).Towards a

Benchmark Suite for Modelica Compilers: Large Models, 8th

International Modelica Conference - Dresden, Germany - 20-22

March 2011, ISBN: 978-91-7393-096-3

[16] Seidewitz, Papyrus.Ed (2015). Tool Paper: Combining Alf and

UML in Modeling Tools – An Example with Model Driven

Solutions, A specification by CEA, LIST.

[17] Roy, Nilabja.; Dabholkar, Akshay.; Hamm, Nathan.; Dowdy,

Larry.; and Schmidt, Douglas (2008). Modeling Software

Contention Using Colored Petri Nets, MASCOTS

2008, Baltimore, MD, USA

[18] Amann, S.; Proksch, S.; and Nadi, S (2016). FeedBaG: An

Interaction Tracker for Visual Studio, In Proceedings of the 24th

International Conference on Program Comprehension Tool Track,

2016

[19] Vogel, Lars (2013). Eclipse IDE: Java programming, debugging,

unit testing, task management and Git version control with

Eclipse (3rd ed.). Leipzig: Vogella. ISBN 978-3943747041.

[20] Gonnet, Pedro.; Schallery, Matthieu.; Theunsyz, Tom.; and Chalk

Aidan B. G. (2013). SWIFT - Fast algorithms for multi resolution

SPH on multi core architectures, 8th international SPHERIC

workshop Trondheim, Norway, June 4-6, 2013

[21] Rutar, Nick.; Almazan, Christian. B.; and Foster, Jeffrey.S

(2004), "A Comparison of Bug Finding Tools for Java". ISSRE '04

Proceedings of the 15th International Symposium on Software

Reliability Engineering, IEEE

[22] Saunders, Stephen; Fields, Duane K.; Belayev, Eugene (March 1,

2006), IntelliJ IDEA in Action (1st ed.), Manning, p. 450, ISBN 1-

932394-44-3

[23] Neumann, Dean.; Kulkarni, Dileep.; Kunze, Aaron.; Rogers,

Gerald.; Verplanke, Edwin. (August 2006). Intel Virtualization

Technology in Embedded and Communications Infrastructure

Applications, Intel Technology Journal of application of

virtualization to embedded systems.

[24] Bodin, Francois.; Chamski, Zbigniew.; Eisenbeis, Christine.;

Rohou, Erven.; and Seznec, Andre. (1997). Salto: GCDS, A

Compiler Strategy for Trading Code Size Against Performance in

Embedded Applications, systems Pro jet CAPS Publication

internet ,1153 ,December 1997, from https://hal.archives-

ouvertes.fr/inria-00073718/document

[25] Deepali Simaiya, Raj Kumar Paul, “Review of Various

Performcae Evaluation Issues and Efficient Load Balancing for

Cloud Computing” IJSRCSEIT, Mar-Apr;3(3) :pp. 943-951, 2018

[26] Abdullah, Loai.; and Shinshoni, Lian. (2016). Look Ahead

Selective Sampling for Incomplete Data, International Journal of

Applied Mathematics and Computer Science., 2016, Vol. 26, No.

4, 871–884

[27] Falco, I. De.; Laskowski, E.; Olejnik, R.; Scafuri1, U.; Tarantino,

E.; Tudruj, M. (2013). Load Balancing in Distributed Applications

Based on Extremal Optimization, Applications of Evolutionary

Computation, Springer Verlag (Ed.) (2013) pp. 52-61

[28] Korte, Bernhard.; and Vygen, Jens.(2006). Bin-Packing,

Combinatorial Optimization: Theory and Algorithms, Algorithms

and Combinatorics 21, Springer, pp.426–441, ISBN 978-3-540-

25684-7

Authors Profile

Mrs. Sumalatha Aradhya received B E degree
from Dr. Ambedkar Institute of Technology,
Bangalore in year 2000 and M Tech from M V
J College of Engineering, Bangalore in year
2006 and currently perceives her PhD in the
field of parallel computing from R V College
of Engineering, Bangalore. The author has
16+ years of experience with diversified
exposures to telecom, avionics and memory computing areas across
the industries such as IntelliNet Technologies, Bangalore; L & T
Infotech, Bangalore; HCL Technologies, Bangalore and Quest
Global, Bangalore. Her research interests are compilers, high
performance computing, and embedded systems

DR.N K Srinath is currently working as Dean of
Academics at R V College of Engineering,
Bangalore. He has 33 plus year of experience
in teaching and his area of research are
systems engineering and operations research.
He has more than 52 international journal
publications and he is author of several text
books related to microprocessors and data base
systems. He served as advisory committee member for various
national and international proceedings, and was part of expert
committee member of UGC as chairman and is active member of
several education bodies’ advisory committees.

http://www.vogella.com/books/eclipseide.html
http://www.vogella.com/books/eclipseide.html
http://www.vogella.com/books/eclipseide.html
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-3943747041
https://en.wikipedia.org/wiki/Manning
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-932394-44-3
https://en.wikipedia.org/wiki/Special:BookSources/1-932394-44-3

