
 © 2019, IJCSE All Rights Reserved 1204

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-6, June 2019 E-ISSN: 2347-2693

A Comparison of while, do-while and for loop in C programming language

based on Assembly Code Generation

J. Makhijani
1*

, M.Niranjan
2
, Y. Sharma

3

1
Department of Computer Science & Engineering, Rustamji Institute of Technology, Tekanpur, Gwalior, India

2
 Department of Computer Applications, Rustamji Institute of Technology, Tekanpur, Gwalior, India

3
Department of Computer Science & Engineering, Rustamji Institute of Technology, Tekanpur, Gwalior, India

*Corresponding Author: j_makhijani@yahoo.com

DOI: https://doi.org/10.26438/ijcse/v7i6.12041211 | Available online at: www.ijcseonline.org

Accepted: 17/Jun/2019, Published: 30/Jun/2019
Abstract— C is a programming language which is the most powerful and useful language ever for the programmers and

developers. Like all the modern programming languages, the C language also has many control statements out of which five

are iterative statements, i.e., while, do-while and for. These three statements are meant for use in same conditions, but which

one is better. The performance of these three statement does not compared by the novice programmers. So, a basic knowledge

of performance of these loops should be there. This comparison will guide novice programmers to use these loops efficiently.

The comparison can be done by counting the execution time but that can depend on other factors also like CPU usage by other

programs or services etc. But a very efficient way to compare is the comparison of Assembly Instruction generated by a

program, so here we are presenting a comparison based on the assembly code generation by each loop which can be seen by

the object file created just after the compilation.

Keywords— while, do-while, for, assembly code

I. INTRODUCTION

C is a programming language which is even popular from

more than two decades. It is a procedural programming

language which provides so many features. It has low-level

access of memory, it has very simple keywords and it also

has very clean programming style. These features makes it

very useful and popular.

A very useful feature of every programming language is

control statements. A control statement specifies the flow of

program control or it can be said that which instruction

should be executed and which should not be. Control

statements makes possible to make decision for execution of

one or more statements, it make decision to perform task

repeatedly, and it make decision to jump from one statement

to other statement.

C programming language has four types of control

statements, Decision making statements, selection

statements, iteration statements and jump statements. The if-

else statement, nested-if statement are the decision making

statement. The switch-case statement is the selection control

statement. The while statement, do-while statement and for

statement are iteration statements. The goto, break, continue

and return statements are the jump statements.

The documentation and examples of these control statements

are easily available, but the comparison in these statements

(in same category) is not available in detail. The learners and

programmers does not compare them, so use any one of them

randomly or as per their compatibility. In this research paper,

we are going to give a comparison of iteration control

statements, i.e., while statement, do-while statement and for

statement.

II. INTRODUCTION TO WHILE STATEMENT

While statement is the most basic iteration control statement

of c programming language. The while statement has a

conditional expression which decides the execution of

statements which are given in while block. If condition is

true, the while-block-statements get executed otherwise not.

Basic syntax of while is as [2]:

while(conditional expression)

{

 one or more statements;

}

The important thing in this statement is that if condition

found false in first iteration, then statements given in while-

block will not executed even once [1].

III. INTRODUCTION TO DO-WHILE STATEMENT

Do-while statement is little different from while-statement.

Like while statement, the do-while statement also has a

conditional expression (which are given in while block)

which decides the execution of statements. If condition is

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1205

true, the while-block-statements get executed otherwise not.

The difference from while block is that do-while has

conditional expression in the end of statement where while

statement has it in the start. Basic syntax of do-while is as

[2]:

do

{

 one or more statements;

} while(conditional expression);

The important thing in this statement is that if condition

found false in first iteration, then also the statements will

execute once. This assure executions of statements at-least

once [1].

IV. INTRODUCTION TO FOR STATEMENT

For statement is very similar to while statement in behavior.

This statement also has a conditional statement which is

responsible for the execution of statements under for block.

If statement is true, then statement gets executed otherwise

not. Basic syntax of for statement is as under [2]:

for(expression 1, expression 2, expression 3)

{

 one or more statements;

}

Here expression 1 is to initialize the control variable,

expression 2 is the conditional expression and expression 3 is

the control variable’s value modifier statement or to

increment/decrement in control variable’s value.

Although all these statements are meant for similar work, i.e.

repetition of one or more statement, the performance of them

may be different. Our aim is to analyze the workability of

these statements [1].

V. CODE FOR COMPARISON

Here we are taking three types of code for each loop. First

which is just printing “Hello World!”. No arithmetic or

logical calculation is here. Second one is with arithmetic

expression, so we are using the general logic of printing the

table of n and n is provided by user at runtime and the third

one is with nesting of loop where we are providing the code

for sorting of 10 numbers. Here these 10 numbers are static,

i.e., provided in program. The code with all three loops is as

under:

A. Code for Case-1 (print “Hello World!” ten times)

While loop

#include<stdio.h>

int main(){

 int i=0;

 while(i<10) {

 printf("Hello World!\n");

 i++;

 } return 0;

}

Do-while loop

#include<stdio.h>

int main(){

 int i=0;

 do {

 printf("Hello World!\n");

 i++;

 }while(i<10);

 return 0;

}

For loop

#include<stdio.h>

int main(){

 int i=0;

 for(i=0;i<10;i++) {

 printf("Hello World!\n");

 }

 return 0;

}

B. Code for Case-2 (loop with arithmetic operation, i.e.,

printing the table)

While loop

include<stdio.h>

int main(){

 int i=1,n=0;

 printf("Enter number : ");

 scanf("%d",&n);

 while(i<=10) {

 printf("%d * %d = %d\n",n,i,n*i);

 i++;

 } return 0;

}

Do-while loop

#include<stdio.h>

int main(){

 int i=1,n=0;

 printf("Enter number : ");

 scanf("%d",&n);

 do {

 printf("%d * %d = %d\n",n,i,n*i);

 i++;

 }while(i<=10);

 return 0;

}

For loop

#include<stdio.h>

int main(){

 int i=1,n=0;

 printf("Enter number : ");

 scanf("%d",&n);

 for(i=1;i<=10;i++) {

 printf("%d * %d = %d\n",n,i,n*i);

 }

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1206

 return 0;

}

C. Code for Case-3 (nesting of loop for sorting of 10

numbers)

While loop

#include<stdio.h>

int main(){

 int i=0,j=0,n[]={4,2,5,8,1,10,9,6,7,3},temp;

 while(i<9) {

 j=i;

 while(j<10) {

 if(n[i]>n[j]) {

 temp=n[i];

 n[i]=n[j];

 n[j]=temp;

 } j++;

 } i++;

 }

 i=0;

 while(i<10) {

 printf("%d\n",n[i]);

 i++;

 }return 0;

}

Do-while loop

#include<stdio.h>

int main(){

 int i=0,j=0,n[]={4,2,5,8,1,10,9,6,7,3},temp;

 do {

 j=i;

 do {

 if(n[i]>n[j]) {

 temp=n[i];

 n[i]=n[j];

 n[j]=temp;

 }j++;

 }while(j<10);

 i++;

 }while(i<9);

 i=0;

 do {

 printf("%d\n",n[i]);

 i++;

 }while(i<10);

 return 0;

}

For loop

#include<stdio.h>

int main(){

 int i=0,j=0,n[]={4,2,5,8,1,10,9,6,7,3},temp;

 for(i=0;i<9;i++) {

 for(j=i;j<10;j++) {

 if(n[i]>n[j]) {

 temp=n[i];

 n[i]=n[j];

 n[j]=temp;

 }}}

 for(i=0;i<10;i++) {

 printf("%d\n",n[i]);

 } return 0;

}

VI. PERFORMANCE ANALYSIS

To analyze performance of any statement, the best way is to

analysis of assembly code generated by a statement. So, we

analyzed the assembly code of every code. Here we are using

gcc compiler for compiling and generating the assembly

code. The assembly code (only for executable section) of

input code is as under:

A. Assembly Code for Case-1 (print “Hello World!” ten

times)

While loop

00000000 <_main>:

 0: 55 push %ebp

 1: 89 e5 mov %esp,%ebp

 3: 83 e4 f0 and $0xfffffff0,%esp

 6: 83 ec 20 sub $0x20,%esp

 9: e8 00 00 00 00 call e <_main+0xe>

 e: c7 44 24 1c 00 00 00 movl

$0x0,0x1c(%esp)

 15: 00

 16: eb 11 jmp 29 <_main+0x29>

 18: c7 04 24 00 00 00 00 movl $0x0,(%esp)

 1f: e8 00 00 00 00 call 24 <_main+0x24>

 24: 83 44 24 1c 01 addl $0x1,0x1c(%esp)

 29: 83 7c 24 1c 09 cmpl $0x9,0x1c(%esp)

 2e: 7e e8 jle 18 <_main+0x18>

 30: b8 00 00 00 00 mov $0x0,%eax

 35: c9 leave

 36: c3 ret

 37: 90 nop

Do-while loop

00000000 <_main>:

 0: 55 push %ebp

 1: 89 e5 mov %esp,%ebp

 3: 83 e4 f0 and $0xfffffff0,%esp

 6: 83 ec 20 sub $0x20,%esp

 9: e8 00 00 00 00 call e <_main+0xe>

 e: c7 44 24 1c 00 00 00 movl

$0x0,0x1c(%esp)

 15: 00

 16: c7 04 24 00 00 00 00 movl $0x0,(%esp)

 1d: e8 00 00 00 00 call 22 <_main+0x22>

 22: 83 44 24 1c 01 addl $0x1,0x1c(%esp)

 27: 83 7c 24 1c 09 cmpl $0x9,0x1c(%esp)

 2c: 7e e8 jle 16 <_main+0x16>

 2e: b8 00 00 00 00 mov $0x0,%eax

 33: c9 leave

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1207

 34: c3 ret

 35: 90 nop

 36: 90 nop

 37: 90 nop

For loop

00000000 <_main>:

 0: 55 push %ebp

 1: 89 e5 mov %esp,%ebp

 3: 83 e4 f0 and $0xfffffff0,%esp

 6: 83 ec 20 sub $0x20,%esp

 9: e8 00 00 00 00 call e <_main+0xe>

 e: c7 44 24 1c 00 00 00 movl

$0x0,0x1c(%esp)

 15: 00

 16: c7 44 24 1c 00 00 00 movl

$0x0,0x1c(%esp)

 1d: 00

 1e: eb 11 jmp 31 <_main+0x31>

 20: c7 04 24 00 00 00 00 movl $0x0,(%esp)

 27: e8 00 00 00 00 call 2c <_main+0x2c>

 2c: 83 44 24 1c 01 addl $0x1,0x1c(%esp)

 31: 83 7c 24 1c 09 cmpl $0x9,0x1c(%esp)

 36: 7e e8 jle 20 <_main+0x20>

 38: b8 00 00 00 00 mov $0x0,%eax

 3d: c9 leave

 3e: c3 ret

 3f: 90 nop

B. Assembly for Case-2 (loop with arithmetic operation,

i.e., printing the table)

While loop

00000000 <_main>:

 0: 55 push %ebp

 1: 89 e5 mov %esp,%ebp

 3: 83 e4 f0 and $0xfffffff0,%esp

 6: 83 ec 20 sub $0x20,%esp

 9: e8 00 00 00 00 call e <_main+0xe>

 e: c7 44 24 1c 01 00 00 movl

$0x1,0x1c(%esp)

 15: 00

 16: c7 44 24 18 00 00 00 movl

$0x0,0x18(%esp)

 1d: 00

 1e: c7 04 24 00 00 00 00 movl $0x0,(%esp)

 25: e8 00 00 00 00 call 2a <_main+0x2a>

 2a: 8d 44 24 18 lea 0x18(%esp),%eax

 2e: 89 44 24 04 mov %eax,0x4(%esp)

 32: c7 04 24 11 00 00 00 movl $0x11,(%esp)

 39: e8 00 00 00 00 call 3e <_main+0x3e>

 3e: eb 30 jmp 70 <_main+0x70>

 40: 8b 44 24 18 mov 0x18(%esp),%eax

 44: 0f af 44 24 1c imul 0x1c(%esp),%eax

 49: 89 c2 mov %eax,%edx

 4b: 8b 44 24 18 mov 0x18(%esp),%eax

 4f: 89 54 24 0c mov %edx,0xc(%esp)

 53: 8b 54 24 1c mov 0x1c(%esp),%edx

 57: 89 54 24 08 mov %edx,0x8(%esp)

 5b: 89 44 24 04 mov %eax,0x4(%esp)

 5f: c7 04 24 14 00 00 00 movl $0x14,(%esp)

 66: e8 00 00 00 00 call 6b <_main+0x6b>

 6b: 83 44 24 1c 01 addl $0x1,0x1c(%esp)

 70: 83 7c 24 1c 0a cmpl $0xa,0x1c(%esp)

 75: 7e c9 jle 40 <_main+0x40>

 77: b8 00 00 00 00 mov $0x0,%eax

 7c: c9 leave

 7d: c3 ret

 7e: 90 nop

 7f: 90 nop

Do-while loop

00000000 <_main>:

 0: 55 push %ebp

 1: 89 e5 mov %esp,%ebp

 3: 83 e4 f0 and $0xfffffff0,%esp

 6: 83 ec 20 sub $0x20,%esp

 9: e8 00 00 00 00 call e <_main+0xe>

 e: c7 44 24 1c 01 00 00 movl

$0x1,0x1c(%esp)

 15: 00

 16: c7 44 24 18 00 00 00 movl

$0x0,0x18(%esp)

 1d: 00

 1e: c7 04 24 00 00 00 00 movl $0x0,(%esp)

 25: e8 00 00 00 00 call 2a <_main+0x2a>

 2a: 8d 44 24 18 lea 0x18(%esp),%eax

 2e: 89 44 24 04 mov %eax,0x4(%esp)

 32: c7 04 24 11 00 00 00 movl $0x11,(%esp)

 39: e8 00 00 00 00 call 3e <_main+0x3e>

 3e: 8b 44 24 18 mov 0x18(%esp),%eax

 42: 0f af 44 24 1c imul 0x1c(%esp),%eax

 47: 89 c2 mov %eax,%edx

 49: 8b 44 24 18 mov 0x18(%esp),%eax

 4d: 89 54 24 0c mov %edx,0xc(%esp)

 51: 8b 54 24 1c mov 0x1c(%esp),%edx

 55: 89 54 24 08 mov %edx,0x8(%esp)

 59: 89 44 24 04 mov %eax,0x4(%esp)

 5d: c7 04 24 14 00 00 00 movl $0x14,(%esp)

 64: e8 00 00 00 00 call 69 <_main+0x69>

 69: 83 44 24 1c 01 addl $0x1,0x1c(%esp)

 6e: 83 7c 24 1c 0a cmpl $0xa,0x1c(%esp)

 73: 7e c9 jle 3e <_main+0x3e>

 75: b8 00 00 00 00 mov $0x0,%eax

 7a: c9 leave

 7b: c3 ret

For loop

00000000 <_main>:

 0: 55 push %ebp

 1: 89 e5 mov %esp,%ebp

 3: 83 e4 f0 and $0xfffffff0,%esp

 6: 83 ec 20 sub $0x20,%esp

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1208

 9: e8 00 00 00 00 call e <_main+0xe>

 e: c7 44 24 1c 01 00 00 movl

$0x1,0x1c(%esp)

 15: 00

 16: c7 44 24 18 00 00 00 movl

$0x0,0x18(%esp)

 1d: 00

 1e: c7 04 24 00 00 00 00 movl $0x0,(%esp)

 25: e8 00 00 00 00 call 2a <_main+0x2a>

 2a: 8d 44 24 18 lea 0x18(%esp),%eax

 2e: 89 44 24 04 mov %eax,0x4(%esp)

 32: c7 04 24 11 00 00 00 movl $0x11,(%esp)

 39: e8 00 00 00 00 call 3e <_main+0x3e>

 3e: c7 44 24 1c 01 00 00 movl

$0x1,0x1c(%esp)

 45: 00

 46: eb 30 jmp 78 <_main+0x78>

 48: 8b 44 24 18 mov 0x18(%esp),%eax

 4c: 0f af 44 24 1c imul 0x1c(%esp),%eax

 51: 89 c2 mov %eax,%edx

 53: 8b 44 24 18 mov 0x18(%esp),%eax

 57: 89 54 24 0c mov %edx,0xc(%esp)

 5b: 8b 54 24 1c mov 0x1c(%esp),%edx

 5f: 89 54 24 08 mov %edx,0x8(%esp)

 63: 89 44 24 04 mov %eax,0x4(%esp)

 67: c7 04 24 14 00 00 00 movl $0x14,(%esp)

 6e: e8 00 00 00 00 call 73 <_main+0x73>

 73: 83 44 24 1c 01 addl $0x1,0x1c(%esp)

 78: 83 7c 24 1c 0a cmpl $0xa,0x1c(%esp)

 7d: 7e c9 jle 48 <_main+0x48>

 7f: b8 00 00 00 00 mov $0x0,%eax

 84: c9 leave

 85: c3 ret

 86: 90 nop

 87: 90 nop

C. Assembly for Case-3 (nesting of loop for sorting of 10

numbers)

While loop

00000000 <_main>:

 0: 55 push %ebp

 1: 89 e5 mov %esp,%ebp

 3: 83 e4 f0 and $0xfffffff0,%esp

 6: 83 ec 50 sub $0x50,%esp

 9: e8 00 00 00 00 call e <_main+0xe>

 e: c7 44 24 4c 00 00 00 movl

$0x0,0x4c(%esp)

 15: 00

 16: c7 44 24 48 00 00 00 movl

$0x0,0x48(%esp)

 1d: 00

 1e: c7 44 24 1c 04 00 00 movl

$0x4,0x1c(%esp)

 25: 00

 26: c7 44 24 20 02 00 00 movl

$0x2,0x20(%esp)

 2d: 00

 2e: c7 44 24 24 05 00 00 movl

$0x5,0x24(%esp)

 35: 00

 36: c7 44 24 28 08 00 00 movl

$0x8,0x28(%esp)

 3d: 00

 3e: c7 44 24 2c 01 00 00 movl

$0x1,0x2c(%esp)

 45: 00

 46: c7 44 24 30 0a 00 00 movl

$0xa,0x30(%esp)

 4d: 00

 4e: c7 44 24 34 09 00 00 movl

$0x9,0x34(%esp)

 55: 00

 56: c7 44 24 38 06 00 00 movl

$0x6,0x38(%esp)

 5d: 00

 5e: c7 44 24 3c 07 00 00 movl

$0x7,0x3c(%esp)

 65: 00

 66: c7 44 24 40 03 00 00 movl

$0x3,0x40(%esp)

 6d: 00

 6e: eb 57 jmp c7 <_main+0xc7>

 70: 8b 44 24 4c mov 0x4c(%esp),%eax

 74: 89 44 24 48 mov %eax,0x48(%esp)

 78: eb 41 jmp bb <_main+0xbb>

 7a: 8b 44 24 4c mov 0x4c(%esp),%eax

 7e: 8b 54 84 1c mov

0x1c(%esp,%eax,4),%edx

 82: 8b 44 24 48 mov 0x48(%esp),%eax

 86: 8b 44 84 1c mov

0x1c(%esp,%eax,4),%eax

 8a: 39 c2 cmp %eax,%edx

 8c: 7e 28 jle b6 <_main+0xb6>

 8e: 8b 44 24 4c mov 0x4c(%esp),%eax

 92: 8b 44 84 1c mov

0x1c(%esp,%eax,4),%eax

 96: 89 44 24 44 mov %eax,0x44(%esp)

 9a: 8b 44 24 48 mov 0x48(%esp),%eax

 9e: 8b 54 84 1c mov

0x1c(%esp,%eax,4),%edx

 a2: 8b 44 24 4c mov 0x4c(%esp),%eax

 a6: 89 54 84 1c mov

%edx,0x1c(%esp,%eax,4)

 aa: 8b 44 24 48 mov 0x48(%esp),%eax

 ae: 8b 54 24 44 mov 0x44(%esp),%edx

 b2: 89 54 84 1c mov

%edx,0x1c(%esp,%eax,4)

 b6: 83 44 24 48 01 addl $0x1,0x48(%esp)

 bb: 83 7c 24 48 09 cmpl $0x9,0x48(%esp)

 c0: 7e b8 jle 7a <_main+0x7a>

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1209

 c2: 83 44 24 4c 01 addl $0x1,0x4c(%esp)

 c7: 83 7c 24 4c 08 cmpl $0x8,0x4c(%esp)

 cc: 7e a2 jle 70 <_main+0x70>

 ce: c7 44 24 4c 00 00 00 movl

$0x0,0x4c(%esp)

 d5: 00

 d6: eb 1d jmp f5 <_main+0xf5>

 d8: 8b 44 24 4c mov 0x4c(%esp),%eax

 dc: 8b 44 84 1c mov

0x1c(%esp,%eax,4),%eax

 e0: 89 44 24 04 mov %eax,0x4(%esp)

 e4: c7 04 24 00 00 00 00 movl $0x0,(%esp)

 eb: e8 00 00 00 00 call f0 <_main+0xf0>

 f0: 83 44 24 4c 01 addl $0x1,0x4c(%esp)

 f5: 83 7c 24 4c 09 cmpl $0x9,0x4c(%esp)

 fa: 7e dc jle d8 <_main+0xd8>

 fc: b8 00 00 00 00 mov $0x0,%eax

 101: c9 leave

 102: c3 ret

 103: 90 nop

Do-while loop

00000000 <_main>:

 0: 55 push %ebp

 1: 89 e5 mov %esp,%ebp

 3: 83 e4 f0 and $0xfffffff0,%esp

 6: 83 ec 50 sub $0x50,%esp

 9: e8 00 00 00 00 call e <_main+0xe>

 e: c7 44 24 4c 00 00 00 movl

$0x0,0x4c(%esp)

 15: 00

 16: c7 44 24 48 00 00 00 movl

$0x0,0x48(%esp)

 1d: 00

 1e: c7 44 24 1c 04 00 00 movl

$0x4,0x1c(%esp)

 25: 00

 26: c7 44 24 20 02 00 00 movl

$0x2,0x20(%esp)

 2d: 00

 2e: c7 44 24 24 05 00 00 movl

$0x5,0x24(%esp)

 35: 00

 36: c7 44 24 28 08 00 00 movl

$0x8,0x28(%esp)

 3d: 00

 3e: c7 44 24 2c 01 00 00 movl

$0x1,0x2c(%esp)

 45: 00

 46: c7 44 24 30 0a 00 00 movl

$0xa,0x30(%esp)

 4d: 00

 4e: c7 44 24 34 09 00 00 movl

$0x9,0x34(%esp)

 55: 00

 56: c7 44 24 38 06 00 00 movl

$0x6,0x38(%esp)

 5d: 00

 5e: c7 44 24 3c 07 00 00 movl

$0x7,0x3c(%esp)

 65: 00

 66: c7 44 24 40 03 00 00 movl

$0x3,0x40(%esp)

 6d: 00

 6e: 8b 44 24 4c mov 0x4c(%esp),%eax

 72: 89 44 24 48 mov %eax,0x48(%esp)

 76: 8b 44 24 4c mov 0x4c(%esp),%eax

 7a: 8b 54 84 1c mov

0x1c(%esp,%eax,4),%edx

 7e: 8b 44 24 48 mov 0x48(%esp),%eax

 82: 8b 44 84 1c mov

0x1c(%esp,%eax,4),%eax

 86: 39 c2 cmp %eax,%edx

 88: 7e 28 jle b2 <_main+0xb2>

 8a: 8b 44 24 4c mov 0x4c(%esp),%eax

 8e: 8b 44 84 1c mov

0x1c(%esp,%eax,4),%eax

 92: 89 44 24 44 mov %eax,0x44(%esp)

 96: 8b 44 24 48 mov 0x48(%esp),%eax

 9a: 8b 54 84 1c mov

0x1c(%esp,%eax,4),%edx

 9e: 8b 44 24 4c mov 0x4c(%esp),%eax

 a2: 89 54 84 1c mov

%edx,0x1c(%esp,%eax,4)

 a6: 8b 44 24 48 mov 0x48(%esp),%eax

 aa: 8b 54 24 44 mov 0x44(%esp),%edx

 ae: 89 54 84 1c mov

%edx,0x1c(%esp,%eax,4)

 b2: 83 44 24 48 01 addl $0x1,0x48(%esp)

 b7: 83 7c 24 48 09 cmpl $0x9,0x48(%esp)

 bc: 7e b8 jle 76 <_main+0x76>

 be: 83 44 24 4c 01 addl $0x1,0x4c(%esp)

 c3: 83 7c 24 4c 08 cmpl $0x8,0x4c(%esp)

 c8: 7e a4 jle 6e <_main+0x6e>

 ca: c7 44 24 4c 00 00 00 movl

$0x0,0x4c(%esp)

 d1: 00

 d2: 8b 44 24 4c mov 0x4c(%esp),%eax

 d6: 8b 44 84 1c mov

0x1c(%esp,%eax,4),%eax

 da: 89 44 24 04 mov %eax,0x4(%esp)

 de: c7 04 24 00 00 00 00 movl $0x0,(%esp)

 e5: e8 00 00 00 00 call ea <_main+0xea>

 ea: 83 44 24 4c 01 addl $0x1,0x4c(%esp)

 ef: 83 7c 24 4c 09 cmpl $0x9,0x4c(%esp)

 f4: 7e dc jle d2 <_main+0xd2>

 f6: b8 00 00 00 00 mov $0x0,%eax

 fb: c9 leave

 fc: c3 ret

 fd: 90 nop

 fe: 90 nop

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1210

 ff: 90 nop

For loop

00000000 <_main>:

 0: 55 push %ebp

 1: 89 e5 mov %esp,%ebp

 3: 83 e4 f0 and $0xfffffff0,%esp

 6: 83 ec 50 sub $0x50,%esp

 9: e8 00 00 00 00 call e <_main+0xe>

 e: c7 44 24 4c 00 00 00 movl

$0x0,0x4c(%esp)

 15: 00

 16: c7 44 24 48 00 00 00 movl

$0x0,0x48(%esp)

 1d: 00

 1e: c7 44 24 1c 04 00 00 movl

$0x4,0x1c(%esp)

 25: 00

 26: c7 44 24 20 02 00 00 movl

$0x2,0x20(%esp)

 2d: 00

 2e: c7 44 24 24 05 00 00 movl

$0x5,0x24(%esp)

 35: 00

 36: c7 44 24 28 08 00 00 movl

$0x8,0x28(%esp)

 3d: 00

 3e: c7 44 24 2c 01 00 00 movl

$0x1,0x2c(%esp)

 45: 00

 46: c7 44 24 30 0a 00 00 movl

$0xa,0x30(%esp)

 4d: 00

 4e: c7 44 24 34 09 00 00 movl

$0x9,0x34(%esp)

 55: 00

 56: c7 44 24 38 06 00 00 movl

$0x6,0x38(%esp)

 5d: 00

 5e: c7 44 24 3c 07 00 00 movl

$0x7,0x3c(%esp)

 65: 00

 66: c7 44 24 40 03 00 00 movl

$0x3,0x40(%esp)

 6d: 00

 6e: c7 44 24 4c 00 00 00 movl

$0x0,0x4c(%esp)

 75: 00

 76: eb 57 jmp cf <_main+0xcf>

 78: 8b 44 24 4c mov 0x4c(%esp),%eax

 7c: 89 44 24 48 mov %eax,0x48(%esp)

 80: eb 41 jmp c3 <_main+0xc3>

 82: 8b 44 24 4c mov 0x4c(%esp),%eax

 86: 8b 54 84 1c mov

0x1c(%esp,%eax,4),%edx

 8a: 8b 44 24 48 mov 0x48(%esp),%eax

 8e: 8b 44 84 1c mov

0x1c(%esp,%eax,4),%eax

 92: 39 c2 cmp %eax,%edx

 94: 7e 28 jle be <_main+0xbe>

 96: 8b 44 24 4c mov 0x4c(%esp),%eax

 9a: 8b 44 84 1c mov

0x1c(%esp,%eax,4),%eax

 9e: 89 44 24 44 mov %eax,0x44(%esp)

 a2: 8b 44 24 48 mov 0x48(%esp),%eax

 a6: 8b 54 84 1c mov

0x1c(%esp,%eax,4),%edx

 aa: 8b 44 24 4c mov 0x4c(%esp),%eax

 ae: 89 54 84 1c mov

%edx,0x1c(%esp,%eax,4)

 b2: 8b 44 24 48 mov 0x48(%esp),%eax

 b6: 8b 54 24 44 mov 0x44(%esp),%edx

 ba: 89 54 84 1c mov

%edx,0x1c(%esp,%eax,4)

 be: 83 44 24 48 01 addl $0x1,0x48(%esp)

 c3: 83 7c 24 48 09 cmpl $0x9,0x48(%esp)

 c8: 7e b8 jle 82 <_main+0x82>

 ca: 83 44 24 4c 01 addl $0x1,0x4c(%esp)

 cf: 83 7c 24 4c 08 cmpl $0x8,0x4c(%esp)

 d4: 7e a2 jle 78 <_main+0x78>

 d6: c7 44 24 4c 00 00 00 movl

$0x0,0x4c(%esp)

 dd: 00

 de: eb 1d jmp fd <_main+0xfd>

 e0: 8b 44 24 4c mov 0x4c(%esp),%eax

 e4: 8b 44 84 1c mov

0x1c(%esp,%eax,4),%eax

 e8: 89 44 24 04 mov %eax,0x4(%esp)

 ec: c7 04 24 00 00 00 00 movl $0x0,(%esp)

 f3: e8 00 00 00 00 call f8 <_main+0xf8>

 f8: 83 44 24 4c 01 addl $0x1,0x4c(%esp)

 fd: 83 7c 24 4c 09 cmpl $0x9,0x4c(%esp)

 102: 7e dc jle e0 <_main+0xe0>

 104: b8 00 00 00 00 mov $0x0,%eax

 109: c9 leave

 10a: c3 ret

 10b: 90 nop

The above assembly instructions generated in these three

cases can be summarized as under in Table-1:

Case No. of Assembly Statement generated for

executable section

while loop do-while

loop

for loop

Case-1 17 18 19

Case-2 34 31 36

Case-3 70 69 72

Table 1- Summary of Assembly Instruction in each case

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1211

VII. RESULTS

With above table it is clear that for loop is generating the

highest number of assembly instructions in each case, so it is

the worst performer. The do-while loop is the best loop if we

are going to repeat the statements till the known number of

times. The while loop tops only if arithmetic or logical

operations are not used which is generally not happened, so

according to our analysis, do-while loop is the best performer

as it generates least number of assembly instructions.

VIII. CONCLUSION

The three loops of c language compared according to number

of assembly instructions generated in executable section of

program. This is a very well defined way of comparison

which results do-while loop as the best. The comparison may

also include some other points such as function call within

the loop, or nesting of different types of loops.

REFERENCES

[1]. Mark Burgess, “The GNU C Programming Tutorial”, Ron Hale-Evans,

Norway, pp. 61-68, 2002
[2]. E Balagurusamy, “Programming in ANSI C”, Tata McGraw-Hill,

India, pp 154-159, 2007

[3]. Joseph Cavanagh, “X86 Assembly Language and C Fundamentals”,
CRC Press Taylor & Francis Group, New York, pp 251-266, 2013

Authors Profile

Jagdish Makhijani pursed Ph.D. in Computer
Science from Barkatullah University, Bhopal in
2013. He is currently working as Assistant
Professor in Department of Computer Science &
Engineering, Rustamji Institute of Technology,
BSF Academy, Tekanpur since 2012. He is a life
member of Computer Society of India since 2017,
a life member of the Vigyan Bharti since 2018. He has published
more than 10 research papers in reputed international journals and
conferences. His main research work focuses on Distributed
Systems and Competative Programming Research. He has 19 years
of teaching experience and 10 years of Research Experience.

Manoj Kumar Niranjan pursed Ph.D. in Computer
Applications from Rajiv Gandhi Proudyogiki
Vishwavidyalaya, Bhopal in 2019. He is currently
working as Assistant Professor in Department of
Computer Applications, Rustamji Institute of
Technology, BSF Academy, Tekanpur. He is a life-
time member of Vigyan Bharti. He has published
more than 10 research papers in reputed international journals and
conferences. His main research work focuses on Distributed
Systems and Artificial Intelligence. He has 16 years of teaching
experience and 10 years of Research Experience.

Yograj Sharma pursed M. E. in Computer Science
& Engineering from IET, Devi Ahilya
Vishwavidyalaya, Indore in 2014. He is currently
working as Assistant Professor & Head in
Department of Computer Science & Engineering,
Rustamji Institute of Technology, BSF Academy,
Tekanpur. He is a member of Computer Society of
India since 2018. He has published more than 08 research papers in
reputed international journals and conferences. His main research
work focuses on Cryptography and Information Security. He has 05
years of teaching experience and 06 years of Research Experience.

