
 © 2018, IJCSE All Rights Reserved 164

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-11, Nov 2018 E-ISSN: 2347-2693

Model to Model Transformation for Declarative Models

Smita Agarwal

1
, S. Dixit

2
, Alok Aggarwal

 3*

1
Research Scholar, Department of Computer Science, Mewar University, Chittorgarh (Raj), India

2
Department of Computer Science, Mewar University, Chittorgarh (Raj), India

3
School of Computer Science, University of Petroleum & Energy Studies, Dehradun, India

*Corresponding Author: alok289@yahoo.com, Tel.: 7906230838

Available online at: www.ijcseonline.org

Accepted: 15/Nov/2018, Published: 30/Nov/2018

Abstract—In Model Driven Architecture (MDA), model and meta-model are the primary artifacts. In this work, a

detailed analysis of the existing meta-model-based transformation tools is done for the declarative model using an exhaustive

criterion. The evaluation of the eleven chosen tools, which are open source and has download page available using search

engine like Google Scholar and Github, is analyzed; like UML–RSDS, Tefkat, JTL, PTL etc. Analysis is performed over

fourteen different parameters like language, model query, type of transformation, compatibility, cardinality etc. Results show

that all selected tools produce platform specific target model which mostly transform PSM to PSM and none produces platform

independent target model transforming a PSM into PIM.

Keywords—Model Driven Re-engineering, Model Transformation, Declarative User Interface, Transformation tools

I. INTRODUCTION

This decade of 21st century has witnessed the rapid growth

and use of mobile devices. This has led to rise in demand for

the access of the web application from the mobile devices.

This involved re-engineering user interface of web

application for mobile application. In classical software re-

engineering processes, graphical user interfaces cannot be

reused across development platforms.

The software re-engineering based on Model Driven

Architecture defined by OMG (Object Management Group)

is Model Driven Re-Engineering is emerging area of interest

for researchers. The Re-engineering process involves Model

Driven Reverse Engineering the source code for declarative

user interface to obtain meta-model [1]. The Model

Transformation is applied to transform meta-model into

platform specific models for a given platform (known as

PSMs). The techniques used are essentially modeling

techniques and model transformation techniques. Over the

last few years, a large number of Model Transformation

Tools are available in the market.

In Model to Model Transformation, models and Meta –

Models serve as primary artifacts. These models are

Platform Specific Models (PSMs). These models can be

transformed either into another platform specific model

(PSMs) or into Platform Independent Models (PIMs). These

tools can be used to transform, merge, compare, and verify

models and meta-models.

In this work a detailed analysis of the existing meta-model-

based transformation tools is done for the declarative model

using an exhaustive criterion. The evaluation of the eleven

chosen tools, which are open source and has download page

available using search engine like Google Scholar and

Github, is analyzed; like UML–RSDS, Tefkat, JTL, PTL

etc. Analysis is performed over fourteen different

parameters like language, model query, type of

transformation, compatibility, cardinality etc. Results show

that all selected tools produce domain specific target model

which mostly transform PIM to PSM and none produces

domain independent target model transforming a PSM into

PIM. Rest of the paper is organized as follows. Section 2

outlines the research methodology, selection of tools, and

detailed study of tools capabilities and identification of

comparison parameters. Section 3 deals in evaluative and

comparative study by applying comparison parameters on

the selected tools. Section 4 discusses the conclusion and

future scope of work.

II. RESEARCH METHODOLOGY

The main objective of this paper to identify the gap in the

existing in the meta-model-based transformation tools for

the Model to Model transformation for the declarative

models. The research methodology starts with the selection

of tools to be considered for the purpose of study,

identification of comprehensive and extensive criterion for

evaluation and comparison, and detailed analysis and

discussion to identify the gap in the current tools and finally

conclusion.

mailto:alok289@yahoo.com

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 165

1. Selection of Tools

For the purpose of our study, we identified mostly those

tools which are open source and has download page

available using search engine like Google Scholar and

Github. The literature and published surveys on these tools

were studied and reviewed. We identified and finalized 11

such tools for the study as follows:

1. UML–RSDS(UML Reactive System Development

Support)- Lano et al.[2] describes relation between the

two models by expressing when a change in a model,

what changes are required to be made in another model

to preserve the truth of the constraints.

2. Tefkat[3] - The tool is declarative, logic-based, and

implements transformation that written in Tefkat

language where the output is XML Schema-based

model.

3. JTL (Janus Transformation Language)[4] -It is a

bidirectional model transformation language, embedded

in the Eclipse platform, specifically designed to support

non-bijective transformations and change propagation.

4. PTL(Prolog-based Transformation)- Almendros-

Jiménez et al. [5] proposed hybrid Language in which

ATL-style rules are joined with logic rules for defining

transformations. ATL-style rules are utilized to

characterize mappings from source models to target

models while logic rules are utilized as helpers.

5. ModTransf – Bonde et al.[6] developed a Model

Transformation engine to apply on UML profiles to

generate System Transaction Models for Intensive

Signal Processing (ISP) on System on Chip(SoC)

Platforms.

6. Echo –Macedo et al.[7] proposed a tool that simplifies

the task of keeping all models in a software project

consistent, both with their meta-models and among

themselves by automating inconsistency detection and

repair using a solver based engine.

7. QVTR-XSLT - QVTR –XSLT tool [8] that checks the

formalized semantics of QVT Relations, a standard

language to specify bidirectional model transformations

proposed by the OMG.

8. ModelMorf- Reddy et al.[9] proposed a tool ModelMorf

that fully supports the QVTr language and uses OCL to

specify templates, and when and where conditions are

in relations.

9. MediniQVT-is a tool that implements the Query/ View/

Transformation (QVT) Relations specification shown

the textual concrete syntax of the Relations language

defined by OMG for model-to model transformations.
10. PETE (Eclipse Prolog EMF Transformation Engine)

[10] is a tool based on the EMF Ecore framework that

supports the model transformations using a declarative,

rule-based description of transformation operations.

11. TXL–TXL is a general-purpose language tool for

implementing efficient, scalable model transformations.

2. Comparison Parameters

1. Language – This parameter consider the programming

language used to develop the tool to identify the most

popular language deemed fit for developing the tool.

2. Modeling Language –This parameter probes into the

modeling language [11] supported by the tool. This

could be either domain specific (DSM) or general

(GPM).

3. Meta-Modeling Language – This parameter considers

the meta-modeling language [11] that is adhered by

input and output models in a transformation. The Meta-

Object Facility (MOF) is the OMG standard for

defining meta-model. Other includes Ecore from

Eclipse Modeling Frame work and Kernel Meta-Model

(KM3) is an extension of Ecore for textual

representation.

4. Model Query –It’s an essential parameter for choosing

and fetching the model elements from the models [12].

5. Compatibility with Standards – For the interoperability

and migration of Models between the tools, the tools

must support the well known standards and languages

such as XMI, QVT Language by OMG and OCL.

6. Model Transformation Language Syntax – This feature

of the tool provides the information about the syntax of

the modeling language whether it is textual or graphical

or both.

7. Target Model –The target model of M2M

transformation tool could be conservative or

destructive. In conservative transformation, the source

model is preserved while producing the new target

model while in the destructive transformation; the

source model is modified to give the target model.

Conservative tools are more suitable for endogenous

transformation and destructive tools are suitable for

exogenous transformation [11].

8. Cardinality –It defines the number of models that can be

managed at input and output of the tool [11]. Tools can

support 1-1, 1-N, N-1 and N-N model.

9. Type of Transformation - This parameter looks into

whether the source and target model belong to same

meta-model i.e. endogenous transformation or different

meta-model i.e. exogenous transformation [11].

10. Directions-The Model Transformations can be

unidirectional, bi- directional and multi –directional.

11. Verification of correctness and completeness of the

transformations – The transformation model must

clearly define the termination condition [13] and the

output obtained from the transformation should be

unique.

12. Traceability – This parameter establishes the relation

between the elements of source model and target model

which is instrumental in evaluating the transformations.

This can auto generated by the tool

13. Creating/Retrieving/Updating/Deleting transformations

(CRUD) - Any transformation tool must have ability to

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 166

create, retrieve, modify and drop rules for

transformation.

14. Level of automation –This parameter identifies the level

of automation involved in the transformation [14].

Although the manual intervention during transformation

gives the maximum control but requires in-depth

understanding of transformation.

15. Re-usability the transformation Model – Using

inheritance mechanism of object oriented language like

composition and decomposition, one can reutilize the

transformation rules and functions defined for one

transformation from source platform to target platform

to other set of source and target platform.

Table 1. Summary of Comparison Parameters

S.No. Parameter Value

1. Language Java

ASP

Turing

2. Modeling Language Domain Specific

General

3

Meta-Modeling
Language

Meta-Object Facility

Ecore

Kernel Meta-Model

Other

4. Model Query Tool has modeling query feature

Tool do not have modeling
query feature

5. Compatibility with

Standards

Tool supports XMI

Query/View/Transformation

(QVT) Language

Tool supports OCL expression

6 Model Transformation

Language Syntax

Textual syntax is used in tool

Graphical syntax is used in tool

7. Target Model Constructive

Destructive

8. Cardinality 1 to1

1 to N

N to 1

N to N

9. Type of

Transformation

Exogenous

Endogenous

10. Directions Multi Directional Transformation

Bi- Directional Transformation

Uni- Directional Transformation

11. Verification –

Syntactic Correctness

Semantic Correctness

Completeness

Robustness

12. Traceability Automatic

User-defined

13.

CRUD Retrieve transformation

Create transformation

Update transformation

Delete transformation

14.

Level of Automation Manual

Semi-Automatic

Automatic

Decomposition

III. EVALUATIVE AND COMPARATIVE STUDY

In this section, we assessed the selected tools based on

above identified criterion and present a comprehensive and

comparative result of the selected tools.

1. Language - The selected tools were written mostly in

Java (82%) and rest used either ASP or Turing. It is

shown in Table 2 and figure 1.

Table2. Language Percentage

Parameter Value No of tools Percentage

Java 9 82

ASP 1 9

Turing 1 9

Figure 1. Language Percentage

2. Modeling Language - Among the general purpose

language, UML is the preferred modeling language.

Most of the tools don’t any modeling language and

specify their own modeling language. It is shown in

Table 3 and figure 2.

Table 3.Modeling Language Percentage

Figure 2Modeling Language Percentage

3. Meta-Modeling Language- The Meta Modeling

Language Ecore is supported in 55% of the tools like

0 20 40 60 80 100

Java

ASP

Turing

Language

0 50 100

Domain Specific

General

NA

Modeling Languages

Parameter Value Number of tools Percentage

Domain Specific 1 9

General 0 0

NA 10 91

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 167

Tefkat, JTL, PTL, Echo, MediniQVT, PETE whereas

Tools like UML -RSDS supports Meta-Object Facility.

It is shown in Table 4 and figure 3.

Table 4. Meta-Modeling Language Percentage

Parameter Value Number of tools Percentage

Meta-Object Facility 4 36

Ecore 6 55

Kernel Meta-Model 0 0

Others 2 18

Figure 3. Meta-Modeling Language Percentage

4. Model Query -Querying is required for analysis,

evaluation and reporting about Model. 82%of the tools

don't have support for querying. It is shown in Table 5

and figure 4.

Table 5.Model Query Percentage

Parameter Value Number of tools Percentage

Yes 2 18

No 9 82

Figure 4. Model Query Percentage

5. Compatibility with Standards -All the selected tools

supports XMI and only 8% supports OCL. It is shown

in Table 6 and Figure 5.

Table 6.Compatibility with Standards Percentage

Parameter Value Number of tools Percentage

XMI 11 100

OCL 8 73

Figure 5. Compatibility with Standards Percentage

6. Model Transformation Language Syntax -73% tools

such as Tefkat, PTL, ModTransf, and Echo provide

textual syntax for their modeling language whereas

QVTR-XSLT provides only graphical syntax and tools

like UML-RSDS and JTL provide both textual and

graphical syntax. It is shown in Table 7 and Figure 6.

Table 7.Model Transformation Language Syntax Percentage

Parameter Value Number of tools Percentage

Graphical 1 9

Textual 8 73

Both 2 18

Figure 6. Model Transformation Language Syntax Percentage

7. Target Model -45 % of the tools can produce target

model that can be both conservative as well as

destructive whereas 36% of the tools can produce only

conservative target model. It is shown in Table 8 and

figure 7.

Table 8.Target Mode lPercentage

Parameter Value Number of tools Percentage

Destructive 1 9

Conservative 4 36

NA 1 9

Both 5 45

0 20 40 60

Meta-Object Facility

Ecore

Kernel Meta-Model

Others

Meta-Modeling Language

0 20 40 60 80 100

Yes

No

Model Query

0 50 100 150

XMI

OCL

Compatibility with Standard

0 20 40 60 80

Graphical

Textual

Both

Model Transformation Language Syntax

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 168

Figure 7. Target Model Percentage

8. Cardinality -82% of the tools supports 1-1 cardinality

i.e. they take one model as source model and gives out

only one model as target model. Tools like UML-

RSDS, Tefkat, JTL, PTL and TXL supports all the

cardinalities. It is shown in Table 9 and figure 8.

Table 9.Cardinality Percentage

Parameter Value Number of tools Percentage

1 to1 9 82

1 to N 6 55

N to 1 6 55

N to N 7 63

NA 1 9

Figure 8. Cardinality Percentage

9. Type of Transformation - The translation of a platform-

independent UML model into a platform-specific Java

model is exogenous. 91% of the tools selected are

exogenous. It is shown in Table 8 and figure 7.

Table 10. Type of Transformation Percentage

Parameter Value Number of tools Percentage

Exogenous 10 91

Endogenous 7 64

NA 1 9

Figure 9 Type of Transformation Percentage

10. Directions -All the selected tool are unidirectional

whereas only 45 % are bi directional. It is shown in

Table 11 and figure 10.

Table 11. Directions Percentage

Parameter Value Number of tools Percentage

Multi Directional 1 9

Bi- Directional 5 45

Uni- Directional 11 100

Figure 10. Directions Percentage

11. Verification of correctness and completeness of the

transformations -Only 55% of the tools support for

syntactic correctness where as 27% of the tools support

for semantic correctness. It is shown in Table 12 and

figure 11.

Table 12. Verification Percentage

Parameter Value Number of tools Percentage

Syntactic 6 55

Semantic 3 27

Completeness 1 9

Robustness 0 0

NA 1 9

No Support 4 36

Figure 11. Verification Percentage

12. Traceability -55% automatically generated traceability

information whereas 36 % traceability links can also be

defined and generated by the user. 27% of the tools

0 10 20 30 40 50

Destructive

Conservative

NA

Both

Target Model

0 20 40 60 80 100

1 to1

1 to N

N to 1

N to N

NA

Cardinality

0 20 40 60 80 100

Exogenous

Endogenous

NA

Type of Transformation

0 50 100 150

Multi Directional

Bi- Directional

Uni- Directional

Direction of Transformation

0 10 20 30 40 50 60

Syntactic

Semantic

Completeness

Robustness

NA

No Support

Verification

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 169

don’t have support for traceability information. It is

shown in Table 13 and figure 12.

Table 13. Traceability Percentage

Parameter Value Number of tools Percentage

Automatic 6 55

User Defined 4 36

No Support 3 27

Figure 12. Traceability Percentage

13. Creating/Retrieving/Updating/Deleting transformations

(CRUD) - All the selected tools support Creating,

Retrieving, Updating and Deleting transformations. It is

shown in Table 14 and figure 13.

Table 14. CRUD Percentage

Parameter Value Number of tools Percentage

Retrieve 11 100

Create 11 100

Update 11 100

Delete 11 100

Figure 13. CRUD Percentage

14. Level of automation -All the selected tools are semi -

automatic i.e. having partial manual control and partial

automatic. It is shown in Table 15 and figure 14.

Table 15. Language Percentage

Parameter Value Number of tools Percentage

Manual 0 0

Semi-Automatic 11 100

Automatic 0 0

Figure 14. CRUD Percentage

IV. CONCLUSION AND FUTURE SCOPE

In this research paper, we selected, studied and analyzed 11

model transformation tools for Declarative Model

meticulously with respect to exhaustive and extensive

criteria. Our study and analysis shows that Java is the

preferred programming language and UML is the preferred

modeling language for the development of model

transformation tools for declarative models. Most of the

tools are exogenous i.e. they generate Platform Specific

Model. The tools though don’t support Querying Model but

has full compatibly with standards like XMI. Most of the

tools take single model as source model and gives out only

one model as target model. All of them can create, retrieve,

modify and drop transformations. The tools are semi-

automatic i.e. they do have some kind of manual

intervention while generating target model. Most of the tools

have capability of generating traceability information

automatically. All of the tools produce platform specific

target model which mostly transform PSM to PSM. None of

the tool produces domain independent target model

transforming a PSM to PIM. Our future work will explore

the possibility of tool to produce domain independent target

model transforming a PSM into PIM.

REFERENCES

[1] S. Agarwal and A. Agarwal. "Model driven reverse

engineering of user interface — A comparative study of static

and dynamic model generation tools."in International

Conference on Parallel, Distributed and Grid Computing.pp

268 – 273, 2014.

[2] K. Lano, S. Kolahdouz-Rahimi. “Specification and

verification of model transformations using UML-

RSDS.”International Conference on Integrated Formal

Methods (pp. 199-214). Berlin, Heidelberg: Springer., 2010.

[3] M. Lawley, J. Steel. (2005). “Practical declarative model

transformation with Tefkat”. International Conference on

Model Driven Engineering Languages and Systems (pp. 139-

150). Berlin, Heidelberg.: Springer. 2005.
[4] D. Cicchetti, D. Di Ruscio, R. Eramo, & A. Pierantonio. “

JTL: a bidirectional and change propagating transformation

language”. International Conference on Software Language

Engineering (pp. 183-202). Berlin: Springer. 2010
[5] J.M. Almendros-Jiménez, , L. Iribarne, J. López-Fernández,

and Á. Mora-Segura. "PTL: A model transformation language

0 10 20 30 40 50 60

Automatic

User Defined

No Support

Traceability

0 20 40 60 80 100 120

Retrieve

Create

Update

Delete

CRUD -transformation

0 50 100 150

Manual

Semi-Automatic

Automatic

Level of Automation

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 170

based on logic programming." Journal of Logical and

Algebraic Methods in Programming 85, 332-366. 2016
[6] L.Bondé, C. Dumoulin, and J.L. Dekeyser. "Metamodels and

MDA transformations for embedded systems." Advances in

design and specification languages for SoCs, Springer, 89-

105.2005.

[7] N. Macedo, T. Guimaraes, A. Cunha. "Model repair and

transformation with Echo." 28th IEEE/ACM International

Conference on Automated Software Engineering. IEEE Press,

694-697, 2013.

[8] D. Li,X. Li, V. Stolz. "QVT-based model transformation

using XSLT." ACM SIGSOFT Software Engineering Notes

36, no. 1, 1-8, 2011.

[9] S. Reddy, R. Venkatesh, A. Zahid. "A relational approach to

model transformation using QVT Relations." TATA Research

Development and Design Centre, 1-15, 2006.

[10] B. Schätz,"Formalization and rule-based transformation of

EMF Ecore-based models." International Conference on

Software Language Engineering,. Berlin, Heidelberg:

Springer, 227-244.2008.

[11] M.Brambilla, J. Cabot, and M.Wimmer. "Model-driven

software engineering in practice." 1-182. Synthesis Lectures

on Software Engineering 1, no. 1, 2012.

[12] L. Lúcio. "Model transformation intents and their properties."

Software & systems modeling 15, no. 3 , 647-684.2016.

[13] Prince Singha, Aditya, Kunal Dubey, Jagadeeswararao Palli,

“Toolkit for Web Development Based on Web Based

Information System,” Isroset-Journal (IJSRCSE), 6, no. 5,

pp.1-5. 2018..

[14] Shubham, Deepak Chahal, LatikaKharb, “Security for Digital

Payments: An Update,” Journal (IJSRNSC), 6, no. 5 , pp. 51-

54. 2018.

Authors Profile

Smita Agarwal has earned Bachelor’s degree of
Electronics & and Master’s degree of Information
Technology in 1998 &2001 respectively from
University of Delhi. She is currently pursuing Ph.D.
in Computer Science & Engineering.She has seven
years of industry experience.

Sarvottam Dixit did his Ph.D. in Physics (Material

Science) from Dr. B.R. Ambedkar University Agra

in 1990 and completed Post-Doctorate work from

Tata institute of fundamental research (TIFR)

Mumbai funded by DST in 1996 and M.E. in CSE.

Current he is working as advisor to Chancellor and Professor in

Faculty of Engineering in Mewar University. Earlier he was Pro-

VC and acting Vice Chancellor Shri Venkateshwara University

Gajurala (UP) and Venkateshwara Open University Arunachal

Pradesh.

Alok Aggarwal received his bachelors’ and masters’

degrees in Computer Science& Engineering in 1995

and 2001 respectively and his PhD degree in

Engineering from IITRoorkee, Roorkee, India in

2010. He has academic experience of 18 years,

industry experience of 4 years and research experience of 5 years.

He has contributed more than 150 research contributions in

different journals and conference proceedings. Currently he is

working with University of Petroleum & Energy Studies,

Dehradun, India as Professor in CSE department

http://www.ijsrnsc.org/pdf_paper_view.php?paper_id=349&6-IJSRNSC-0390.pdf
http://www.ijsrnsc.org/pdf_paper_view.php?paper_id=349&6-IJSRNSC-0390.pdf

