
 © 2018, IJCSE All Rights Reserved 125

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-12, Dec 2018 E-ISSN: 2347-2693

An Effective Trust-aware Authentication Framework for Cloud

Computing Environment

SaboutNagaraju

 1*
, S.K.V. Jayakumar

 2

1
Dept. of Computer Science, Pondicherry University Community College, Lawspet, Pondicherry-605 008, India

2
 Dept. of Computer Science, School of Engineering & Technology, Pondicherry University, Kalapet, Pondicherry-605 014,

India

*Corresponding Author: saboutnagaraju1983@gmail.com, Tel.: +91-87787-01151

Available online at: www.ijcseonline.org

Accepted: 06/Dec/2018, Published: 31/Dec/2018

Abstract— Although cloud computing has become one of the basic utility in ICT era with several benefits like rapid elasticity,

resource pooling broad network access, and on-demand self-service, it introduces dozens of dirty security threats too. An

effective authentication protocol is the basis, topmost prioritized and emergence one for the secure cloud communications. As a

result, in this article an effective trust-aware authentication framework is proposed based on n-party multi-linear key pairing

functions, trust and reputation aggregation functions and time-based dynamic nonce generation. In addition to formulating an

effective authentication protocol, we have analyzed the mutual authentication and formal security strength by using

cryptographic GNY belief logic which will prove proposed protocol not only meets intended mutual authentication, but also

justifies the security strength against the impersonation and ephemeral secret leakage attacks.

Keywords— Mutual Authentication, Single Sign-On, Elliptic-Curve, Cloud Service Provider, Identity Provider, Trustee

I. INTRODUCTION

The recent development in Internet-of-Things, big data,

mobile and social networks require cloud computing to

provide economical data storage and high-speed computing

capabilities. However, these imperatives are rapidly

emerging as pillars for the smarter daily life and official

works [1].

Although cloud computing has become one of the

basic utility in ICT era with several benefits like rapid

elasticity, resource pooling, broad network access, and on-

demand self-service, it introduces dozens of dirty security

threats too [2]. As per Cloud Security Alliance (CSA)

research report 2018 [3], the top ten cloud specific security

threats are data breaches, insufficient identity, credential and

access management, web-based impersonations, insecure

interfaces and APIs, system vulnerabilities, account

hijacking, malicious insiders, advanced persistent threats,

data loss, insufficient due diligence and denial of service. In

[2], Bob Violino reported cloud authentication specific

threats, among which the top five are data breaches, web-

based impersonations, identity theft, account hijacking and

malicious insiders. To preserve authenticity, authorization

and key management properties in the cloud is given higher

priority as these helps to protect the client’s sensitive

information from malicious users [4].

It is observed that each and every traditional web or mobile

application usually itself authenticates and authorizes the

users and stores all the credentials and authorization

information required. In this traditional scenario, each user

may have multiple accounts for different applications with

the same or similar credentials. Traditional authentication

and authorization methods have been working successfully

well for a long time. However, for the security reasons it is

better for the user to use different passwords for each

application and need to change all of them regularly. It is a

tough work to do for the user. Even today, in a few leading

web applications user credentials are actually stored in

unencrypted form [5, 6].

 It would be easier for the user, if all the applications have a

common user credentials database. Here, users can access all

the applications using one set of login credentials. This type

of authentication is called OpenID or single sign-on (SSO).

OpenID is an authentication protocol developed by non-

profit OpenID foundation with a centralized credentials

database server [7, 8, 9, 10]. The centralized database can be

managed by a trusted third party identity provider. Here, end

users are allowed to access different web applications using

same set of login credentials. The key advantage of this

OpenID mechanism is to eliminate the need of webmasters to

provide their own ad hoc login systems. The major problem

in this protocol is a user is allowed to confirm his/her identity

mailto:saboutnagaraju1983@gmail.com

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 126

to a web application. This approach requires a trusted

identity provider and it could become a bottleneck for the

user authentication.

 To overcome the problems of the OpenID mechanism, Chris

Messina presented an OAuth 2.0 protocol [11, 12] not only

for authentication but also for authorization of the users. In

this protocol, a user is agrees to share his/her limited profile

data from an OAuth identity provider. Here, a user can

choose an OAuth identity provider like Microsoft, Google,

Facebook, twitter etc. To choose or accept an Identity

Providers (IdP) for the real-time applications should get

recommendation from the OpenID Foundation. In [13, 14,

15, 16], security researcher reported that huge vulnerabilities

are present in OAuth 2.0 libraries and OpenID approach and

also demonstrated several security flaws in OAuth2.0

OpenSSL encryption process. OpenSSL has several security

flaws due to that users access tokens and credentials are

exposed to man in the middle attack and buffer overflow

attacks. If OAuth2.0 is not configured correctly, it doesn’t

even look at the access token, it just checks the User-ID has

come from the correct source. Hence, there is a chance of

impersonation attack. Importantly, popular practical cloud-

based authentication mechanisms [17-24] are designed based

on OAuth2.0 protocol.

 An existing OpenID based authentication schemes [27, 28]

provides security and convenience for mobile users to access

multiple mobile cloud computing services from multiple

Cloud Service Providers (CSPs) using only a single private

key. The authors have taken effort to supports mutual

authentication, key exchange, user anonymity, and user

untraceability in the cloud. In these investigations, user

password and finger print details are never shared with the

CSPs. However the mechanisms are insecure against the

service provider impersonation attack and the adversary can

able to extract the user identity. These schemes also not

secure against the Ephemeral Secret Leakage (ESL) attack

and malicious insiders.

The followings are the key problems identified from existing

cloud-based authentication investigations [7-28]:

 In the cloud computing environment, very critical and

barely explored issue that should be taken into

consideration is impersonation attack that impersonates

the cloud communication with the false responses. Due

to insufficient identity credentials and nonintellectual

access key management controls, impersonation

attackers can steal user credentials and gain the control

over outsourced data and applications.

 There is a chance of impersonation attack in the

configurations of the OAuth2.0-based cloud

authentications.

 Passwords are not enough and maintenance of numerous

passwords increases security risks.

 To reduce number of complex operations involved in the

authentication.

 For some financial/personal gain, dishonest cloud staff/

rogue system administrator may leak the user identities

and access management details [29].

 Existing scheme is unrealistic in storing key credentials

in the host device memory for identity verification.

 The development of an effective collaborative multi-

factor authentication is critical.

In this article, we have presented a trust-aware authentication

protocol to bring an appropriate solution for the above

problems.

Rest of the paper is organized as follows, Section I presents

literature reviews , Section II illustrates system-level model

and assumptions, Section III provides system preliminaries,

Section IV describes our investigation, section V discusses

completeness of the proposed authentication protocol,

Section VI reports the security and performance evaluation,

Section VII concludes research work with future directions.

II. RELATED WORK

Developing an efficient, robust and more convenient mutual

authentication mechanism for the distributed cloud

computing environment is a challenging research work. This

section presents the existing cloud-based authentication

approaches that can meet stakeholder’s requirements at some

extend.

A. Risk-based Multi-factor Authentications

In [17], Merritt Maxim reported that Gigya Customer

Identity Management (CIM) platform v6.5 is a market-

leading secure identity and access management solution for

public cloud SaaS applications that facilitates to the

stakeholders to safeguard their cloud assets. The solution

provides a Risk-based Multi-factor Authentication (RBMFA)

using risk factors and One-time Password (OTP). Here, the

first factor is risk parameters and the second factor is OTP

via mobile or email. The risk parameters can be registered

customer device and current location. When a consumer tries

to access the cloud service accounts by using a new device, it

authenticates the user via text SMS or voice call. Finally, this

approach blacklists the consumer after a specified number of

access attempts fail. This solution also facilitates user

authentication through social accounts registration and logins

or third-party plug-ins. The major strength of this solution is

to provide password-less authentication and cross-network

registration and login analytics. Compared to other cloud

authentication controls, this approach provides the best

execution, administration, analytics, partner ecosystem and

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 127

reporting. This solution also has larger market presence and

global presence of vendors. The major drawback of this

approach is lacking in supporting TRUSTe security standards

and certifications.

LoginRadius Identity and Access Management (LRIAM)

mechanism [22] provides customizable identity solutions to

securely access multitenant SaaS offering in the Microsoft

Azure. LoginRadius platform supports a Risk-based Multi-

factor Authentication (RBMFA). Here, the first factor is risk

parameters and the second factor is OTP via mobile or email.

The risk parameters can be registered customer device,

network address and current location. This platform also

facilitates the user authentication through social login,

anonymous login, phone SSO login, federation SSO and

two-factor Authentication (2FA). The major strength of this

solution is to provide password-less authentication and

federation SSO-based registration and logins. The major

drawback of this approach is lacking in supporting TRUSTe

security standards and certifications. The solutions also lack

in providing appropriate partner ecosystem and secure

customer data management.

Ping Identity and Access Management (PIAM) mechanism

[21] provides market-leading authentication solutions to

securely access public cloud SaaS applications. The solution

platform easily integrates third-party identity providers’

servers with the cloud service providers’ servers. The

solution provides a Risk-based Multi-factor Authentication

(RBMFA) using risk factors and One-time Password (OTP).

Here, the first factor is risk parameters and the second factor

is OTP via mobile or email. The risk parameters can be

registered customer device, network address and current

location. This solution also facilitates the user authentication

through social login linking or adaptive authentication

policies. The major strength of this solution is to provide

password-less authentication and cross-network registration

and login analytics. Compared to other cloud authentication

controls, this approach provides better execution,

administration and partner ecosystem. The major drawback

of this approach is lacking in supporting TRUSTe security

standards and certifications. The solutions also lack in

providing simplicity in the adaption customizations.

B. Single Sign-On Authentications

Janrain Identity Cloud [18] is another market-leading secure

identity and access management solution for next generation

cloud-based technologies such as IoT and big data networks.

The solution ensures safe and seamless identity generation,

establishment and management. It gives a set of options for

the authentication based on user requirement, such as

corporate login, mobile authentication, single sign-on,

universal ID, social login, adaptive MFA authentication, etc,.

The major strengths of the solution are to manage

hierarchical groups to access each individual critical

resources and uses Single Sign-On (SSO) to delivers one

login across multiple applications and domains. Compared to

other cloud authentication controls, this approach is better in

overall performance, compliance management, threats and

risks management and administration. This solution also has

larger market presence, geographical presence of vendors

and supports HIPAA, ISO and SOC2 security certifications

and privacy compliance. The major drawback of this

approach is lacking in protection of data breaches and

transparent policy management.

Salesforce Identity and Access Management (SIAM)

mechanism [19] is designed to securely authenticate various

multitenant SaaS applications. In this approach, Salesfore

SSO login system is implemented by using OAuth2 protocol

strategy across multiple organizations. Salesfore SSO allows

the consumers to authenticate into their multiple registered

cloud services without having separate accounts for each

service. Instead, a user can access all the applications using

one set of login credentials. SIAM provides various

administrative tools to monitor, report and maintain user

authentication and authorization access tokens. Compared to

other cloud authentication controls, this approach performs

better in availability, scalability, security and privacy

compliance management, customer data management,

analytics and reporting. The major drawback of this approach

is it has smallest CIAM installed base and performs

immature user authentication. If OAuth2.0 is not configured

correctly, it does not even look at the access token, it just

checks the User-ID whether it comes from the correct source.

Azure Active Directory Business-to-Customer (AADB2C)

solution [23] provides a seamless fully customizable identity

and access management solution to securely access

multitenant SaaS offering in the Microsoft Azure. Azure-AD

also offers easy to use, consumer-centric, affordable and

flexible CIAM solutions to the stakeholders to access

multiple cloud applications by using single set of credentials.

This solution delivers the user authentication through self-

service password management, device registration, social and

on-premise login, employees and business partners SSO

login, two-factor Authentication (2FA) and federation SSO.

Compared to other cloud authentication controls, Azure-AD

performs better in scalability and performance. The major

drawback of this approach is it has smallest CIAM installed

base and performs immature authentication data analytics

and reporting. The solutions also lack in providing

appropriate partner ecosystem, content management

solutions and geographical presence of vendors.

C. Multi-factor Authentications

ForgeRock Identity Platform (FRIP) [20] is a unified

platform for secure user identity and access management

https://www.nexmo.com/use-cases/passwordless-authentication

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 128

services in the private cloud or on-premises applications. The

solution provides a Time-based or HMAC-based Multi-

factor Authentication (TBMFA or HBMFA) using user ID,

password and One-time Password (OTP). Here, the first

factor is user ID and password and the second factor is OTP

via mobile or email or registered hard device. In this

approach, OTP can be generated from the registered

hardware device or apps and used in the user authentication.

In another way OTP will be generated using hash functions

or time interval specified. Specifically, the ForgeRock IAM

services are suitable for data sharing and user consent. This

approach preserves better privacy controls for data privacy

protection compared to other mechanisms.This solution does

not work for the user authentication in multitenant SaaS

applications. The major drawback of this approach is it lacks

in supporting TRUSTe security standards and certifications.

This mechanism also performs immature user authentication

in analytics and reporting.

Figure.1. Typical Architecture of Proposed Scheme for cloud computing environment

In [24-26, 32-41] authors described various authentication

frameworks for cloud computing environment to facilitate

mutual authentication and secure key management for cloud

users. Observing limitations, these schemes perform

computational overhead and cannot secure against the

Ephemeral Secret Leakage (ESL) attack. In [27], Jia-Lun

Tsai et al. described a scheme to provide security and

convenience for the mobile users to access multiple mobile

cloud computing services from multiple service providers

using only a single private key. The authors have taken effort

to supports mutual authentication, key exchange, user

anonymity, and user untraceability in the cloud. In this

scheme user password and finger print details are never

shared with CSPs and SCG. However the mechanism is

insecure against the service provider impersonation attack

and the adversary can able to extract the user identity.

Debiao He et al [28] presented a privacy-aware

authentication solution to address the impersonation problem

exist in Jia-Lun Tsai et al. scheme. This scheme also not

secure against the Ephemeral Secret Leakage (ESL) attack

and malicious insiders.

III. SYSTEM-LEVEL FRAMEWORK AND

ASSUMPTIONS

In this section a system-level framework is presented for

distributed cloud computing environment which consists of

cloud service providers, identity provider, distributed trustee

and users as shown in Figure 1. The personal and sensitive

information of a data owner or enterprise will be managed in

the geographically distributed cloud data centers. The cloud

service providers outsource cheap, flexible and on-demand

storage space and computing capabilities to the data owner to

make this information available any time to the legitimated

users. Trustee is a set of distributed servers that are managed

by an organization or board of eminent security researchers.

It is a separation from the identity provider and cloud

resource applications and will run on a separate trusted

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 129

lockdowns security platforms. It collects and validates

authentication codes and access tokens generated by the

identity provider, if are valid, then user will be directed to

access cloud application. Trustee protects authentication

codes and access tokens and are never been processed in the

service providers platforms. And also audits and records

SLA and PLA parameters. Trustee services are distributed

geographically with shared and highly secured databases.

Identity provider is an authentication and authorization

servers support to computes session key materials and

generate identity and access codes for the user

authentication. In our proposed framework, identity

providers, legitimated users and CSPs must rely on

distributed trustee. The notations and their meanings we used

for describing our framework are listed in Table 1.

Table 1. List of Abbreviations

Notations Meaning

Ui&CSPj User i and Cloud Service Provider j

EPB (.) A public-key encryption function

DPR(.) A decryption function’s corresponding to EPB (.)

eK(.) A symmetric encryption’s function

dK(.) A symmetric decryption’s function corresponding

eK(.)

ê Exponential function

UID* The ID which Ui inputs in authentication phase

PWD* The password which Ui inputs in authentication phase

MACUi* The MAC address which Ui submits in authentication

 phase

UID The ID which Ui inputs in registration phase

PWD The password which Ui inputs in registration phase

MACUi The MAC address which Ui submits in registration

 phase

Ci The cipher text sent by various communication

entities.

Tbp Bilinear pairing operation time

Tm Multiplication operation time

Td&Tc Division operation time and Concatenation operation

time

TX&Th Ex-OR operation time and One-way Hash operation

time

Tdp&Tpriv Trust on data processing and Trust on data privacy

Rval>val Reputation value and Global Trust value

α, β and Importance given to service cost, trust and reputation

values

Tdt&STval Trust on data transmission and Service Trust value

K & Ki Shared session key and Shared session key of

communication entity i

ST & DT Cloud Service Type and User Data Type

SS & DS Cloud Storage Size and User Data Size

PS & RS Cloud Processing Speed and User Requested Speed

SC & SP Cloud Service Cost and User Service Pay

Cd Cost Difference (i.e., Cd=SC – SP)

AT&RAT Authentication Type and Requested Authentication

Type

Cdminaccval Minimum Acceptable Value of Cost Difference

STminaccval Minimum Acceptable Value of Service Trust

GTminaccval Minimum Acceptable Value of Global Trust

SPID The Service Provider ID which CSPj inputs in the

registration phase

SPID* The Service Provider ID which CSPj inputs in the

authentication phase

hi(.) ith one-way hash function

||&⊕ Concatenation operation and X-OR operation

T(u, s)t User u has the trust in service type s at current time t

salt A random data that is used in generating a hashed

password and also avoids the hash collisions.

+K & -K Public keys and Private keys

ERN Encrypted Random Number

FPR&FNR False Positive Rate and False Negative Rate

IV. SYSTEM PRELIMINARIES

The n-party bilinear key pairing preliminaries we used in our

proposed authentication protocol are described in this

section. Let G1, G2, G3 be three cyclic additively-written

groups and let GT be a cyclic multiplicative groups of an

exponential base g with a large prime number order p.

Definition 4.1.Let a mapping ê=G1 x G2x G3→GT is a

bilinear pairing that has characteristics as follow:

(1). Bilinearity: a, b, c
 , g (G1 , G2, G3), ê(g

a
, g

b
,

g
c
)=ê(g, g, g)

abc
.

(2). Computability: Bilinear groups and bilinear mapping are

computed efficiently.

(3). If ê(g, g,g)=1, then bilinear pairing preserves non-

degeneracy property.

Definition 4.2. Let ê be a bilinear pairing on (G1 , G2, G3).

The bilinear Elliptic Curve Diffie-Hellman key pairing for

 a,b, c
 , g (G1, G2, G3) can be computed as ê(g

a
, g

b
,

g
c
)=ê(g,g,g)

abc
.

The above definitions and properties are used in our

authentication process for establishing and generating shared

session keys among the users, identity providers, cloud

service providers and trustee. In key generation process there

are up-flow and down-flow stages. In up-flow stage, each

entity computes intermediate secrete values and in the down-

flow, intermediate results will be sent to the communication

entity group to generate shared session keys. The

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 130

Figure.2. Control Flow of the Proposed Authentication Protocol

communication entities involved in authentication process

are denoted as E1,E2 . . . En. Trustee chooses an exponential

base and a large prime number p as an order and secretly

shares these values to the authorized users and CSPs.

 During up-flow, each communication entity Ei performs

a single exponent and concatenates resultant value to the

received intermediate values as given in equation (1) and

then sends it to Ei+1.

 ∏

Ei+1 receives the up-flow as formulated in equation (2).

)

Upon receipt of the resultant flow, En computes the shared

session key K as given in equation (3) by exponentiation of

secrete value Nn chosen by En.

The up-flow process ends and the down-flow process starts

when Ei = En. Once the shared session key Kn is computed,

En starts the down-flow with n-1 intermediate values as

formulated in equation (4)

Upon receipt of n-1 intermediate values, each entity Ei

computes the shared session key as given in equation (5)

The down-flow ends when Ei = E1.

V. TRUSTED AUTHENTICATION PROTOCOL

In this section we describe a trust-aware mutual

authentication protocol. In this protocol, authentication

parameters’ matching will be performed in the identity

provider servers. The authentication codes and access tokens

generated by the identity provider will be validated in the

distributed trustee servers. In our approach, user

authentication credentials never shared with the cloud service

providers. The control flow of the proposed authentication

protocol is represented in Figure.2. This approach helps the

users to protect identity and access management tokens from

the malicious insiders and unauthorized external adversaries.

The protocol has three phases as follow.

 Initialization phase, First, trustee chooses a random

number as private key (Prtt) and computes Pbtt= h1(Prtt) as

its corresponding public key, where h1 is a one-way hashing

function. Next trustee selects various bilinear pairing

function parameters (p, a, b, G, h2 to h5 and n). Finally,

trustee publishes Pbtt and (p, a, b, G, n, h2 to h5) as public

parameters. Likewise, identity provider (IdP) chooses a

random number as private key (PrIdP) and computes PbIdP=

h2(PrIdP) as its corresponding public key, where h2 is a one-

way hashing function and publishes PbIdP as a public

parameter. Similarly, CSP chooses a random number as

private key (PrCSP) and computes PbCSP= h3(PrCSP) as its

corresponding public key, where h3 is a one-way hashing

function and publishes PbCSP and its service attributes.

Ei Ei+1

Ei Ei+1 (2)

(3)

(4)

(1)

(5)

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 131

Registration phase, Each User (Ui) filters CSPs based on

service attributes like {STЭDT, SS≥DS, PS≥RS, SC≤SP} and

then sends a request to trustee to provide trust and reputation

values of desired CSP. User (Ui) sends his/her chosen CSPIDj,

user-id (IDUi), password (pwdUi) and device MAC address

(MACUi) to IdP for registration. Where, each user selects

desired cloud service provider (CSPIDj) based on the global

trust evaluation algorithm which is described in [26]. Identity

provider computes h3(PWD+salt)=HPWD, h4(δRN(MAC)) =

h4 (RN⊕MAC) =HMAC and eMACUi (RN) =ERN, where h3(.)

and h4(.) are the one-way hashing functions, eMACUi(.) is the

symmetric encryption function using MACUi and stores these

values in distributed and highly secured databases. IdP sends

IDUi and mutual operation on nonce to Ui and trustee through

secure channel.

Assumption: Similarly, trustee and cloud service provider

registers with IdP.

The authentication phase performs the following steps to

validate remote user (Ui) login credentials.

1) User Ui inputs IDUi*, chooses a random secrete number x

(x<p) and nonce n1 and then computes intermediate

secrete as Xx =g
x
 mod p. Ui performs public key

encryption on concatenation of IDUi*, Xx and n1 and

computes cipher text as C1=
(IDUi*||CSPIDj*||n1)||Xx

and then sends C1 as service request to Trusteek.

2) Trusteek obtains Ui message details such as IDUi*, CSPIDj*

and n1 by decrypting C1 using private key PRTT. If

UID*==UID, then Trusteek selects a random secrete

number y (y<p) and calculates Xy =g
y
 mod p, Xxy=ê(Xx, Xy)

mod p, n2 = n1>>1 mod n and then derives C2= EpbIdP

(IDUi*||IDTTk*||n2)||Xx|| Xy||Xxy using identity provider

public key PBIDP. Trusteek sends C2 to the identity

provider. If IDUi* or CSPIDj* is not found or invalid, then

the user request will be rejected.

3) Identity provider obtains Trusteek message details such as

IDUi*, IDTTk*, n2, Xx, Xy, Xxy and n2 by decrypting C2 using

private key PRIdP. If IDUi
*
==IDUi && IDTTi*==IDTTi

&&valid? then chooses a secrete z (z<p) and computes

Xz =G
z
mod p, session key k= Xxyz =e(Xx, Xy)

z
 mod p, Xxz

=e(Xx, Xz) mod p, Xyz =e(Xy, Xz) mod p and also performs

the mutual operation on n3 = n2>>1 mod n. Finally,

computes C3=Ek (ERN ||n3)||Xx||Xy|| Xz||Xxz||Xyz and IdP

sends C3 to the user. If UID*or SPID* is not found with

trustee, then theauthentication request will be rejected.

4) FromC3, Ui Computes session key k= Xxyz =e(Xy, Xz)
x

mod p, obtains ERN||n3 and then checks for mutual

authentication value i.e.,n3= = n1 >>2 mod n, if it

matches, then user is allowed to enter pwdUi and MACUi

and then obtains RN by decryption of message as

dpwdUi(e(pwdUi(RN))=RN. Finally, Ui computes h4(RN⊕

MACUi *)=HMAC* and C4= Ek (HMAC*||n4) and then

sends C4 to IdP. If n3 n1 >>1 mod n, then the

authentication process will be terminated.

5) From C4, IdPj obtains HMAC* from Dk(Ek (HMAC*||n4))

and checks for HMAC*==HMAC && n4== n3>>1 mod

n? if matches, then computes authentication and access

token Ek(TokenTT||n5), where TokenTT= EpbTT

(IDUi
*
||NAUi||OTP ||n5) and n5= n4>>1 mod n and

computes C5= Ek (TokenTT||n5) and then sends C5 to Ui.

If n4 n3>>1, then the authentication process will be

terminated.

6) From C5, Ui obtains TokenTT||n5 by using secrete key k and

then checks for n5= = n4 >>1 mod n?, if matches then

user is allowed to enter OTP and forms C6= Ek

(TokenTT||NAUi*||OTP||n6)||Xx, and then sends C6 to

Trusteek. If n5 n4>>1, then the authentication process

will be terminated.

7) Trusteek computes k =e(Xx,z)
y
mod p and obtains TokenTT||

NAUi*||OTP*||n6 using k and then obtains IDUi
*
||NAUi||

OTP||n5 using PrTT and then checks for IDUi
*
==IDUi&&

NAUi*== NAUi&&OTP*==OTP&& n6==n5>>1mod n?

if matches, then redirects to CSP applications with C7= Ek

(n7) and then sends C7 to Ui. If n6 n5>>1, then the

authentication process will be terminated.

8) Ui checks for mutual authentication value as n7= = n6>>1

mod n, if it matches, then user is allowed to access the

cloud services. Otherwise, the request will be rejected.

The proposed mutual authentication protocol is described in

Algorithm 1.

Input: User-ID, password, MAC address and random nonce.

Output: Accept or Reject remote user.

1) Ui Inputs IDUi* and selects x (x <p) and n1

 Computes Xx=g
x
mod p

C1=EPbTT (IDUi*||CSPIDj*|| n1)|| Xx

Ui

→ Trusteek

2) Trustee
k

DPrTT(EPbTT(IDUi*||CSPIDj*||n1)=

 (IDUi*||CSPIDj*||n1)

 if IDUi*==IDUi and CSPIDj*==CSPIDj and are valid

then chooses a secrete

number y (y<p) and computes Xy =g
y
 mod p, Xxy

=ê(Xx, Xy) mod p, n2 = n1>>1 mod n

C2= EpbIdP (IDUi*||IDTTk*||n2)||Xx|| Xy||Xxy

 Trusteek

→ IdPj

If IDUi* or CSPIDj* is not found or invalid, then user

request will be rejected

3) IdPj decrypts C2 as DPrIdP (EpbIdP (IDUi*||IDTTk*||n2))=

(IDUi*||IDTTk*||n2) and obtains IDUi*, IDTTk*, n2, Xx, Xy,

Xxy

if IDUi
*
==IDUi && IDTTi*==IDTTi &&valid?, then

chooses a secrete z (z<p) and computes Xz =G
z
mod p,

session key k= Xxyz =e(Xx, Xy)
z
 mod p, Xxz =e(Xx, Xz) mod

p, Xyz =e(Xy, Xz) mod p and also performs mutual

operation as n3 = n2>>1 mod n and computes C3=Ek

(ERN ||n3)||Xx||Xy|| Xz||Xxz||Xyz

Algorithm 1: Authentication phase

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 132

IdP

→Ui

Otherwise, the authentication request will be rejected.

4) Ui Computes session key k= Xxyz =e(Xy, Xz)
x
 mod p,

obtains ERN||n3 and then checks for mutual

authentication value i.e.,n3= = n2>>1 mod n, if it

matches, then user is allowed to enter pwdUi and MACUi

and then obtains RN by dpwdUi(e(pwdUi(RN))=RN, finally

computes h4(RN⊕ MACUi *)=HMAC* and forms C4= Ek

(HMAC*||n4).

 Ui

→ IdPj

If n3 n1 >>1 mod n, then the authentication process will

be terminated.

5) From C4, IdPj obtains HMAC* from Dk(Ek (HMAC*||n4))

and checks for HMAC*==HMAC && n4== n3>>1 mod

n? if matches, then computes authentication and access

token Ek(TokenTT||n5), where TokenTT= EpbTT

(IDUi
*
||NAUi||OTP ||n5) and n5= n4>>1 mod n and

computes C5= Ek (TokenTT||n5)

Trustee

→ Ui and redirects to the Trusteek server

If n4 n3>>1, then the authentication process will be

terminated.

6) From C5, Ui obtains TokenTT||n5 by using secrete key k

and then checks for n5= = n4 >>1 mod n?, if matches

then user is allowed to enter OTP and forms C6= Ek

(TokenTT||NAUi*||OTP||n6)||Xx,.

Ui

→ Trusteek

Otherwise, the authentication request will be rejected.

7) Trusteek computes k =e(Xx,z)
y
mod p and obtains TokenTT||

NAUi*||OTP*||n6 using k and then obtains IDUi
*
||NAUi||

OTP||n5 using PrTT and then checks for IDUi
*
==IDUi&&

NAUi*== NAUi&&OTP*==OTP&& n6==n5>>1mod n?

if matches, then redirects to CSP applications with C7=

Ek (n7)

Trusteek

→ Ui

Otherwise, the authentication request will be rejected.

8) Ui checks for mutual authentication value as n7= =

n6>>1 mod n, if it matches, then user is allowed to access

the cloud services. Otherwise, the request will be

rejected.

VI. COMPLETENESS OF THE PROPOSED PROTOCOL

This section formally analyses the mutual authentication and

security strength of the proposed protocol using standard

GNY cryptographic logic. The analysis proved that the

proposed protocol not only meets intended mutual

authentication functionality, but also ensures the security

strength against the service provider impersonation and other

replay attacks. We used cryptographic GNY
30

 belief logic to

formally analyze the working nature of our trusted

authentication mechanism and to verify whether our

mechanism meets its goals. GNY belief logic is the

substantial extension of BAN logic. First, we present the

basic terminologies and statements, protocol transformation,

goals and assumption list we used. Next, we describe the

logical postulates adoption.

1) Basic Terminologies and Statements

Let CPi be the credential parameter message and the

following basic terminologies are introduced on CPi:

 h(CPi): hash operation on CPi.

 {CPi}+K, {CPi}-K: CPi is encrypted with +K and

decrypted with -K.

 {CPi}K, {CPi}
-1

K: CPi is encrypted and decrypted with

secrete key K.

Statements: Let Ei and Ej be two communication entities

and the following statements are formed on Ei and Ej.

1) Ei Ej: Ei holds Ej

2) Ei CPi: Ei possesses credential parameter message CPi

3) Ei| CPi: Ei once conveyed CPi

4) Ei|≡#(CPi):Ei believes that CPi is fresh

5) Ei≡ɸ(CPi):Ei believes that CPi is recognizable

6) Ei|≡ Ei ↔Ej: Ei believes that S is a suitable secrete for

Ei and Ej

7) Ei|≡ →Ej: Ei believes that public key +K is suitable for

Ej

8) Ei=>X: Ei has jurisdiction over X

9) Ei *X: Ei is told that he/she didn’t convey X

previously in the current session.

2) Protocol Transformation

 Our proposed authentication protocol is mapped into the

form of Ei→Ej:CPi

1) Ui →Trusteek:{{IDUi*||CSPIDj*|| n1}+K|| Xx}

2) Trusteek → IdPj :{{IDUi*||IDTTk*||n2} +K ||Xx||

Xy||Xxy}

3) IdPj → Ui :{{ERN ||n3}K||Xx||Xy|| Xz||Xxz||Xyz }

4) Ui → IdPj :{{HMAC*||n4}K}

5) IdPj → Ui :{{TokenTT||n5}K}

6) Ui →Trusteek :{{TokenTT||NAUi*||OTP||n6}+K||Xx,z }

7) Trusteek → Ui :{{n7}+K}

Parsing of the authentication protocol into Ei | CPi and Ei

*X is given below.

1) Trusteek *{*IDUi*||*CSPIDj*|| *n1}+ > Ui|≡ Ui

↔ Trusteek

2) IdPj *{*{*IDUi*||*IDTTk*||*n2}+K ||*Xx||

*Xy||*Xxy} > Trusteek |≡ Trusteek ↔ IdPj

3) Ui *{*{*ERN||*n3}K||*Xx||*Xy|| *Xz||*Xxz||*Xyz}

> IdPj |≡ IdPj ↔ Ui

4) IdPj *{*HMAC*||*n4}K > Ui |≡ Ui ↔ IdPj

5) Ui *{*{*TokenTT||*n5}K} > IdPj |≡ IdPj ↔ Ui

6) Trusteek *{*{*TokenTT||*NAUi*||*OTP||*n6}+K

||*Xx,z} > Ui|≡ Ui ↔ Trusteek

7) Ui *{*n7} > Trusteek |≡ Trusteek ↔ Ui

A. Goals

S

+K

+K

+K

+K

+K

+K

+K

+K

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 133

The followings are the goals which describe the basic

functionalities of the proposed protocol.

1) Authentication on message content

In the proposed protocol, Trusteek believes that user login

request contents are recognizable and valid

Trusteek |≡ɸ {{IDUi*||CSPIDj*|| n1}+K|| Xx}.

In the second flow, IdPj believes that Trusteek message

contents are recognizable and valid

IdPj |≡ ɸ {{IDUi*||IDTTk*||n2} +K ||Xx|| Xy||Xxy}.

In the third flow, Ui believes that IdPj message contents are

recognizable and valid

Ui|≡ ɸ{{ERN ||n3}K||Xx||Xy|| Xz||Xxz||Xyz}.

In fourth flow, IdPj believes that Ui response contents are

recognizable and valid

IdPj |≡ ɸ{{HMAC*||n4}K}.

In fifth flow, Ui believes that IdPj reply message contents are

recognizable and valid

Ui|≡ ɸ{{TokenTT||n5}K}.

In sixth flow, Trusteek believes that Ui message contents are

recognizable and valid

Trusteek |≡ ɸ{{TokenTT||NAUi*||OTP||n6}+K||Xx,z}.

In seventh flow, Ui believes that Trusteek reply message

contents are recognizable and valid

Ui|≡ ɸ{{n7}+K}.

2) Authentication on message origin

From the login request, Trusteek believes that Ui is originated

the following message:

Trusteek |≡Ui| {{IDUi*||CSPIDj*|| n1}+K|| Xx}.

In the second flow, IdPj believes that Trusteek redirected the

user with following message:

IdPj |≡ Trusteek | {{IDUi*||IDTTk*||n2} +K ||Xx|| Xy||Xxy}.

In the third flow, Ui believes IdPj is replied

Ui| ≡ IdPj | {{ERN ||n3}K||Xx||Xy|| Xz||Xxz||Xyz }.

In the fourth flow, IdPj believes Ui is replied

IdPj | ≡Ui| {{HMAC*||n4}K}.

In the fifth flow, Ui believes and validates IdPj response

Ui |≡ IdPj | {{TokenTT||n5}K}.

In the sixth flow, Trusteek believes that Ui is replied

Trusteek | ≡Ui| {{TokenTT||NAUi*||OTP||n6}+K||Xx,z}.

In the seventh flow, Ui believes and validates Trusteek

response

Ui |≡ Trusteek | {{TokenTT||n5}K}.

3) Mutual Identity Verification

From the first flow, Trusteek believes and verifies IDUi
*

and CSPIDj
*,
 if identities are valid and matched then Trusteek

sends IDUi*, IDTTk* and n2 to IdPj, otherwise user request will

be terminated

Trusteek |≡Ui (IDUi
*
).

From the second flow, IdPj believes and verifies IDUi* and

IDTTk*, if identities are valid and found, then IdPj sends the

intermediate secretes and encrypted random number (ERN)

and n3 to Ui, otherwise authentication request will be

terminated

IdPj |≡Ui (IDUi*) &&Trusteek (IDTTk*).

From the third flow, Ui verifies ERN and n3, if n3= = n2>>1

mod n, then user believes that the response received is

genuine, otherwise authentication process will be stopped

Ui|≡ Trusteek, CSPj (n3).

From the fourth flow, IdPj verifies Ui incremented nonce

value and HMAC*, if n4 n3>>1 mod n and MAC address is

matched, then IdPj believes that the response received from

Ui is genuine, otherwise the authentication process will be

terminated

IdPj|≡Ui (HMAC*, n4).

From the fifth flow, Ui verifies IdPj incremented nonce n5, if

n5 n4>>1 mod n, then Ui believes that the response received

from IdPj is genuine and user is allowed to enter OTP and

forms C6= Ek (TokenTT||NAUi*||OTP||n6)||Xx; otherwise the

authentication process will be terminated

Ui |≡IdPj (TokenTT, n5).

From sixth flow, Trusteek believes that Ui message contents

are recognizable and valid

Trusteek |≡ Ui (TokenTT, NAUi*, OTP and n6).

In seventh flow, Ui believes that Trusteek reply message

contents are recognizable and valid, then Ui checks for

mutual authentication value as n7= = n6>>1 mod n, if it

matches, then user is allowed to access the cloud services.

Otherwise, the request will be rejected

Ui|≡ Trusteek TokenTT, NAUi*, OTP and n6)

B. Session Key Material Establishment

Ui, IdPj and Trusteek believes each other that Xx, Xy and Xz

are their intermediate secrete values for generating shared

session key

Ui|≡ Trusteek |≡ IdPj |≡ {Ui, IdPj, Trusteek} { Xx, Xy, Xz }.

Ui, IdPj and Trusteek believes that K is a shared one-time

secrete key for the current session

Ui|≡IdPj|≡Trusteek|≡{Ui↔IdPj, IdPj↔Trusteek, Ui↔

Trusteek}.

C. Assumption List

We consider the following assumptions in our

authentication protocol.

 Trusteek chooses a random values as private key–K,

computes corresponding public key +K and prepares a

one-time intermediate secrete value Xz for generating

shared session key

Trusteek -K, Trusteek +K, Trusteek Xz.

 Trusteek publishes a public key +K for the users and

identity providers to encrypt their communication

messages and also believes that +K is suitable for IdPj

and Ui.

Trusteek|≡

→ { IdPj, Ui}.

K K K

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 134

 IdPj chooses a random value as private key–K,

computes corresponding public key +K and prepares a

one-time intermediate secrete value Xy for generating

shared session key

IdPj -K, IdPj +K, IdPj Xy.

 IdPj publishes a public key +K for the users to encrypt

their communication parameters and believes that +K is

suitable for Ui.

IdPj |≡

→ {Ui}.

 Ui chooses a random value ‘x’ and prepares one-time

intermediate secrete Xx. Ui believes that Xx is fresh and it

will be used by Trusteek and IdPj to compute shared

secrete keys

Ui Xx, Ui≡#(Xx).

 IdPj chooses a random value ‘y’ and prepares one-time

intermediate secrete Xy. IdPj believes that Xy is fresh and

it will be used byTrusteek and Ui to compute shared

secrete keys

IdPj Xy, IdPj≡#(Xy).

 Trusteek chooses a random value ‘z’ and prepares one-

time intermediate secrete value Xz. Trusteek believes that

Xz is fresh and it will be used by IdPj and Ui to calculate

shared secrete keys

Trusteek Xz, Trusteek≡#(Xz).

VII. PERFORMANCE EVALUATION

In this section we establish the testbed simulation using

Microsoft Azure Compute and Storage Emulator. Using

simulation platform we determine an effectiveness of the

proposed protocol in terms of number of cryptographic

operations are required, Resistance to various possible

attacks, communication and computation costs. In first

subsection, we present security comparisons. Next, we

analyse the computational efficiency of our scheme with an

existing schemes.

Setup: We have implemented our proposed investigation on

a computer which has windows 7 operating system with 4GB

RAM and 2.0GHz Intel Core i7 processor. C#.NET

framework was installed on this computer which contains

Visual Studio community 2013 as a frontend, SQL Server

2012 R2 SP1 as a backend and a Windows Azure Emulator

as software platform.

A. Security Comparisons

In this subsection, first we compare proposed authentication

protocol with the existing mechanisms [17]-[22], [27]-[28] in

terms of mutual authentication, resistant to various reply and

impersonation attacks, and trust and reputations management

attacks. As presented in Table II, the existing mechanisms

[17]-[22] and [27]-[28] are effortless to protect trust and

reputation management attacks such as white-wash attack,

collusion attack, bad mouth attack and good mouthing attack.

The mechanisms described in

[17]-[22] are not suitable for

collaborative cloud service providers. Existing mechanisms

presented in [20]-[27] are not resistance to reply and

impersonation attacks. The schemes presented in [17] and

[20]-[22] are unable support mutual authentication.However,

the mechanisms described in [27]-[28] are unable support

provision of user anonymity. Therefore, our investigation

meets all the design goals and is immune to various reply and

impersonation attacks.

Table 2.Comparisons with Existing Mechanisms

 CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9

Merritt Max.

[17]
No No Yes Yes Yes No No No No

Janrain. [18] Yes No Yes Yes Yes No No No No

SIAM .[19] Yes No Yes Yes Yes No No No No

David

G.[20]
No No No No Yes No No No No

John T.[21] No No No No Yes No No No No

LoginRadius

[22]
No No No No Yes No No No No

Jia-Lun T et

al.[27]
Yes No No No No No No No No

Debiao H et

al. [28]
Yes No Yes No No No No No No

Our’s Yes Yes Yes Yes Yes Yes Yes Yes Yes

Next, we compare the computation costs of our

authentication protocol with an existing scheme [28]. Let Tbp

be the bilinear pairing operation time, Th is one-way hash

operation time, Tc and Tx are concatenation and Exclusive-OR

operation times and, Ti and Tm are inverse and additive

multiplication operation times respectively. The comparison

of the computation cost of our scheme with an existing

mechanism [28] is listed in Table III. In general,

concatenation and bitwise Exclusive-OR operations are much

faster and will consume constant timings, so that these two

operations time can be neglected in calculating computation

cost. Therefore, for registration process, our scheme requires

two hash and one Exclusive-OR operations (i.e., 2Th+ Tx).

On the other hand, Debiao He et al. [28] scheme consumes

two bilinear pairing, two hash, two multiplication and two

inverse operations (i.e.,2Tbp+2Th+2Tm+2Ti). For

authentication process, proposed protocol consumes 3Tbp+Th

and Debiao He et al. scheme requires 7Tbp+6Th+4Tm+2Ti.

So, the total computation cost of our authentication

mechanism is O(3Tbp+2Th+3Tm+19Tc+2Tx) and Jia-Lun T et

al. scheme consumes O(7Tbp+6Th+4Tm+2Ti+5Tc+2Tx).

Table 3. Computation Cost Comparisons with Existing Scheme
Phase

Party Existing Scheme [28]

Time Complexity

Our scheme

Time Complexity

Registration User Tbp+Th+Tm+Ti+Tc+Tx Nil

CP5: Provision of user anonymity

CP6: White-washing attack

CP7: Collusion attack

CP8: Bad mouthing attack

CP9: Good mouthing attack

CP1: Mutual authentication

CP2: Collaborative Cloud Service

Providers

CP3: Resistance to replay attack

CP4: Resistance to impersonation attack

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 135

 IdP/

Truste

e

Tbp+Th+Tm+Ti+Tc+Tx 2Th+Tx

Authenticati

on

User 3Tbp+2Th+3Tm+Ti+3Tc+

Tx

 Tbp+2Th+ Tm

+7Tc+Tx

Truste

e
Nil Tbp+ Tm +5Tc

IdP 4Tbp+4Th+Tm+2Tc+Tx Tbp+ Tm +7Tc

Time Complexity 9Tbp+8Th+6Tm+3Ti+7Tc+

4Tx

3Tbp+2Th+3Tm+19Tc+

2Tx

Table 4 Running Time Comparisons (In Milliseconds)

Elliptic Curve over Prime

Fields in bits

Registration

Phase (/300

Records)

Authentication

Phase (/41442

Records)

ECDiffieHellmanP521 03.8845493 39.6372597

ECDiffieHellmanP384 04.5017486 40.3048253

ECDiffieHellmanP256 04.9603378 40.7483696

ECDSAP521 05.9775697 41.9618704

ECDSAP384 06.0840950 42.2870329

ECDSAP256 06.7116423 42.9964785

Table 5. Computation Cost Comparisons (In Milliseconds)

Elliptic Curve over

Prime Fields in bits

Proposed Scheme Jia-Lun T

et al.[27]
Debiao H
et al. [28]

ECDiffieHellmanP521 54.2097481 89.6755458 78.5198765

ECDiffieHellmanP384 54.2339890 90.5648944 79.6564897

ECDiffieHellmanP256 56.9493687 91.5497450 80.6597455

ECDSAP521 57.4219455 92.6512187 81.5649815

ECDSAP384 59.1665572 92.9879895 82.1236587

ECDSAP256 59.9546878 93.2318745 82.8796589

Table 6. Communication Cost Comparisons (In Bits)

Elliptic Curve over

Prime Fields in bits

Proposed Scheme Jia-Lun T

et al.[27]

Debiao H
et al. [28]

ECDiffieHellmanP521 3296 bits 4320 bits 3296 bits
ECDiffieHellmanP384 3022 bits 4320 bits 3296 bits
ECDiffieHellmanP256 2784 bits 4320 bits 3296 bits
ECDSAP521 3296 bits 4320 bits 3296 bits
ECDSAP384 3022 bits 4320 bits 3296 bits
ECDSAP256 2784 bits 4320 bits 3296 bits

The registration and authentication phase running time of our

scheme is recorded in Table IV for different elliptic curves

over prime fields. Here, we have considered 300 and 41442

records in registration and authentication phases respectively.

The proposed scheme consumes less running time for

Elliptic Curves Diffie-Hellman P521. The overall

computation cost comparison of our scheme with Jia-Lun T

et al.[27] and Debiao H et al. [28] is recorded in Table V for

different elliptic curves over prime fields. The proposed

scheme consumes less computation cost compare with Jia-

Lun T et al.[27] and Debiao H et al. [28] schemes. The

overall communication cost comparison of our scheme with

Jia-Lun T et al.[27] and Debiao H et al. [28] is listed in Table

VI for different elliptic curves over prime fields. The

proposed scheme consumes less communication cost

compare with Jia-Lun T et al.[27] and Debiao H et al. [28]

schemes. Therefore, we can conclude that our proposed

authentication scheme is computationally efficient and robust

towards various reply and impersonation attacks than the

existing schemes.

VIII. CONCLUSION AND FUTURE DIRECTION

In this article, we developed a robust and an efficient mutual

authentication model for verifying genuine of

communication entities in the cloud using n-party Diffie-

Hellman bilinear pairing key distribution and random nonce.

User credentials and access keys are never revealed to the

malicious users. Stakeholders can gain the control over the

cloud environment. Experimental results and performance

analysis shows that the proposed work is computationally

efficient for mutual authentication and robust against the

impersonation and ephemeral secret leakage attacks.

However, this investigation can be further extended to reduce

trustee participation overhead using tokenization techniques.

Declarations

Competing Interests

The authors Mr. Sabout Nagaraju and Dr.S.K.V. Jayakumar

declare that they have no competing interests.

Authors’ Contributions

Mr. Sabout Nagaraju has made substantial contributions to

conception, design, implementation, acquisition of test data,

and performed experimental evaluation. Dr.S.K.V.

Jayakumar has involved in revising it critically for important

intellectual content, supervision of the research work and has

given final approval of the version to be published. Both

authors read and approved the final manuscript.

Acknowledgements

Thanks to the Pondicherry University administration for

providing required hardware and software resources to carry

out this work successfully.

REFERENCES

[1] Shane Mitchell, Nicola V et al. “The Internet of Everything for

Cities”,

https://www.cisco.com/c/dam/en_us/solutions/industries/docs/gov/e

verything-for-cities.pdf, June 2013.

[2] Bob Violino, “The dirty dozen: 12 top cloud security threats for

2018”, https://www.csoonline.com/article/3043030/security/12-top-

cloud-security-threats-for-2018.html, January 5, 2018.

[3] Holger Schulze, “Cloud security report 2018”

https://pages.cloudpassage.com/rs/857-FXQ-213/images/2018-

Cloud-Security-Report%20%281%29.pdf.

[4] Tim Mather and SubraKumaraswamy, “Cloud Security and Privacy:

An Enterprise Perspective on Risks and Compliance”,

http://www.di.fc.ul.pt/~nuno/PAPERS/security3.pdf, 2009.

[5] Jaikumar Vijayan, “Amazon downplays report highlighting

vulnerabilities in its cloud service”.

http://www.computerworld.com/s

https://www.csoonline.com/article/3043030/security/12-top-cloud-security-threats-for-2018.html
https://www.csoonline.com/article/3043030/security/12-top-cloud-security-threats-for-2018.html
http://www.di.fc.ul.pt/~nuno/PAPERS/security3.pdf
https://www.computerworld.com/author/Jaikumar-Vijayan/
http://www.computerworld.com/s%20/article/9140074/Amazon_downplays_report_highlighting_vulnerabilities_in_its_cloud_service

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 136

/article/9140074/Amazon_downplays_report_highlighting_vulnerab

ilities_in_its_cloud_service, October 2009.

[6] What is OpenID, OAuth2 and Google Sign In?

https://www.youtube.com/watch?v=1M6gqoGiO2s&t=25s, DBA

publications, April 20, 2017.

[7] Deep Dive into OAuth for Connected Apps,

https://www.youtube.com/watch?v=vlrK3YZ_Fj0.

[8] DBA presenters, “What is OpenID, OAuth2 and Google Sign In?”

https://www.youtube.com/watch?v=1M6gqoGiO2s&t=25s, DBA

publications, April 20, 2017.

[9] OpenID Foundation, “The OpenID User Interface Extension Best

Practices for Identity Providers 2009”. [Online]. Available:

http://wiki.openid.net/w/page/12995153/Details-of-UX-Best-

Practices-for-OPs

[10] J. M. Alves et al. ”Multi-Factor Authentication with OpenId in

Virtualized Environments”, IEEE LATIN AMERICA

TRANSACTIONS, VOL. 15, NO. 3, MARCH 2017

[11] Chris Messina, “User Authentication with OAuth 2.0”,

https://oauth.net/articles/authentication/.

[12] Chris Messina, “OAuth 1.0, OpenID 2.0 and up next: DiSo”,

https://medium.com/chris-messina/tagged/oauth, 2007.

[13] Aloysius Low, S e t h R o s e n b l a t t , “ Serious security flaw in

OAuth, Open ID discovered”,

h t t p s : / / w w w . c n e t . c o m / n e w s / s e r i o u s - s e c u r i t y -

f l a w - i n - o a u t h - a n d - o p e n i d - d i s c o v e r e d / , MAY 2,

2014 4:00 AM PDT.

[14] Hargobind Singh, “Deep Dive into OAuth for Connected Apps”,

https://www.youtube.com/watch?v=vlrK3YZ_Fj0, October 5, 2015.

[15] Justin Richer, “User Authentication with OAuth 2.0”,

https://oauth.net/articles/authentication/, 2012.

[16] Pierluigi Paganini, “One oAuth 2.0 hack, 1 Billion Android App

Accounts potentially exposed”, https://securityaffairs.co/wordpress

/53081/hacking/oauth-2-0-attack.html. November 5, 2016.

[17] Merritt Maxim, “Tools And Technology: The Identity And Access

Management Playbook”, http://www1.janrain.com/rs/253-XLD-

026/images/the-forrester-wave-customer-identity-and-access-

manageme nt-q2-2017-industry-research.pdf, June 15, 2017.

[18] “Janrain Identity Cloud”, http://www1.janrain.com/rs/253-XLD-

026/images/janrain-identity-cloud-datasheet.pdf, 2016.

[19] “Identity and Access Management Resource Guide”,

http://certification.salesforce.com/RG_CertifiedIdentityandAccess

ManagementDesigner .pdf, May 25, 2018.

[20] David Goldsmith, “ForgeRock Identity Platform v5.0”,

https://backstage.forgerock.com/docs/platform/5/Platform-5-

Platform-Guide.pdf, 2018.

https://www.pingidentity.com/content/dam/ping-6-2-

assets/Assets/analyst-reports/en/3208-kuppingercole-solutions-

custome r-iam.pdf?id=b6322a80-f285-11e3-ac10-0800200c9a66,

March 2017.

[21] John Tolbert, “Ping Identity solutions for Customer Identity and

Access Management”,

https://www.pingidentity.com/content/dam/ping-6-2-

assets/Assets/analyst-reports/en/3208-kuppingercole-solutions-

custom er-iam.pdf?id=b6322a80-f285-11e3-ac10-0800200c9a66,

March 2017.

[22] LoginRadius, “Complete Customer Identity Management”

https://www.loginradius.com/press/loginradius-announces-series-a-

funding-from-forgepoint-and-microsoft-venture/, July 2018.

[23] Ronny Bjones, “Identity for the 21st Century”,

https://www.eema.org/wp-content/uploads/bjones.pdf, 2016.

[24] SaboutNagaraju and LathaParthiban, “SecAuthn: Provably Secure

Multi-Factor Authentication for the Cloud Computing Systems”,

Indian journal of Science and Technology, Vol 9(9), March 2016,

pp.1-18.

[25] SaboutNagaraju and LathaParthiban, “Trusted framework for online

banking in public cloud using multi-factor authentication and

privacy protection gateway”,Journal of Cloud Computing:

Advances, Systems and Applications (2015) 4:22, pp.1-23.

[26] SaboutNagaraju and S.K.V. Jayakumar, “A Novel Approach for

Enabling More Accurate Trust and Reputation Mechanisms with an

Efficient and High-Security Remote Authentication in the Cloud

Computing Environment”, Indian journal of Science and

Technology, Vol 11(13), April 2018, pp.1-18.

[27] Jia-Lun Tsai and Nai-Wei Lo, “A Privacy-Aware Authentication

Scheme for Distributed Mobile Cloud Computing Services”, IEEE

Systems Journal, Vol. 9, No. 3, Sep. 2015, pp. 805-15.

[28] Debiao He et al., “Efficient Privacy-Aware Authentication Scheme

for Mobile Cloud Computing Services”, IEEE Systems Journal,

Vol. 12, No. 2, June 2018, pp. 1621-31.

[29] James Scott, Drew Spaniel, “In 2017, The Insider Threat Epidemic

Begins”, https://icitech.org/wp-content/uploads/2017/02/ICIT-Brief-

In-2017-The-Insider-Threat-Epidemic-Begins.pdf, February 23,

2017.

[30] L. Gong, R. Needham, and R. Yahalom, “Reasoning about belief in

cryptographic protocols” in Proc. 1990 IEEE Computer Society

Symp.Research in Security and Privacy, 1990, pp. 234–246.

[31] M. Burrows, M. Abadi, and R. Needham, “A logic of

authentication” ACM Trans. Comput. Syst., vol. 23, no. 5, pp. 1–13,

1989.

[32] S. Pearson, “Taking account of privacy when designing cloud

computing services” in Proc. CLOUD ICSEWorkshopSoftw. Eng.

Challenges CloudComput., 2009, pp. 44–52.

[33] H. Takabi, J. B. D. Joshi, and G. Ahn, “Security and privacy

challengesin cloud computing environments” IEEE Security

Privacy, vol. 8, no. 6,pp. 24–31, Nov./Dec. 2010.

[34] Z. Xiao and Y. Xiao, “Security and privacy in cloud computing”

IEEECommun. Surveys Tuts., vol. 15, no. 2, pp. 843–859, Jul.

2012.

[35] AmlanJyotiChoudhury, Pardeep Kumar, MangalSain, Hyotaek Lim,

Hoon Jae-Lee, “A Strong User Authentication Framework for

Cloud Computing”, 2011 IEEE Asia -Pacific Services Computing

Conference, pp. 110-115, 2011.

[36] J. Yang et al., “A fingerprint recognition scheme based on

assemblinginvariant moments for cloud computing

communications”, IEEE Syst. J.,vol. 5, no. 4, pp. 574–583, Dec.

2011.

[37] SushmitaRuj, M. Stojmenovic, and A. Nayak, “Decentralized

access control with anonymous authentication of data stored in

clouds”, IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 2, pp. 384–

394, Feb. 2014.

[38] Neil Zhenqiang Gong and Di Wang, “On the Security of Trustee-

Based Social Authentications”, IEEE Transactions on Information

Forensics And Security, Vol. 9, No. 8, August 2014.

[39] Chin-Ling Chen, Tsai-Tung Yang, Mao-Lun Chiang and Tzay-Farn

Shih, “A Privacy Authentication Scheme Based on Cloud for

Medical Environment”, J Med Syst (2014) 38:143, pp. 1-16,

October 2014.

[40] Hong Liu, HuanshengNing, QingxuXiongand Laurence T. Yang,

“Shared Authority Based Privacy-Preserving Authentication

Protocol in Cloud Computing”, IEEETransactions On Parallel and

Distributed Systems, Vol. 26, No. 1, pp. 241-251, January 2015.

[41] Jun Zhou, Xiaodong Lin, Xiaolei Dong and Zhenfu Cao,“PSMPA:

Patient Self-Controllable and Multi-Level Privacy-Preserving

Cooperative Authentication in Distributed m-Healthcare Cloud

Computing System”, IEEE Transactions On Parallel and Distributed

Systems, Vol. 26, No. 6, pp. 1693-1703, June 2015.

http://www.computerworld.com/s%20/article/9140074/Amazon_downplays_report_highlighting_vulnerabilities_in_its_cloud_service
http://www.computerworld.com/s%20/article/9140074/Amazon_downplays_report_highlighting_vulnerabilities_in_its_cloud_service
https://www.youtube.com/watch?v=1M6gqoGiO2s&t=25s
https://www.youtube.com/channel/UCNlM-pgjmd0NNE5I6MzlEGg
https://www.youtube.com/channel/UCNlM-pgjmd0NNE5I6MzlEGg
https://www.youtube.com/watch?v=1M6gqoGiO2s&t=25s
https://www.youtube.com/channel/UCNlM-pgjmd0NNE5I6MzlEGg
https://www.youtube.com/channel/UCNlM-pgjmd0NNE5I6MzlEGg
http://wiki.openid.net/w/page/12995153/Details-of-UX-Best-Practices-for-OPs
http://wiki.openid.net/w/page/12995153/Details-of-UX-Best-Practices-for-OPs
https://oauth.net/articles/authentication/
https://medium.com/chris-messina/tagged/oauth
https://www.cnet.com/profiles/srosenblatt/
https://www.cnet.com/news/serious
https://www.youtube.com/watch?v=vlrK3YZ_Fj0
https://twitter.com/justin__richer
https://oauth.net/articles/authentication/
https://securityaffairs.co/wordpress/author/paganinip
https://securityaffairs.co/wordpress
http://www1.janrain.com/rs/253-XLD-026/images/the-forrester-wave-customer-identity-and-access-manageme%20nt-q2-2017-industry-research.pdf
http://www1.janrain.com/rs/253-XLD-026/images/the-forrester-wave-customer-identity-and-access-manageme%20nt-q2-2017-industry-research.pdf
http://www1.janrain.com/rs/253-XLD-026/images/the-forrester-wave-customer-identity-and-access-manageme%20nt-q2-2017-industry-research.pdf
http://www1.janrain.com/rs/253-XLD-026/images/janrain-identity-cloud-datasheet.pdf
http://www1.janrain.com/rs/253-XLD-026/images/janrain-identity-cloud-datasheet.pdf
http://certification.salesforce.com/RG_CertifiedIdentityandAccessManagement
http://certification.salesforce.com/RG_CertifiedIdentityandAccessManagement
https://backstage.forgerock.com/docs/platform/5/Platform-5-Platform-Guide.pdf
https://backstage.forgerock.com/docs/platform/5/Platform-5-Platform-Guide.pdf
https://www.pingidentity.com/content/dam/ping-6-2-assets/Assets/analyst-reports/en/3208-kuppingercole-solutions-custome%20r-iam.pdf?id=b6322a80-f285-11e3-ac10-0800200c9a66
https://www.pingidentity.com/content/dam/ping-6-2-assets/Assets/analyst-reports/en/3208-kuppingercole-solutions-custome%20r-iam.pdf?id=b6322a80-f285-11e3-ac10-0800200c9a66
https://www.pingidentity.com/content/dam/ping-6-2-assets/Assets/analyst-reports/en/3208-kuppingercole-solutions-custome%20r-iam.pdf?id=b6322a80-f285-11e3-ac10-0800200c9a66
https://www.pingidentity.com/content/dam/ping-6-2-assets/Assets/analyst-reports/en/3208-kuppingercole-solutions-custom
https://www.pingidentity.com/content/dam/ping-6-2-assets/Assets/analyst-reports/en/3208-kuppingercole-solutions-custom
https://www.pingidentity.com/content/dam/ping-6-2-assets/Assets/analyst-reports/en/3208-kuppingercole-solutions-custom
https://www.loginradius.com/press/loginradius-announces-series-a-funding-from-forgepoint-and-microsoft-venture/
https://www.loginradius.com/press/loginradius-announces-series-a-funding-from-forgepoint-and-microsoft-venture/
https://www.eema.org/wp-content/uploads/bjones.pdf
https://icitech.org/wp-content/uploads/2017/02/ICIT-Brief-In-2017-The-Insider-Threat-Epidemic-Begins.pdf
https://icitech.org/wp-content/uploads/2017/02/ICIT-Brief-In-2017-The-Insider-Threat-Epidemic-Begins.pdf

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 137

Authors' information

 Sabout Nagaraju is currently working as

assistant professor in Pondicherry

University. He is graduated from G.Pulla

Reddy Engineering College, Kurnool and

did his post graduation at National

Institute of Technology, Calicut.

He is pursuing his Ph.D. from Pondicherry

University, India. His professional

experience spans over 11 years in various Engineering

colleges and software industry. His areas of interest include

Cloud Computing, Internet of Things and Big Data. He has

published eight papers in international journals and seven

papers in national/ international conferences.

 Dr.S.K.V. Jayakumar is currently

working as assistant professor in

Pondicherry University. He obtained his

B.E in Electrical and Electronics

Engineering from Madurai Kamaraj

University and did his M.E. in Computer

Science and Engineering from Madras University. He has

obtained his PhD from Pondicherry University. His teaching

experience spans over 19 years and his research interest

includes Web Services computing and cloud computing. He

has published 29 research papers in International Journals

and National and International Conferences.

