

 © 2019, IJCSE All Rights Reserved 1243

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-5, May 2019 E-ISSN: 2347-2693

Tree Structure of Requirements and HKEH Prioritization

Saurabh Dhupkar

Mumbai, India

DOI: https://doi.org/10.26438/ijcse/v7i5.12431247 | Available online at: www.ijcseonline.org

Accepted: 14/May/2019, Published: 31/May/2019

Abstract— Requirement gathering is one of the most crucial phases in the software development life cycle and the change life

cycle. Any discrepancy in requirements leads to Technical Debt , has comparatively more impact than other phases of the

software development life cycle and has an adverse impact on the software life expectancy. Most of the times, requirements

discussed are very superficial that leads to architects and developers assuming so many details. These assumptions mostly end

up being discrepancies. Therefore, having precise complete and unambiguous requirements in the initial phase makes the

design and development less error prone due to reduced or minimized surprises. Thus, adequate and unambiguous requirements

are the key elements of software success.

Along with un-ambiguity and completeness, correct prioritization is vital. Incorrect or misleading prioritization results into

inaccurate estimation and unmanageable scope. Therefore having a common vocabulary for prioritization along with precise

and detailed requirements can help keeping Technical Debt minimized and longer life expectancy of the software.

There are many techniques of the requirement gathering. In this paper, this author proposes a method for requirement

structuring and prioritization.

Keywords— Requirement Gathering, Requirements Prioritization, Software Engineering, Software Architecture, Software

Quality, Software Life Expectancy

I. INTRODUCTION

Most of the times requirements are written down in

description or story format. However, due to general human

tendency this format tends become too much lengthy

containing unnecessary details for some requirements, while

missing out some crucial parts of requirements at other end.

Some of these missed out parts may come to limelight during

design or development, which lead to confusion,

misunderstanding and loss of trust on the documented

requirements. However, if the missed out parts are not

identified in the design phase, they can result into major

deficiency in software quality and lead to Technical Debt.

On the other hand, the decreasing trend in human attention[1]

span is making the people tend not to read the lengthy

documents, which is in turn causing discrepancies between

requirements and software.

To overcome these issues, this paper suggests a method for

requirement structuring and prioritization.

II. REQUIREMENT STRUCTURING

In current methods, people tend to create documents

describing the requirements. These requirements are

categorized in intuitive way. However, this author suggests

to structure it in a way, each requirement can be tracked

individually and no requirement gets shadowed by other

more important requirement(s).

A. Tree Structure of Requirements

In this author's opinion, the requirements should be

represented in a tree structure, where each node represents

one requirement. Each requirement node can have one or

more child requirements. These child requirements should

represent 'drilled down' requirements.

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1244

For example -

Figure 1 : Tree Structure of Requirements for a Simple Calculator

The idea is to have a very brief description of the

requirement at each node level. This method doesn't expect

any lengthy description using paragraphs.

In case of very large systems, the tree is supposed to be

broken into multiple components based on functionality and

each component is to be described using different trees. This

mechanism will help to divide large systems into smaller

'neurons' like component who can talk to each other and

work together to provide a set of functionalities.

This method inherently compels the stakeholders to use

divide and conquer and also mandates to follow SOLID

design principles. This method inherently creates low

coupling high cohesion components at the requirement

gathering phase itself. In case of enhancements or changes,

this nature of the method keeps on showing need and places

of code refactoring and in turn keep the Technical Debt

minimized and maintains longer life expectancy.

B. Benefits

1) In this example, the architects and the developers can

easily go through the requirements and track each

requirement individually.

2) It is easier for testers to come up with better coverage as

they can link a series of test cases with each requirement

individually.

3) Each requirement can be prioritized separately which

helps scrum master for better planning

4) It is easier to identify and settle contradictory

requirements in requirement gathering itself, which

helps to avoid any confusion in later stages

5) Requirement dependency is identified in the requirement

gathering stage itself.

6) Each requirement gets equal 'Human Eye Time' and

reduces the possibility of being shadowed by other

influential (more important / more complex)

requirements

7) More the stakeholder dig down in the requirements, less

the probability of surprises, leads to better software

quality and easier change management.

8) Pushes architects and developers for low coupling high

cohesion components

9) Highlights the places that require code refactoring

10) Minimized Technical Debt and longer life expectancy

C. Limitations

1) Has a human factor. Success of method depends upon

the detailing level. However, this limitation can be

overcome by specifying minimum depth as it can be

quantified and controlled

Create a
calculator

Create a
simple

calculator
capable of

doing
addition,

subtraction
,

multiplicati
on and
division

should be
able to
handle
upto 10
decimal
places

Handle
devide by
zero error

Do not
enable =
button in

case if
denominat
or is zero

Enable =
button

when user
presses a
non-zero

number for
a

denominat
or

Disable the
button

when user
presses

backspace
and when

all the
denominat

or is
deleted

Handle
divide by

zero in
backend as

well

Show
complete
sentence
as error.

Do not just
use some

error
codes.

Calculator
should provide

answer
immediately.
Not expected

to handle
brackets

Enable
calculator to

use answer of
previous

calculation in
next

Provide an
'Ans'

button to
enable user

to use
answer of
previous

calculation
as second
input of

next
calculation.
e.g. - as a

denominat
or in

division

Should
provide

buttons for
constants
like pi, e

etc.

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1245

III. REQUIREMENT PRIORITIZATION

Along with requirement gathering, requirement prioritization

is a key element. Un-prioritized or inconsistently prioritized

requirements cause confusion and leads to incorrect

planning.

A. Challenges with Requirement Prioritization

Many times, different stakeholder use different references for

requirements for prioritization. However, when combined

together, their comparative view doesn't make any sense

because of their different frame of references.

It always creates confusion, whenever a child element is

prioritized above its parent. It becomes hard for stakeholders

to specify the case of 'whenever you are developing this, it is

mandatory to develop this one too ...'

A common understanding and sense of priorities matter a lot

when prioritizing requirements.

B. HKEH Prioritization Model for Requirements

This author suggests a HKEH prioritization model for all

requirements irrespective of level. In this model HKEH

represent human organs, so that a common understanding,

vocabulary and sense can be achieved without any need of

defining them individually.

HKEH stand for Heart, Kidney, Eyes and Hair.

1) Heart

Represents the highest importance of the requirement

Without this, the parent requirement / module / entire

software will not be able to survive even a minute in real

world.

2) Kidney

Without this, the parent requirement / module / entire

software will not be able to function at all. Even though it

will be able to survive for some it, it will be extremely

difficult to make the system work and eventually the system

will cease to exist.

3) Eyes

Without this, the parent requirement / module / entire

software will be able to perform almost all the activities that

it is supposed to but with some difficulty. Application will

never be able to perform at its utmost performance level if

this requirement is not fulfilled. However, this will not cause

any issue in survivability of the application.

4) Hair

These represent pure decoration kind of requirements.

Without these, the application will be able to work at their

optimum performance level without any issue. It will be

'cool' to have these requirements fulfilled.

C. Tree Structure with HKEH Prioritization

If we consider same example as above -

Figure 2 : Tree Structure of Requirements for a Simple Calculator with

HKEH Prioritization

Create a calculator

Create a simple
calculator capable
of doing addition,

subtraction,
multiplication and

division

should be
able to

handle upto
10 decimal

places

Handle
devide by
zero error

Do not
enable =
button in

case if
denominat
or is zero

Enable =
button

when user
presses a
non-zero
number

for a
denominat

or

Disable
the button
when user

presses
backspace
and when

all the
denominat

or is
deleted

Handle
divide by

zero in
backend as

well

Show
complete
sentence
as error.
Do not
just use

some
error

codes.

Calculator should
provide answer

immediately. Not
expected to

handle brackets

Enable
calculator to

use answer of
previous

calculation in
next

Provide an
'Ans' button

to enable
user to use
answer of
previous

calculation
as second
input of

next
calculation.
e.g. - as a

denominato
r in division

Should provide
buttons for

constants like pi,
e etc.

Ht Ht

H

r

E

K

K

Ht

H

r

H

r

Ht

E

Ht

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1246

In the example shown above, there is a 'Hair' requirement

about disabling '=' button immediately when user presses '/'

button. However, it has a 'Heart' requirement about enabling

it back when user presses a non-zero number. That indicates

that implement disabling logic only if it can be enabled when

it should be. Otherwise, no user will ever be able to use

division functionality.

However, disabling it back if user presses backspace is

marked as 'Eye' indicating that even if it doesnt happen, there

is a 'Heart' requirement about even handling 'divide by zero'

error after user presses '='. This indicates, that user might

observe this as bug, but will still be able to use it. It is

marked as 'Eye' and not 'Hair' because, a bug observed by

user results into questioning the 'Reliability' of software

which is the top of the Common Critical Software Quality

Attributes[2].

1) Benefits

1) Provides clear and easy understanding without any need

to define the priority levels.

2) Shares a common understanding and sense about each

requirement among all the stakeholders

3) Helps to gain consensus about prioritization of all

requirements and highlights any discrepancies in early

stage.

4) Provides a quantifiable method for managing each

development iteration.

5) Helps in efficient and effective scope definition.

2) Limitations

1) In case of huge systems, it highly depends on how

the trees are being represented and how they are

functionally grouped.

IV. ESTIMATION

Tree structure not only helps in understanding and prioritizing

requirements but also helps to identify complexity of change,

estimation and solution.

Whenever application needs to undergo some change, the probable

solution should fit in current tree structure of application. If it

doesn't fit, developers and architects can plan to mould current tree

structure in such a way that it can absorb the new change. This can
help in avoiding ECTD[3].

Management can include this moulding activity in estimation and

can schedule it accordingly.

Before starting the development all the stakeholders get to

have a common understanding of amount of work,

complexity and estimate.

V. METHOD

This author proposes following method for effective requirement

gathering, structuring and prioritization.

A. Meetings
1) Requirement Gathering Meetings

a) Requirement Identification Meeting

This is the first meeting where all business users are expected to

come together and discuss the requirements among themselves.

They are expected to brainstorm internally and come up with a list
of requirements in a common human language.

In this meeting, all business users finalize a subset of themselves as

representatives who will discuss these requirements with Business
Analysts and Technical Architects.

b) Requirement Introduction Meeting

In this meeting the representatives of business users share their

requirements with Business Analysts and Technical Architects and
answer the queries of BA and Technical Architects.

2) Requirement Structuring and Prioritization Meeting(s)

This is a series of meetings in which BA and Technical Architects

share the Requirement Tree along with HKEH prioritization with

the business representatives, where they discuss each node of
requirement tree for not more than two minutes.

The requirement tree and nodes are displayed using cards pinned on

a board and relations are shown using threads.

In case of very huge systems, BA and Technical Architects can
discuss one tree per meeting.

These meetings are to be held until a common understanding is
achieved

3) Scope Meeting(s)

Similar to previous, these are also series of meetings where based

on previous discussions, the scope of iterations or phases of release
are discussed.

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1247

BA and Technical Architects share the estimation and proposed
schedule along with budget.

These meetings are to be held until a consensus is achieved on plan.

B. Display

This author proposes to have a open or private wall, based on

sensitivity of requirements, for each technical team. On these walls,
these requirement trees are to be displayed through out the project.

The requirement tree and nodes are displayed using cards pinned on

a board and relations are shown using threads, where the colour of

requirement card indicates its priority and a mark showing release
iteration / phase / version number.

This kind of displays are to be used in periodic status calls like
scrum

VI. RESULT

With this requirement structuring, the Bas, architects, developers

and testers minimize a possibility of missing out any requirement at
any phase in software life cycle.

Requirement structuring helps testers to come up with higher

functional coverage than traditional method. Instead of reading

lengthy documents with long explanations, all the stakeholders get

an opportunity to have a precise and complete set of requirements

along with complete and common understanding of their
dependencies.

Requirement prioritization using HKEH method gives everyone a

common vocabulary and understanding about criticality of

requirements and their dependencies. It also eases the scope

definition and versioning.

VII. CONCLUSION

'Divide and Conquer' is not only for problem solving, it can also be

used to understand the requirements. Unless the requirements are

clearly understood, irrespective of testing quality and testing efforts,

application will always end up with huge technical debt and higher

impact.

This method for requirement structuring provides a method to avoid

missing out 'too obvious' requirements which later on turn out to be
'not so obvious'.

Life expectancy of software basically depends upon how good it is

understood by architect(s), developers and testers. This method will

help to understand the application easily and priorities of

functionalities, which will lead to better quality software with
higher life expectancy.

As success of a software is not a Boolean but ratio of length of its
earning phase by total life span.

REFERENCES

[1] Microsoft Corporation, Canada, “Microsoft Attention Spans

Research Report”, www.scribd.com. [Online] Spring 2015

[2] S. S. Dhupkar, “Measuring Software Life Expectancy”,

International Journal of modern Trends in Engineering and Research,

Vol. 3, Issue 10, pp. 178-184, 2016

[3] S. S. Dhupkar, “Technical Debts, Impact and Settlement”,

International Journal for Research in Applied Science and Engineering

Technology, Vol. 5, Issue 11, 2017

Authors Profile
 Mr. S S Dhupkar pursed Bachelor of Engineering
from University of Pune, India in 2008 and Master
of Technology from Birla Institute of Technology
in year 2016. He is a freelance research enthusiast
and has published 5 research papers in reputed
international journals and these are also available
online. His main research work focuses on
Software Architecture and Software Quality.

