

 © 2019, IJCSE All Rights Reserved 1177

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-6, June 2019 E-ISSN: 2347-2693

Generating Optimized Test Case from UML Diagram Using Meta-

Heuristic Algorithm

Preeti

1*
, Rohit Goyal

2

1,2

 Department of Computer Science and Engineering, Himgiri Zee University, Dehradun, INDIA

*Corresponding Author: 10preetishivach@gmail.com

DOI: https://doi.org/10.26438/ijcse/v7i6.11771183 | Available online at: www.ijcseonline.org

Accepted: 24/Jun/2019, Published: 30/Jun/2019

Abstract— Properly tested software is better in quality then the software tested using a poor approach or not tested. Increasing

size and complexity of software makes manual testing process a time, cost and resource consuming task. Automating the

testing process can improve software development process. The unified modeling language (UML) is the most widely used

language to describe the analysis and designs of object-oriented software. Test cases can be derived from UML models more

efficiently. In our work, we propose a novel approach for automatic test case generation from the combination of UML state

chart, sequence and activity diagrams. In our approach, we first draw the UML state chart, sequence and activity diagrams.

Then convert these diagrams to graphs and generate a combined graph. This graph is then used to generate test paths. We have

integrated meta-heuristic algorithm i.e. Genetic Algorithm (GA) for this purpose and found fruitful results.

Keywords—UMLDiagram, Sequence Diagram, Activity Diagram, Test case generation, Genetic Algorithm.

I. INTRODUCTION

Quality software can be developed when it is properly tested.

Due to increase in the size and complexity of object-oriented

software, manual testing has become time, resource and cost

consuming. Properly designed test cases discover more

errors and bugs present in the software. The test cases can be

generated much early in the software development process,

during the design phase. Software testing is a superiority

phase of development of software which main aim is not to

productivity only but also support to enhance the quality of

software product from small scale to large scale. In fact we

test the software until the product is valid and verifiable. As

increasing the software complexity, the requirement of test

coverage need for generated test case increases gradually [1].

In Software Development Life Cycle (SDLC), test process is

the most important phase to check the Software System

validation. It is mainly completed by running test and

inspection of these processes. The whole Test process

complete in three processes:

1. Generation of Test Cases.

2. Execution of Test cases.

3. Evaluation of Test cases.

The main aim of testing should be conveying advice to

change and modified if necessity, by add on some value to

entire test process. The main aim of design the test case is to

rectify the different classes of error within less amount of

time and effort. Software reliability and quality are mainly

depends on the collection of data during testing. The UML is

the most widely used language to describe the analysis and

designs of object-oriented software. Test cases can be

derived from UML models more efficiently. In our work, we

propose a novel approach for automatic test case generation

from the combination of UML sequence and activity

diagrams. In our approach, we first draw the UML sequence

and activity diagrams. Then convert these diagrams to graphs

and generate a combined graph. This graph is then used to

generate test paths. We have integrated meta-heuristic

algorithm i.e. GA for this purpose and found fruitful results.

A. UML Diagram and Model-Based Testing

Unified Modeling Language was announced by the Object

Management Group in1997. Object oriented prototypes are

very rapidly used in industries and academics. UML is the

most superior and controlling modeling language used in

development of software. UML diagram are classified into

twelve diagrams on the basis of two category level [2]:

A) Structural Level(class diagram, object diagram,

package diagram, composite diagram, profile

diagram)

B) Behavioral Level (use case diagram, state machine

diagram, activity diagram, sequence diagram,

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1178

communication diagram, interaction overview

diagram, timing diagram).

Structural diagrammatic signifies the inter-relation between

different component of system on different hierarchy of

abstraction while the role of object including physical

changes in object and shows the interaction within each-other

comes in Behavioral diagram.

Model based testing (MBT) is also known as an object

oriented testing techniques where generation of test cases is

based on the models using UML diagram. MBT is becoming

famous in both academias as well as in industry. Because of

the increasing in complexity, many critical functions are

performed and dependability requirement such as safety,

reliability, availability, and security of the system are very

crucial to the user of the system. On the basis of requirement

specification the information are preserved by the model and

it forms a basis of final implementation. Model determines

logical paths, location of program boundaries, identify

reachable problem. For the analysis of UML models it

becomes a challenge because the information about the

system is distributed across the different models views. For

reducing the complexities and size of the problem, UML

models are required for reducing that complexity.

Evolutionary testing is used to search for optimal test

parameter combination that satisfies a predefined test

criterion. This criterion is represented by using a “cost

function” that measures how well each of the automatically

generated optimization parameters are satisfying the given

test criterion [4]. It is a searching algorithm that is mainly

based on the natural genetics. GA is based on Selection,

Crossover and Mutation. The Fitness Function plays the

main role in GA. The procedure of Selection is used for

randomly selects the individual (Chromosome) from the

initial population. The evaluation procedure evaluates the

Fitness value of each individual and assigns a value to it. The

Crossover performed by recombination of the two individual

genes in Parents node. After Crossover the Mutation is

performed by mutating the one bit in newly generated

chromosome of Crossover. Mutation is applied on that

chromosome that satisfies the mutation probability. In a basic

form, Genetic Algorithm is mainly used for single objective

and search optimization Algorithm.

Rest of the paper is organized as following. Section 2

presents the related work that has already done on generation

of test cases from different UML diagrams using different

testing techniques. Section 3 presents proposed work.

Section 4 represents the case study of Railway Reservation

System in which GA is implemented. Section 5 represents

the conclusion and future work.

II. RELATED WORK

This section represents the various research papers that are

surveyed and related to the generation of test cases

techniques using various UML diagram.

Yoo-Min Choi, Dong-Jin Lim [1] proposed a method that

holds the dependent transition pair for generation of

transition path. The presented method describes that it protect

the specific part of transition against randomly operation of

genetic is performed by Grouping Genetic Algorithm (GGA).

Experiment is performed on State chart diagram and an ATM

of State Chart that holds all dependent transition and counter

problem. The presented GGA defines that the generation of

full-transition coverage FTP use state chart with all

dependent transition pair with a 100% success rate.

Namita Khurana, R.S Chhillar [3] presented a technique for

the generation of test cases using State Chart Diagram (SCD)

and Sequence Diagram (SD). The presented techniques are

used to convert the SCD to SCDG (State Chart Graph) and

then SD to SDG (Sequence Graph). Finally, the integration

of SCDG and SDG are completed to design a System Graph

for testing. This System Testing Graph (SYTG) pre-stored

the crucial information is required for the generation of test

cases. Based on a Coverage criteria and a fault model, GA is

applied on this SYTG to generate optimized test cases

automatically. Hooda and Chhillar [5] applied GA and neural

network for test case generation.

Abdelkamel Hettab et al. [6] proposed the techniques that are

graph transformation and use the ATOM3 tool for the

generation of test cases. Due to this purpose, they represent

the two graph grammars. Firstly, intermediate diagram is

extracted from the Activity Diagram that is known as EADG

(Extended Activity Dependency Graph) where all the

activities are captured that is important to generate test cases.

At second stage as per the Hybrid coverage criteria the

generation of test cases are done from the EADG model.

Loop Structure and Concurrency problem is also solved in

Activity Diagram.

Fernando Augusto et al.[7] proposed a method named

EasyTest to generate the test cases using Activity diagram of

UML ,the main focus is to integrate Modeling. And show the

two different stages of test before and after coding stages. In

first stage, approach helped TDD programmers to supply

with the required information to generate error free code. In

second stage, proposed approach helps in executing the

automatic generation of test code on any of the Test

Execution Tool. And for verification the scenario, EasyTest

tool was used. EasyTest tool provides gain into cost, effort,

and time

Meiliana et. al.[8] presented the Modified DFS algorithm to

generate the test cases through Activity and Sequence

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1179

Diagram. To generate appropriate test cases, modified

version of DFS algorithm is needed. Here, firstly the

conversion of Activity diagram (AD) and Sequence Diagram

(SD) are done with their respective graphs named as Activity

Diagram Graph (ADG) and SDG then both of these Graphs

are merged to generate SYTG. After the formation of SYTG,

Modified DFS is applied over SYTG to generate the

expected test cases. After the experimental result it is proved

that Sequence diagram can produce better test case.

Rajiv Mall [9] proposed a method for the generation of test

cases by integration of Use Case and Sequence diagram

(SD). Both the diagrams are converted into Use Case

Diagram Graph and SDG respectively. Thereafter these

graphs are used to formulate the SYTG. But how this graph

is integrated is not mentioned in paper and test case also not

optimized.

Vikas Panthi et. al. [10] presented a method to generate the

test case using Activity Diagram. They derived a Flow graph

from the Activity diagram. After generation of Flow graph, a

traversal technique is used to traverse the CFG (control flow

graph) by DFS (Depth First Search). All Activity Paths are

generated through an algorithm. Lastly, the Activity path

coverage generates the output test cases.

Saso Karakatic, Tina Schweighofer [11] presented a

techniques named as Genetic Programming that is used for

the generation of test cases from the Activity diagram, from

which binary decision tree is constructed that is taken into

use as the evolution process of Genetic Programming. This

research paper focuses mainly on the different fitness

function. This approach is simulated on the ATM which

shows the potential and usefulness of proposed method.

Santosh Kumar Swain et. al. [12] presented a method to

generate test cases through sequence diagram of UML

models. A model is proposed in which a flow chart is created

by sequence diagram of UML model; thereafter it is being

transformed into flow graph (MCFG). By the help path

coverage criterion of Sequence graph, Message Control Flow

Graph is used to traverse and generate the test paths. So that,

the generation of test cases are completed from MCFG. At

last, GA is applied to generate the optimized test cases. They

proposed a framework that covert a Sequence Diagram to

Sequence Diagram Graph and apply a traversal technique

DFS for the generation of test cases and ensure that visiting

all nodes and remove redundant ones.

Arvinder Kaur, Vidhi Vig [13] presented a method by using

the collaboration diagram for the automatic generation of test

cases and validates the output by the help of mutation testing.

From the inspection it is initiated found that generated

automatic test cases ensured proper path coverage and avoid

infinite loops. Rational Rose software is used for the creation

of Collaboration diagram of the system and then it is

converted into graph. For the traversing of tree the sequence

numbers between each node in the graph must be captured.

Mutation testing are used for the generation of valid, Invalid

and terminated paths for different condition. Evolutionary

algorithms have been applied in many research areas. Dubey

et al. [14] applied GA for encryption and decryption purpose.

Shahmohammadi and Mohammadi [15] applied evolutionary

algorithm for key management in sensor networks.

III. PROPOSED APPROACH

In our proposed methodology a graph is obtained from the

system under test called SYTG. Based on a Coverage criteria

and a fault model, GA is applied on this SYTG for the

generation of optimized test cases automatically. The

proposed approach contains the three phases – (1) pre-

processing phase, (2) Formation of SYTG and (3)

Implementation of GA on SYTG.

1. Pre-processing Phase – This phase convert the UML

diagrams to corresponding graphs. Example of Railway

Reservation system has been taken.

(a) Converting Sequence Diagram (SD) to Sequence

Diagram Graph (SDG)

The SDG is represented by the following -

SDG= {State, Edge, First, Last} where,

State represents the node of the graph.

Edge shows the transaction flow between the various nodes.

First represents the starting node of the graph.

Last represents the end node of the graph.

For the formulation of a SDG, a scheme is defined with

quadruple values: <Id, Start state, message, Pass/Fail>.Id is

used to represent a specific number for the identification of

each message. Start state represent the initial point where the

scenario initiates. A set of message shows the set of such

events that occurs in operation scheme. Pass/Fail State

represents the state that a system acquires on the

accomplishment of condition. The final stage depends totally

on the user. Fig. 1 presents the SD for Railway Reservation

System and Fig. 2 is the SDG is the graph for system.

(b) Converting Activity Diagram (AD) to Activity

Diagram Graph (ADG)

ADG= {Start, State, Edge, Last} where

Start represents the starting node of the ADG.

State represents the all nodes of the graph.

Edge represents the actual work flow behavior from one

node to another.

Last represents final node of the graph.

Activity diagram represents the activities or chunk of

processing which may or may not correspond to the method

of classes. An Activity inherits all the interior action and

multiple out degree transition of a state that automatically

lead to the termination of the internal activity. A condition is

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1180

used to identify the out degree transition if an activity has

multiple out degree transition. AD supports the description of

parallel activities and synchronization involved in different

activities. Fig 3 (a) represents the AD for Railway

Reservation system and Fig. 3 (b) represents the ADG for

system.

Figure 1: Sequence Diagram of Railway Reservation System

Figure 2: Sequence Diagram Graph of Railway Reservation

System

2. Formation of SYTG
After the formation of three Diagram Graph: ADG and SDG.

The next step is to integrate these UML diagram graph to

form the SYTG which is used for generation of test cases.

SYTG is defined as:

SYTG={S, T, F, L} where

S represents the all states presented in three graph SDG and

ADG, i.e.

S= States(SDG) U States(ADG).

T represents the union of transaction flow from one state to

another, i.e.

T= T(SDG) U T(ADG).

F represents the initial node of SYTG and L shows the end

node of SYTG. Fig. 4 shows SYTG of Railway Reservation

System.

Figure 3(a) AD Railway Reservation system (b) ADG for

Railway Reservation system

Figure 4: SYTG by integration of SDG, and ADG

Weights are assigned to all edges from Source to final node.

Edge is used for showing the control flow in between two

nodes. Edges are also called as transition flow. One node is

dependent to another by using this edge. Dependent node

will not perform the action till the node does. The integrated

SYTG represents the weighted directed graph. Assigning the

weight to each edge from source to terminal node because it

helps to calculate the fitness value. On the basis of these

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1181

weights of each path of SYTG, fitness function will be

calculated. The following path shows the connection of all

paths with edge from source to destination and weight also

assigned to each edge.

Path1:S1=>A1=>A2=>A3=>A5=>A6=>A7=>A11=>A12=>

Successful=>S3=>S4=>S5=>S6=>S7=>

S8=>S9=>S10=>S11 =>S12=>S13=>S14=>S15=>Final

Node.

Weight:(1=>2=>3=>4=>5=>6=>7=>8=>9=>10=>11=>12=>

13=>14=>15=>16=>17=>18=>19=>20=>21=>22=>23)

Path2:

S1=>A1=>A2=>A3=>A8=>A9=>A10=>Unsuccessful=>Fin

al Node.

Weight: (1=>2=>3=>4=>24=>25=>26=>81)

Path3: S1=>A1=>A2=>A4=>Unsuccessful=>Final Node.

Weight: (1=>2=>3=>27=>81)

Path4:S1=>S1=>Unsuccessful=>Final Node.

Weight: (1=>28=>81)

To generate the SYTG, the initial node starts with ADG

starting node. And then check that if multiple states derived

from the current state of ADG then add the node of SDG.

Last node of ADG of system is added with SDG’s starting

node. Last node of SDG S12 is passed through the

Successful node because path1 shows the successful steps

towards the Railway Reservation system. After that, the rest

of the nodes of ADG are added and then the ADG is added to

the end of SDG and finally ended with Final Node. On the

other hand, the invalid steps pass through the Fail node of the

SYTG. The invalid steps are generated from the ADG and

SDG are passed through Fail invalid node.

3. Implementation of GA to generate optimized test cases
After the collection of required information from SYTG, the

next step is to generate the test cases and that test cases can

be optimized using evolutionary Algorithm. GA is the most

basic and popular evolutionary algorithms that implemented

on the SYTG for the generation of optimized test case. Our

proposed algorithm is:

Input: SYTG

Output: Optimized Test case

1. Firstly identify the paths P={p1, p2, p3.....} present in the

SYTG from the source node to target node.

2. Assigning the weights to the entire individual node related

to SYTG that shows the similar actual weight of the child

node as well as Parent node. If in any condition, a child has

multi-parents in that case the weight of that child node is

calculated as the sum of the weight of parent’s node. The

Path’s weight is allocated from the left to right in the SYTG.

3. Now calculate the each path’s cost(X) that is the sum of

the weight of that path originates from Start node and

terminates on target node.

4. Apply GA to the SYTG.

5. Calculate the Fitness Function value

 a. The cost of each path is calculated.

 b. Fitness function is applied for each path in the SYTG as

F(X)=X*X.

 c. Now the probability of each individual path is

calculated as p(i)=F(X)/∑F(X).

6. Now the next step is to choose the best individual from

large initial population. For this we start to perform some

genetic operation for the generation of solution.

a. To choose the best individual from the initial population,

probability ranges is divided into bins and the size of bins is

based on the relative fitness of the solution.

b. Now generate the random values that check the bin where

that value will fall into then select the individuals for the next

generation.

7. Again perform the crossover to the pair of chromosomes.

Firstly, mating the two individual pairs by applying single

point crossover from the 4
th

 bit from right. And for next two

pair single point crossover from 3
rd

 bit from right.

8. Apply the mutation operation by mutating the every fourth

bit in case of when random number is less than 0.2.

9. The whole process will be repeated till the fitness

function’s value is maximized or minimized the number of

generation is reached or all paths have been covered.

10. Finally, best path is generated or we can say that test

cases are optimized.

11. End.

IV. CASE STUDY

The case study is done on the example of Railway

Reservation System. The mathematical representation of the

table is performed by applying the some organic evolution

such as selection, recombination, and mutation. The

sequentially assigned value is used to calculate the Weight of

path. Each individual path of SYTG has weight that is used

to calculate the Fitness value. Table 1-17 shows step-wise

results of applying GA to the system (CP is used for

cumulative probability). The number of possible paths

obtained from SYTG is:-

Path1:S1=>A1=>A2=>A3=>A5=>A6=>A7=>A11=>A12=>

Successful=>S3=>S4=>S5=>S6=>S7=>

S8=>S9=>S10=>S11 =>S12=>S13=>S14=>S15=>Final

Node. Cost=276.

Path2:

S1=>A1=>A2=>A3=>A8=>A9=>A10=>Unsuccessful=>Fin

al Node. Cost=166

Path3: S1=>A1=>A2=>A4=>Unsuccessful=>Final Node,

cost=114

Path4: S1=>S2=>Unsuccessful=>Final Node. Cost=110.

Table 1: Fitness of Initial Population
Path
No.

Cost(X
)

X*X Chrom
osome

Probabi
lity

CP Associ
ated

Bin

1 276 76176 100010
100

0.5913 0.5913 0.0-

0.6
2 166 27556 010100

110

0.2138 0.8051 0.6-

0.8

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1182

3 114 12996 001110

010

0.1008 0.9060 0.8-

0.9
4 110 12100 001101

110

0.0939 1.0 0.9-

1.0

Table 2: Selection of New Generation

Random

No.

Fall into

bin

Selection Crossover Mutation

0.3834 1 100010100 100010100 100010100

0.7862 1 100010100 100010100 100010100

0.8926 2 010100110 010100010 010100010

0.0837 3 001110010 001110110 001010110

Table 3: Fitness of new Generation

Path

No

Cost(X) X*X Chromoso

me

Probabi

lity

CP Associ

ated

bin

1 276 76176 100010100 0.4095 0.4095 0.0-0.4

2 276 76176 100010100 0.4095 0.8191 0.4-0.9

3 162 26244 010100010 0.1411 0.9602 0.9-1.0

4 86 7396 001010110 0.0397 1.0 1.0-1.0

Table 4: Selection of New Generation

Random

No

Fall into

bin

Selection Crossover Mutation

0.9253 1 100010100 100010100 100010100

0.8980 2 100010100 100010100 100010100

0.6321 2 100010100 100010010 100010100

0.1966 3 010100010 010100100 010000100

Table 5: Fitness of New Generation

Path

No

X X*X Chromosome Probability CP Associated

bin

1 276 76176 100010100 0.3111 0.3111 0.0-0.4

2 276 76176 100010100 0.3111 0.6222 0.4-0.7

3 274 75076 100010010 0.3066 0.9288 0.9-1.0

4 132 17424 010000100 0.0711 0.9999 1.0-1.0

Table 6: Selection of New Generation

Random_No Fall

into

bin

Selection Crossover Mutation

0.1906 1 100010100 101000101 100110100

0.2814 1 100010100 101000101 100010100

0.1221 1 100010100 101000101 100110100

0.5591 2 100010100 100010100

Table 7: Fitness for new generation

Path_N

o

X X*X Chromosom

e

Probabi

lity

CP Associ

ated

bin

1 308 94864 100110100 0.2773 0.2773 0.0-0.3

2 276 76176 100010100 0.2226 0.4999 0.3-0.5

3 308 94864 100110100 0.2773 0.7772 0.5-0.8

4 276 76176 100010100 0.2226 1.0 0.8-1.0

Table 8: Selection of New Generation

Random_No Fall

into

bin

Selection Crossover Mutation

0.6858 1 100110100 100110100 100110100

0.4951 1 100110100 100110100 100110100

0.1451 2 100110100 100110100 100010100

0.1803 3 100010100 100010100 100110100

Table 9: Fitness for New Generation

Path_No X X*X Chromosome Probability CP Associated
bin

1 308 94864 100110100 0.2629 0.2629 0.0-0.3

2 308 94864 100110100 0.2629 0.5258 0.3-0.6

3 276 76176 100010100 0.2111 0.7369 0.6-0.8

4 308 94864 100110100 0.2629 0.9998 0.8-1.0

Table 10: Selection for New Generation

Random_No Fall

into
bin

Selection Crossover Mutation

0.1103 1 100110100 100110100 101000101

0.3448 1 100110100 100110100 101000101

0.2310 2 100110100 100110100 101000101

0.5617 2 100110100 100110100 100110100

Table 11: Fitness for New Generation

Path_No X X*X Chromosome Probability CP Associated

bin

1 276 76176 100010100 0.2111 0.2111 0.0-0.3

2 308 94864 100110100 0.2629 0.4740 0.3-0.5

3 308 94864 100110100 0.2629 0.7369 0.5-0.8

4 308 94864 100110100 0.2629 0.9998 0.8-1.0

Table 12: Selection for New Generation

Random_No Fall

into

bin

Selection Crossover Mutation

0.7943 1 100110100 100110100 100110100

0.8714 3 100110100 100110100 100110100

0.6778 3 100110100 100110100 100110100

0.1480 4 100010100 100010100 100110100

Table 13: Fitness for New Generation

Path_No X X*X Chromosome Probability CP Associated

bin

1 308 94864 100110100 0.25 0.25 0.0-0.3

2 308 94864 100110100 0.25 0.50 0.3-0.5

3 308 94864 100110100 0.25 0.75 0.5-0.8

4 308 94864 100110100 0.25 1.0 0.8-1.0

Table 14: Selection for New Generation

Random_No Fall

into
bin

Selection Crossover Mutation

0.0911 1 100110100 100110100 100010100

0.4540 1 100110100 100110100 100110100

0.4062 2 100110100 100110100 100110100

0.0835 2 100110100 100110100 100010100

Table 15: Fitness for New Generation

Path_No X X*X Chromosome Probability CP Associated

bin

1 276 76176 100010100 0.2226 0.2226 0.0-0.3

2 308 94864 100110100 0.2773 0.5 0.3-0.6

3 308 94864 100110100 0.2773 0.7773 0.6-0.8

4 276 76176 100010100 0.2226 1.0 0.8-1.0

Table 16: Selection for New Generation

Random_No Fall

into

bin

Selection Crossover Mutation

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1183

0.5173 2 100110100 100110100 101000101

0.3497 3 100010100 100010100 101000101

0.7820 3 100010100 100010100 101000101

0.7794 3 100010100 100010100 101100001

Table 17: Fitness for New Generation

Path_No X X*X Chromosome Probability CP Bin

1 276 76176 100010100 0.25 0.25 0.0-0.3

2 276 76176 100010100 0.25 0.50 0.3-
0.5

3 276 76176 100010100 0.25 0.75 0.5-0.8

4 276 76176 100010100 0.25 1.0 0.8-1.0

V. CONCLUSION AND FUTURE SCOPE

The purpose of this designed method is to use combination of
two UML diagrams to generate test cases and optimization of
test cases using GA. The designed approach is beneficial to
generate the maximal number of test cases: numeral of test
cases generated may not be valid. Integration of two UML
diagram describes that it cover maximum number of test
cases or all possibilities. GA is mainly used for optimization
purpose that leads to optimal result. In near future, we will try
to analyze other Evolutionary Algorihms.

REFERENCES

[1] Yoo-Min Choi and Dong-Jin Lim. Automatic feasible transition

path generation from UML state chart diagrams using grouping

genetic algorithms. 94:38–58, 2018.

[2] Rathee N. & Chhillar,” A Survey on Test Case Generation

Techniques Using UML Diagrams”, Journal of Software, vol. 12,

8 August 2017.

[3] Khurana N., R.S Chillar,”Test Case Generation and Optimization

using UML Models and Genetic Algorithm”, 3rd International

Conference on Recent Trends in Computing 2015, Sciencedirect,

PP.996-1004.

[4] Akshat Sharma, Rishon Patani, Ashish Aggarwal,”Software

Testing Using Genetic Algorithms”, International Journal of

Computer Science & Engineering Survey vol.7,No.2, April 2016,

PP-21-33.

[5] Itti Hooda, R.S Chillar,”Test Case Optimization and Redundancy

Using GA and Neural Networks”, International Journal of

Electrical and Computer Engineering vol.8, No.6, December 2018,

PP-5449-5456.

[6] Abdelkamel Hettab, Elhillali Kerkouche, Allaoua Chaoui,”A

Graph Transformation Approach for Automatic Test Cases

Generation from UML activity Diagram”,C3S2E 2015,ACM,2015.

[7] Fernando AugustoDiniz, Glaucia Braga e Silva,”EastTest: An

approach for Automaric Test Cases Generation from UML

Activity diagram.”, Springer,2018

[8] Meiliana, Irwandhi Septian, Ricky Setiawan Alianto, Daniel, Ford

Lumban Gaol,”Automated Test Case Genartaion from UML

Activity Diagram and Sequence Diagram using Depth First Search

Algorithm”, 2
nd

 International Conference on Computer Science

and Computational Intelligence

2017,ICCSCI,ScienceDirect,october2017,PP-629-637.

[9] Monalisa Sharma, Debashish Kundu, Rajib Mall,”Automatic Test

Case Generation from UML Sequence Diagrams” the proceeding

of IEEE Conference on Software Maintainance,2007,IEEE. PP-

996-1004.

[10] Ranjita Kumari Swain, Vikas Panthi, Prafulla Kumar

Beher,”Generation of test cases using Activity Diagram”

,ISSN(PRINT):2231-5292, Vol.3,Issue-2,2013

[11] Saso Karakatic, Tina Schweighofer,”A Novel Approach to

Generating Test Cases with Genetic

Programming”,Springer,2015,PP-260-271.

[12] Ajay Kumar Jena, Santosh Kumar Swain, Durga Prasad

Mohapatra,” Test Case Creation from UML Sequence Diagram: A

Soft Computing Approach”, Springer, Proceedings of ICCD 2014,

Volume 1

[13] Arvinder Kaur, Vidhi Vig,” Automatic test case generation

through collaboration diagram: a case study”, Springer, 2017.

[14] S. Dubey, R. Jhaggar, R. Verma, D. Gaur, “Encryption and

Decryption of Data by Genetic Algorithm”, International Journal

of Scientific Research in Computer Science and Engineering, Vol.

5 No. 3, pp. 42-46, June 2017.

[15] G.R. Shahmohammadi and Kh.Mohammadi, “Key Management in

Hierarchical Sensor Networks Using Improved Evolutionary

Algorithm”, International Journal of Scientific Research in

Network Security and Communication, Vol. 4, No. 2, pp. 5-14,

April 2016.

Authors Profile

Preeti is pursuning her masters from Himgiri Zee University,

Dehradun. Her main research work focuses on Requirement

Engineering, Model-Based Testing. She has 3 years of

teaching experience.

Rohit Goyal is an Assistant Professor in Himgiri Zee

University, Dehradun. He is currently pursuing Ph.D. He has

published many research papers reputed international

journals His main research work focuses on IOT, Software

Testing.

