

 © 2018, IJCSE All Rights Reserved 1198

International Journal of Computer Sciences and Engineering Open Access

 Research Paper Vol.-6, Issue-5, May 2018 E-ISSN: 2347-2693

Metric Based Automatic Quality Analysis of Object Oriented Systems

A. Jatain

Department of Computer Science, Amity University, Manesar, Gurugram, India

*Corresponding Author: amanjatainsingh@gmail.com, Tel.: +91-9711050859

Available online at: www.ijcseonline.org

Accepted: 11/May/2018, Published: 31/May/2018

Abstract— Today most of the languages support objects oriented architecture to develop an organized software system and

customer base for these system is increasing because incentives in object oriented paradigm is huge. At the same time,

drawback is that object oriented systems are complex and difficult to understand. So quality of these system must be monitored

and maintained which require lots of money, time and efforts. In software community when prediction is made based on

metrics, software quality is one of the most discussed term. Software quality can be estimated by analyzing the key quality

attributes of the software system. The objective of this paper is to define a metric suite and designing of automatic tool to

evaluate the object oriented software system under complexity analysis in order to analyze the software criticality.

Methodology: This paper focusses on automatic quality analysis of object oriented system. For this different metrics and

metric suites are analyzed and a tool is developed in .net environment that accept software program as input and perform a

metric based analysis. To validate the tool a case study (LMS) is considered as input.

Keywords— Component, ,Learning Management, Metrics, Object Oriented, Quality, Software.

1. INTRODUCTION

Software engineering is one of the most important division of

computer science that itself controls the software

development process so that a quality product can be

produced. Software development and software quality

analysis are the parallel process defined to improve software

effectiveness. In the last decades quality in software products

has been deliberately emphasized. But quality can be

controlled by making it quantifiable, i.e. by measuring it [4].

To perform software quality analysis measurement plays a

vital role. Measurement in software industry is described in

terms of metrics. Many metrics related to software quality

have been developed and used in literature. Software metrics

are best described as the measurement components, units,

processes or the activities to analyse the software system

under different aspect. Metrics are the imperative factor to

measure software quality. Software quality is the extent to

which a deliverable product conforms to its specification. In

software engineering evaluating the quality of object oriented

software always has always been a fundamental task [3].

Object oriented system development is buzzword in system

development since last two decades and there is substantial

information that object oriented metrics plays an important

role in quality management decisions [1]. As object oriented

paradigm gaining popularity, it would be better to analyse

object oriented metrics with respect to software quality. This

migration to object oriented paradigm has originated the

demand of finding effective means of measurement to

quantify its encapsulation and polymorphism mechanism and

this has raised need of definition of a huge numbers of object

oriented metrics [5] [6]. Designing software metrics as an

aid to assess the quality of object oriented software system

has had deep and useful impact on the overall system.

Various metrics are defined in literature to realize its

importance in evaluating the software quality of object

oriented system [2]. They assess software quality on the

basis of different software attributes. However, it is difficult

decision for a software engineer to select those metrics which

are more useful. No one provided a suit which is capable of

collecting essential metrics to perform automated quality

analysis of software system. In this paper a tool is designed

by collecting some major metrics to assess quality of object

orientation in the software system. It is widely recognized

that epidemic use of object- oriented paradigm can only arise

when there are tool systems that impart development support

along with visualizing the code [7]. This paper is organized

as follows: Section 2 discussed the related work. Section 3

presents the list of selected metric and proposed metrics for

quality analysis, section 4 discusses the proposed system and

last section provides the conclusion and insight for future

work.

2. RELATED WORK

A lot of work is performed by different researchers in the

area of software quality estimation based on software

metrics. There are number of reliability models used by the

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1199

researchers to estimate the software quality. The software

quality and reliability are estimated to analyse the software

system effectively. The software estimation based analysis is

performed by the researchers using metrics. These metrics

give the analysis in quantitative form so that the easy

decision can be taken for software quality. The quality

metrics are defined under the component and process based

estimation to schedule the software system for future

projects. Various metrics have been proposed in literature

[8]. The six most widely used design measures are proposed

by Chidamber et al. [9] emphasising on class hierarchy. After

CK suite various class level new design metrics were

introduced by many. To maintain the object oriented system

Henary et al. proposed a set of metrics in [11]. A systematic

review of existing object oriented measures is provided in

[12]. Hong et al. in [13] proposed a model based object

oriented software metrics tool, JBOOMT with an objective to

guide software engineer to measure object oriented products.

Kahn et al. in [14] described Weighted Class Complexity

(WCC) an integrated class based metric. This metric was

proposed with an intention to measure the quality factors like

efficiency, complexity, understandability, maintainability

and reusability.

Christopher et al. designed a tool that automatically gather

set of object oriented product metrics for software

development process and this tool provides capability to

estimate future development effort using past experience

[15]. Mohab et. al measured the software quality of object

oriented system by assessing reusability of system using

proposed metric suite [16]. The metric suite includes three

metrics: inheritance metric, interaction metric and structural

metric. Paramveer et. al [3] proposed DynaMetrics: a runtime

tool to analyse the object oriented systems. This tool is

capable of estimating the metric values for C++ and Java

programmes. Huang et al. [17] described some concepts and

techniques to enhance the quality of object oriented systems

and compared the traditional metrics with specific metrics of

object oriented system with the intention to find the

suitability of these metric while assessing the quality of

system. Zhiyi Ma [19] analysed the quality of object oriented

models by measuring the level of defects in different phase

of project and also suggested the solutions for the defects.

We analysed various proposed metrics to evaluate the
quality of object oriented systems. Different metrics are
defined according to diverse requirement and usage. Almost
each of the metric targets a particular dimension of a project
or some of the metric captures the same dimension again
and again. There is no concrete set of metrics, which is
capable to collect domain specific useful metrics to perform
an automated OO software measurement.

3. SELECTED METRICS TO ANALYSE THE QUALITY OF

SOFTWARE SYSTEM UNDER OBJECT ORIENTATION

Today most of the languages support object oriented
architecture to develop an organized software system where
it is divided into interconnected modules and
interconnectivity between these modules is defined in terms
of methods and variable calls which can be API or non API
function call. Under the rules of the object orientation the
software system is defined in different ways. But while
analysing a software system, the important factor that needs
to be measured is interconnectivity between the software
modules and how the structure of these software modules is
clearly evaluated using object oriented metrics. To design
the automatic quality evaluation system for OOS, we have
considered size, complexity, coupling, cohesion and
interference based metrics due to their major significance.
Desirable value for these metrics is categorized either as
low or high as shown in table 3.1.

Table 3.1: Metrics Analysis

Type of Metric Desirable Value

Size Metric Low

Complexity Metrics Low

Information Hiding Metrics High

Coupling Metrics Low

Cohesion Metrics High

Inheritance Metrics High(Trade off)

Line of code (LOC) and Function points (FP) are considered

as the commonly used size metrics for software systems.

LOC can be calculated by counting lines of code that may or

may not include blank line and comments. It is suitable for

both procedural and object oriented system. Function point

metrics represents the software size analysis under class level

estimation which is parametric and performed by evaluating

five main component class: User input type, output type,

inquiry type and external file specification to the system. The

most suitable and widely used metric suite for OO software

system is CK metrics suite defined by Chidmber and

Kemerer [21]. CK proposed following classic set of six

metrics:

I. Weighted Methods Per Class (WMC)

 WMC = (1)

This metric analyse the complexity of methods and

the weighted sum of these complexities is the

WMC.

II. Depth of Inheritance Tree (DIT)

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1200

DIT metric for the class is the depth of inheritance

of the class and in case of multiple inheritance, the

values of DIT will be the maximum length from the

node to the root of the tree. It is based on flow path

analysis and it represents the particular node

distance from the root.

III. Number of Children (NOC)

It measures the number of subclasses that are going

to inherit the methods of the parent class and the

number of child classes to a main class represents

the number of children.

IV. Coupling between object classes (CBO)

If the members or methods of a class are accessed in

other class, it is called as coupling and for a class

values of CBO is the count of the number of other

classes to which it is coupled.

V. Response for a class (RFC)

 RFC = |RS| (2)

RS is the response set for the class and

 (3)

Here { } = set of methods called by i and {M} =

set of all methods in the class

 RFC is the set of methods that are defined in

response to a message received by an object of that

class.

VI. Lack of Cohesion in Methods (LCOM)

It measures the cohesiveness of a class. To promote

encapsulation, cohesiveness of methods is desirable.

3.1 Proposed Extended Metrics
Considering CK suite and taking LOC and FP as base

metrics, following four metrics are defined to assess the

quality of OO software systems:

I. API Function Usage Index

 The library function used in a software program is

represented by an API. This metrics is used to

represent the number of API functions which are

being accessed in a software system. These API

functions are the embedded software modules that

boost up the development process.

II. Module Interaction Analysis

This metrics represents the interaction between

different software modules. It is the sum of all the

components procedure accessed by a particular

module. The interaction is defined in terms of

method and variable access of a software module in

other software module.

III. External Call Analysis

It performs the interaction analysis a software

component with other components present within

the system. This interaction analysis can be in the

form of object analysis or in the form of class level

analysis. The library function call is not included in

this analysis. Lower dependence on library

functions ensures better reusability.

VI. Interface and System Analysis
These metrics correspond to the interaction of

resources with the modules and the system. Lower

value of these metrics determine the lower

interaction of existing resources with the system

modules thus reducing the complexity. Less

complexity will increase the reusability of the

system.

4. Proposed System to evaluate OOSS

Today most of the languages support objects oriented

architecture to develop an organized software system.

Almost all the software systems use the same paradigm. In

OOS interconnectivity between modules is defined in terms

of methods and variable calls which also includes API and

API function calls. Proposed approach analyses the OOS

under some important metrics defined by research

communities and three metrics defined in section 3.1. The

research design of the proposed system is defined under four

steps:

I. Analysing object oriented metric suits and other

basic object oriented metrics

II. Selection of the significant object oriented metrics

to evaluate quality of OOS.

III. Defining four object oriented metrics and feeded

into system to analyse the OOP.

IV. Designing of user friendly tool that accept the OOP

as input, calculate the defined metrics and automate

the process of evaluation.

We have designed a software tool that will accept the OO

software program as input and perform a metrics based

analysis to evaluate its quality. Initially, the analysis involves

the basic metrics calculations viz. to calculate the number of

modules, the number of methods in a module etc. Once this

information is collected, the major defined metrics set is

evaluated. The presented system is divided into two stages:

1) Basic Analysis and 2) Object Oriented Analysis. The

basic analysis consists of the evaluation of basic size and

functional metrics in the system. These metrics are base to

the object oriented metrics. The system accepts the OO

source code or the software as input and perform the

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1201

component search over it. The components are defined in

terms of methods, class and interface. On the basis of these

detailed information the metrics are estimated. The basic

flow of the systems is depicted in figure 4.1.

Figure 4.1 Basic Process Flow of the System

As OOP is given as input in the proposed system, it counts

the number of classes, interaction between classes, interfaces

and number of methods in each module. After collecting

these parameters, the software metrics are evaluated. This

evaluation consists of the major object oriented metrics viz.

cohesion, coupling and proposed metrics viz. API interaction

and the module interaction metrics. All discussed metrics are

calculated using proposed tool automatically and then

software quality analysis is performed. This automation

saves the significant efforts and ease the process of analysing

the quality of a particular system developed using OPP

paradigm. The snapshot of the tool is depicted in figure 4.2.

Figure 4.2 Graphical interface of the proposed tool

Figure 4.2 shows the various metrics results, when an OOS

(Learning Management System (LMS) is an OO software

system developed by final year students for the

administration, tracking and delivery for educational courses.

Its size is 3546 LOC) is loaded in the proposed tool.

Characteristics of the LMS is shown in table 4.1. All the

project files are fetched, loaded in the list box. After loading

the content of the folder filtration is applied at entry level and

only the code files are retained and unnecessary files are

removed. Tool shows the result of Method Count Metrics,

Module Count Metrics, Variable Count Metrics, Variable

Count Metrics, ModuleInt Metric, ExternalCall Metric, and

Integrated Component Metric.

Table 4.1 Statistics for LMS

Properties Values

Number of Files 18

Code Files 12

Use of System Library Yes

Module Interaction Yes

Component based Use Yes

LMS is having five different modules, where each module is

having various variables and associated methods. The

interaction between these modules is defined based on the

variables and the function call and is in both direction. Table

4.2 is showing the number of variables and methods in each

module. The interaction between the modules is also defined

based on the class level or object level access and each

module can use some library functions from other

environment. Table 4.3 shows the variable and method

access with each module.

Table 4.2 Module Statistics

Module Method Variable

Student Catalogue 4 6

Course Management

and Certification

7 10

Administration 3 2

Resource 2 5

Setting 6 4

Source

Code

Modules & Function

Calls

Display

Result

Metrics

Estimation

Modules

Quality

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1202

Table 4.3 Module Level Variable/Method Accessibility Metrix LMS to measure system metrics

Modules

Student

Catalogue

Course Management

and Certification Administration Resource Setting

API

Call

Student Catalogue
0/0 4/3 2/3 3/5 2/2 3

Course Management and

Certification 3/4 0/0 3/2 4/4 5/2 2

Administration
2/1 2/2 0/0 3/2 1/1 3

Resource
1/3 2/2 2/2 0/0 2/3 4

Setting
4/2 3/2 3/2 3/3 0/0 2

4.1 Metrics Based Analysis
We analysed the LMS system by estimating metric

for each of the module under complexity analysis so

that the software criticality will be analysed. Higher

the software complexity or criticality more fault

prone the system will be.

1. Module Interaction Analysis

Table 4.4 represents the interaction between

different software modules within system and

outside the system (may be library functions). The

total value of metric shows the components

procedure accessed by a particular module.

Table: 4.4 Module-wise interaction Analysis

Module Called Call

Other

Metric

Student Catalogue 0 20 0

Course

Management and

Certification

7 20

0.35

Administration 5 19 0.263158

Resource 8 27 0.296296

Setting 4 18 0.222222

Total 1.131676

2. External Call Analysis

Table 4.5 shows the interaction analysis of a

software component with other components present

within the system. Lower dependence on outside

functions ensures better reusability.

3. Interface and System Analysis for Integrated

Component

Table 4.6 depicts the interaction of resources with

the modules and the system. Less value of the

metric determine the lower interaction between the

modules.

Table 4.5 Estimation of External Call Analysis

Module External

Call

Call Other Metric

Student

Catalogue 3

20

20

0.15

Course

Management

and

Certification 2

20 0.1

Administration
3

19
0.157895

Resource
4

27
0.148148

Setting
2

18
0.111111

Total
0.667154

 Table 4.6 Interface and System Analysis Metric

Module

7

24 0.291667

Student

Catalogue 6

28 0.214286

Course

Management

and

Certification 6

28 0.214286

Administration
7

14
0.5

Resource
8

17
0.470588

Setting 6 22 0.272727

Total 1.749268

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1203

5. Conclusion and Future Work

To analyse the quality of a software system, foremost

requirement is to quantify the various attributes of the system

and software metrics provide a mathematical approach to

measure these quality attributes. In this paper, we have

studied some relevant metric and also proposes a set of four

metrics. To automate the process of estimating these metrics,

a tool is developed in Asp .Net that will accept the project

code from the user and calculate the metrics automatically.

The tool accepts the path of software code as input and

fetches all the software components from different modules.

The work analyse the separate module of the software system

as well as the whole system and also generate system metric

based on all software modules analysis. Proposed work

analyses the software system for cohesion, coupling and

interface matrices. After fetching the components the next

task is to estimate the basic metrics over the system such as

LOC, function count, module count etc. The automatic

evaluation of the major metrics ease the process to evaluate

the quality of an OOS and criticality of the system can be

observed. Once we have available such kind of data easily

about a particular system, it plays an important role to judge

the quality of the system. In future, we can extend the tool to

accept the software system developed in other paradigm viz.

CBS or aspect oriented software system and judge their

quality.

References:
[1] H. Linda and Lawrence E. Hyatt, “Software Quality Metrics

for Object-Oriented Environments”, Software assurance

technology centre, Greenbelt, USA, pp. 1-7, 1996.

[2] S. R. Chidamber and C.F. Kemerer, “ Authors Reply”, IEEE

Transaction on Software Engineering, Vol. 21, No. 3, pp. 265,

1995.

[3] Paramvir Singh and Hardeep singh, “DynaMetrics: A runtime

metric based analysis tool for object oriented software

system”, SIGSOFT software engineering Notes, Vol. 33, No.

6, pp. 1-6, 2008.

[4] T. DeMarco., “Controlling Software Projects, Management,

Measurement and Estimation”, 1st Edition, Prentice Hall, 1982.

[5] M. Lorenz and J. Kidd. Object –Oriented Software Metrics, 1st

Edition, Prentice-Hall, Englewood Cliffs, NY, 1994.

[6] I. S. Organization, “ISO 9126-Quality Characteristics and

Guidelines for their use”, Brussels, 1991.

[7] I. Morschel and Ch. Ebert, “Metrics for quality analysis and

improvement of object oriented software”, Information and

Software Technology, Elsevier, Vol. 39, No. 7, pp: 291-302,

1996.

[8] M. Xenos and D. Stavrinoudis and K. Zikouli and D.

Christodoulakis, “Object oriented Metrics- A survey”,

Proceedings of the FESMA 2000, Federation of European

Software Measurement Associations, pp. 1-10, Spain, 2000.

[9] S. R. Chidamber and C. F. Kemerer, “Towards a metrics Suite

for object oriented design”, Proceedings of International

Conference on Object Oriented Programming: System,

Language and Applications, 197-211, 1991.

[10] Chidmber S. and Chris Kemerer F., “A metric suite for object

oriented Design, IEEE transaction on software engineering,

Vol. -20, no.6, pp. 476-493, 1994.

[11] Wei Li and Sallie Henry, “Object Oriented Metrics that

Predict Maintainability, Journal of Systems and Software,

Elsevier, Vol. 23, pp. 111-122, 1993.

[12] Abreu, F. B., Esteves, R. and Goulao, M., The Design of

Eiffel Programs: Quantitative evaluation using the MOOD

metrics, Proceedings of TOOLS'96, USA, pp. 1-18, 1996.

[13] Hong, Hei,Tao Xie and Fuquing Yang, “A model based

approach to object oriented software metrics”, Journal of

Computer Science and Technology, Vol. 17, No. 6, pp. 757-

769, 2002.

[14] R. A. Khan, K. Mustfa and S. I. Ahson, “An empirical

validation of object oriented design quality metrics”, Journal

of Kind Saud Uiversity, Elsevier, Vol. 19, pp: 1-16, 2007.

[15] Christopher L. Brooks and Christopher G. Buell, “A tool for

automatically gathering object oriented metric”, Proceedings

of Aerospace and Electronics Conference, IEEE, pp: 835-

838,1994.

[16] Brij mohan Goel and Pardeep Kumar Bhatia, “Analysis of

reusability of object oriented system using object oriented

metric”, ACM Sigsoft Software Engineering Notes, Vol.38,

No. 4, pp. 1-5, 2013.

[17] Rui Huang, Mingyu Li and Zhang Li, “International Journal of

Information and Education Technology, Vol. 3, No. 4, pp. 433-

436, 2013.

[18] A. Jatain and Y. Mehta, “Metrics and models for software

reliability, “Proceeding sof International Conference on Issues

and Challenge in Intelligent Computing Techniques, pp. 210-

214, 2014.

[19] Zhiyi Ma, “An approach to improve the quality of object

oriented models from novice modelers through project

practice” Frontier of Computer Science, Vol. 11, No. 3, pp.

485-198, 2017.

Authors Profile

Dr. Aman Jatain pursed B.Tech from MDU, University, M.tech
from Thapar university and Ph.d from NCU (Formely ITM)
University in computer Science. She is currently working as
Assistant Professor in Department of Computer Sciences at Amity
University, Gurgaon. She is a member of CSE & IETE. She has
published more than 40 research papers in reputed international
journals including Thomson Reuters (SCI & Web of Science) and
conferences including IEEE and it’s also available online. Her main
research work focuses on Software Engineering, Data Mining, IoT
and Networking. She has 9 years of teaching experience and
research experience.

