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Abstract - The basic scheduling issue is examined in this chapter. On n identical computers with bounded capacity, n 

deterministic jobs need to be scheduled offline. Each work has a start time, a finish time, a processing time, and a machine 

capacity requirement. The purpose is to schedule all of the jobs no proactively in their start-time–end-time windows, 

subject to machine capacity limits so that the overall busy time of the machines is minimized. Minimizing the overall busy 

time for the scheduling of several identical machines is the name we give to this issue (MinTBT). Power-aware scheduling 

for Cloud computing, optical network design, customer service systems, and other relevant fields can all benefit from 

solving this issue. In the particular case where all jobs have the same process time and can be scheduled in a set time 

interval, scheduling to reduce busy time is already NP-hard. The 5-approximation approach for exceptional situations 

utilizing the first-fit-decreasing (FFD) algorithm is one of the best-known solutions to this problem. In this chapter, we 

suggest and demonstrate a modified first-fit-decreasing-earliest 3-approximation technique for the general case and gain 

further results for particular situations. Then, we demonstrate how our findings might be used in cloud computing to 

increase energy efficiency. 

 

Keywords - Energy-efficient scheduling; offline algorithm; online algorithm; MFFDE algorithm; BFF algorithm; GRID 

algorithm; approximation ratio; competitive ratio. 

 

I. INTRODUCTION 

 

In order to represent the task scheduling issue in machines, 

we use a three-field notation system. This format is 

suggested in Ref. [1] as, which, respectively, specifies the 

task characteristics, processor environment, and goal 

function. For instance, the multiprocessor problem of 

reducing the completion time (makespan) when each job 

has a set release date and deadline is referred to as 

P|rj,ej|Cmax. When each task has a release date and 

deadline defined and a m number of processors is supplied 

as part of the problem type, the multiprocessor problem of 

minimizing the total completion time is known as Pm |rj,ej| 

Cj. 
 

The notation used in this chapter to represent several 

machines (each with capacity g) is Pg|rj,ej|ibji. The goal is 

to reduce the total busy time of all employed machines, 

and each work has a start time and end time that are set 

throughout the intervals in which it should be processed. 

The input is formally a collection of n jobs, J=J1, J2... Jn. 

Each job Jj has a processing interval [sj, ej] that it must be 

completed within; the job Jj process time is defined as Pj = 

ej-sj+1. The capacity parameter g1, which represents the 

maximum capacity offered by a single machine, is also 

provided. The working time interval length bi of a 

machine I represents its busy time. The objective is to 

assign tasks to machines in a way that minimizes the total 

busy time of all machines, as determined by B=ibi. It 

should be noted that the output of the method includes the 

number of machines (m>1) to be employed and accepts an 

integral value. As far as we are aware, Khandekar et al. [2] 

are among the first to address this issue, and Brucker [3] 

discusses the subject and relevant references therein. 

Unless otherwise stated, indices are written in lower case, 

whereas a list of jobs, time periods, and machines are 

written in upper case. 
 

With cloud computing, software, computational, and 

storage network resources can be shared, allocated, and 

aggregated as needed. The concealment and abstraction of 

complexity, the efficient utilization of remote resources, 

and virtualized resources are a few of the major 

advantages of cloud computing. A big problem is 

increasing the energy efficiency of cloud data centers. 

While Jing et al. [5] undertake a state-of-the-art research 

study for green Cloud computing and identify three hot 

research areas, Beloglazov et al. [4] offer a taxonomy and 

assessment of energy-efficient data centers for Cloud 

computing. 

 

Virtual machine (VM) resources are made available by 

Cloud Infrastructure as a Service provider with specific 

compute units, as Amazon EC2 [6]. A customer makes a 

time-limited request for certain computing units of 

resources and pays for them according to the total amount 

of time they have been used. The overall power-on (busy) 

time of all computing resources and the total energy cost 

of those resources for a provider are strongly correlated. 

Therefore, in order to reduce energy expenses, a provider 
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seeks to reduce the overall busy time. As a result, we 

propose and demonstrate a 3-approximation technique in 

this chapter called modified first-fit-decreasing-earliest 

(MFFDE), which may be used to schedule virtual 

machines in cloud data centers in a way that uses the least 

amount of energy possible. 

 

II. RELATED WORK 

 

On parallel machines, job scheduling has been thoroughly 

studied. Traditional interval scheduling [7-9] involves real-

time interval job delivery, job processing on a single 

machine that can only handle one job at a time. 

Numerous studies have been done on scheduling with 

fixed intervals, where each job must be processed on a 

machine during the time interval between its release time 

and due date, or each job must be processed during the 

fixed interval between its start time and end time, 

assuming a machine can process one job at a time. Studies 

of real-time scheduling with capacity demands, where 

each machine has a capacity, are also available; However, 

Khandekar et al. [2] are among the first to articulate the 

goal of minimizing the overall busy time, to the best of our 

knowledge. There has also been prior research on the issue 

of allocating tasks to a group of machines in order to 

reduce overall costs [10], but in these studies, the cost of 

allocating each task is fixed. In contrast, the cost of 

scheduling each work in our scenario depends on the other 

operations that are planned on the same machine in the 

corresponding time interval; as a result, it might vary over 

time and across various machines. Our scheduling issue 

differs from batch scheduling of incompatible jobs [3], as 

was mentioned in [2]. 

 

The scheduling problem is NP-hard in the broad sense 

[11]. When the jobs are intervals on the line, like in 

Chapter 6, it is demonstrated that the problem is NP-hard 

for g=2. The scheduling problem, when jobs are provided 

as intervals on the line with unit demand, is taken into 

account by Flammini et al. [12]. Flammini et al. provide a 

4-approximation approach and improved bounds for 

various subclasses of inputs for this variant of the problem. 

When no interval is adequately contained in another 

interval (i.e., the input forms a suitable interval graph) or 

when any two intervals intersect (i.e., the input forms a 

clique; see also Reference [2]), Flammini et al. specifically 

provide a 2-approximation technique. Additionally, 

Flammini et al. offer a 2-approximation for bounded 

durations of time, meaning that any job's length (or 

process time) is constrained by a fixed integer d. 

 

By dividing all jobs into wide and narrow jobs based on 

their needs when =2, which is a demand parameter of 

narrow jobs relative to the entire capacity of a machine, 

Khandekar et al. [2] offer a 5-approximation approach for 

the scheduling problem. Only in this unique circumstance 

are the results based on =2 valid. In this chapter, we 

propose a 3-approximation approach to solve our 

scheduling problem, expanding and improving the findings 

of Ref. [2]. 

In terms of energy efficiency, one of the difficult 

scheduling issues in cloud data centers is to take into 

account the allocation and migration of virtual machines 

with full life cycle limitations, which is sometimes 

overlooked [13]. The interrelationships between power 

consumption, resource usage, and performance of 

aggregated workloads are examined by Srikantaiah et al. 

[14]. By condensing active tasks, Lee and Zomaya [15] 

offer two online heuristic methods for resource-efficient 

utilization of Cloud computing systems. In a Xen 

virtualized system, Liu et alinvestigation.'s of performance 

and energy modeling for live VM migration and 

evaluation of the models using five sample workloads. By 

reducing the total number of machines employed and the 

total number of migrations using updated best-fit bin 

packing heuristics, Beloglazov et al. [10] investigate the 

offline allocation of VMs. Real-time services are modeled 

by Kim et al. [17] as real-time VM requests, and they 

employ dynamic voltage frequency scaling techniques. 

Mathew et al[18] .'s proposal for an ideal offline algorithm 

and an online algorithm for content delivery networks 

combines load balancing with energy economy. 

Constrained mixed-integer programming is used by Rao et 

al. [19] to model the issue and suggest a rough resolution. 

In order to reduce overall costs, Lin et al. [20] suggest 

online and offline algorithms for data centers that turn off 

unused servers. However, research on VM scheduling that 

takes into account set processing intervals is still lacking. 

As a result, we show how our suggested 3-approximation 

approach can be used for VM scheduling in cloud 

computing in this chapter. Similar problem models are 

taken into consideration by Mertzios et al. [21], but only in 

relation to specific exceptional circumstances. While we 

concentrate on energy economy in Cloud data centers, they 

primarily offer constant factor approximation algorithms 

for both total busy time minimization and throughput 

maximization concerns. 

 

III. METHODOLOGY 

 

Based on the following assumptions, the objective of 

energy-efficient scheduling is to satisfy all criteria with the 

least number of machines and their combined busy times:  

 Unless otherwise stated, the time is formatted in 

slotted windows, and all data are deterministic. The 

total number of slots is k=T/I0 since we discretely 

divide the complete time period [0, T] into slots of 

equal length (always making it a positive integer). The 

system's start-time is set to s0=0. The interval of a 

request, j, can then be expressed in slot format as 

[StartTime, EndTime, RequestedCapacity] = [si, ei, 

di], where si and ei are nonnegative integers for both 

the start-time and end-time.  

 Each task in a job is distinct. Except for the ones that 

the start-time and end-time imply, there are no further 

precedence restrictions. This chapter does not take 

preemption into account either.  

 Each request's necessary capacity is a positive integer 

in the range [l, g].  
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 Interrupting a request and continuing it on another 

machine is not permitted, unless otherwise 

specifically indicated, presuming that each request is 

assigned to a single machine when processed.  

   We can derive the following significant definitions 

and observations from the aforementioned 

presumptions:  

 

Definition 1: The length of Ii is |Ii|=t-s+1 for a time 

interval Ii = [s, t] where s and t are the start-time and end-

time, respectively. Len(I)=|I|= (I =1) k |Ii|, or the length of 

a set of pairwise intervals, is defined as the sum of the 

lengths of each interval in the set, where I= (I = 1) k |Ii|. 

 

Definition 2: The length of the union of all intervals taken 

into account is known as span(I), and it is defined as 

span(I) = |I |. 

 

Example 1: 

 

 I = [1.4], [2, 4], [5, 6], in which case span(I) = [1, 

4] + [4, 6] = (4 - 1) + 1 + (6 - 5) + 1 = 6, and 

Len(I) = [1, 4] + [2, 4] + [5, 6] = 9. Keep in mind 

that equality and span(I) Len(I) only apply if and 

only if I is a collection of pairwise no overlapping 

intervals.  

 

Definition 3: Let OPT(I) stand for the minimized overall 

busy time across all machines for any instance I and 

capacity parameter g1. In this context, busy time refers 

only to when all machines are turned on. To reduce the 

overall busy time is to minimize the sum of makespan on 

all machines, according to Definition 2 of span(I). It 

should be noted that a machine's total power-on time is the 

total of all of its power-on times. Similar to Example 1, a 

machine is active (powered on) during the times [1, 5] and 

[5, 6]. The total busy time of this machine, based on 

Definition 1 of the interval for each job, is (51) +(65) =5 

time units (or slots). The machine's overall busy time does 

not encompass the range [0, 1].  

 

Definition 4: If the total busy time is at most C times that 

of an optimal solution, an offline deterministic method is 

said to be a C-approximation for the goal of minimizing 

the total busy time.  

 

Definition 5: The needed capacity of each job di is a 

natural number between 1 and g, i.e., 1 di g, assuming that 

the start-time and end-time of all jobs are nonnegative 

integers.  

 

Definition 6: The necessary workload for any job j is w(j), 

which is equal to the capacity demand times the process 

time, or w(j)=djpj. Then, W(J)= jnw(j) represents the total 

workload of all tasks J.  

In Ref. [2], the following observations are listed.  

The following bounds hold for any instance J and capacity 

parameter g1:  

i. Capacity bound: OPT(J)≥W(J)/g; 

ii. Span bound: OPT(J)≥span(J). 

Because g is the most capacity that any solution can attain, 

the capacity bound is valid. The span bound is valid since, 

for g=1, only one machine is required.  

Observation 2: OPT(J)len is the upper bound for the ideal 

total busy time (J). When g=1 or when g is greater than 1, 

the equality is maintained and no periods overlap.  

 

IV. RESULTS AND DISCUSSION 

 

The machines are designated as M1, M2, and are used to 

analyze any scheduler S. where Ji is the group of tasks that 

the scheduler S has given to the machine Mi. Bi=span(Ji) 

for all I 1, where span(Ji) is the span of the set of job 

intervals scheduled on Mi, is the length of a machine's 

overall busy period.  

We get the following outcomes for the goal of minimizing 

the total busy time of several similar machines without 

preemption subject to fixed interval and capacity 

limitations (referred to as MinTBT):  

 In the general situation, scheduling without preemption 

and with capacity constraints (MinTBT) is an NP-

complete problem for minimizing the total busy time of 

numerous identical machines (Theorem 1).  

 When the demand is one unit and the combined 

capacity of each machine is also one unit, there are 

algorithms that can discover the MinTBT problem's 

optimal solution in polynomial time, therefore in this 

situation, MFFDE(I)=OPT(I)=len(I) (Theorem 2). This 

demonstrates the outcome in a unique case that can be 

used with cloud data centers that use less energy.  

 Our suggested MFFDE algorithm's approximation ratio 

for the MinTBT issue has an upper constraint of 3. 

(Theorem 3). One of our key findings that directs our 

approximation of the algorithm design is this.  

 There is a specific case of 1 di g for the unit demand 

scenario, which has di=1, as illustrated in Ref. [12]. (let 

us call it a general demand case). The unit demand case 

provides the worst-case scenario for first-fit-decreasing 

(FFD) and MFFDE algorithms in terms of minimizing 

the overall busy time (Observation 3).  

 There are techniques to identify the optimal minimum 

number of machines for the MinTBT problem in 

polynomial time for scenarios when the capabilities of 

all requests form a highly divisible sequence (Theorem 

4). This makes it possible to create algorithms that are 

roughly and nearly optimal.  

 There are algorithms to determine the MinTBT 

problem's ideal resolution in polynomial time for the 

cases where the capacity parameter g=. (Theorem 5).  

 The overall busy time of all physical machines (PMs) 

dominates the total energy consumption of all PMs for 

a linear power model and a given set of VM requests in 

cloud computing, i.e., a longer total busy time of all 

PMs for a scheduler result in a higher total energy 

consumption (Theorem 6).  

 This paper's remaining material is organized as 

follows: Our suggested approximation algorithm and 

its approximation bounds are presented in Section 7.2. 

Its applicability to VM scheduling in cloud computing 
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is covered in Section 7.3. The performance of MFFDE, 

FFD, and the theoretical best solution are compared in 

Section 7.4. The conclusion and future directions for 

this field of study are described in Section 7.5.  

 

Approximation Algorithm and its approximation ratio 

bound. 

The longest processing time (LPT) is one of the best 

approximation techniques for offline non-real-time 

scheduling. It is well known that LPT has the best upper 

bound for minimizing the maximum makespan in the 

scenario where a conventional multiprocessor system is 

used [4]. The general example is covered in this chapter, 

and the start and finish times of jobs are fixed. When 

allocating work, we must take into account the defined 

start and end times of each task as well as the machine 

capacity limitation. If two jobs have the same process 

time, our MFFDE algorithm, as displayed in Algorithm 1, 

schedules them in the reverse order of their process times 

and gives preference to the earlier start time. If two jobs 

have the exact same start time, end time, and process time, 

however, it arbitrarily breaks ties. Each task is assigned to 

the first available machine (so as to use as few machines as 

possible to minimize the total busy time).   

 

 
 

ALGORITHM 1 MFFDE Algorithm. 

 

To determine how challenging the overall issue is:  

Theorem 1: In the general situation, the MinTBT 

problem—which seeks to minimize the total busy time of 

multiple identical machines in offline scheduling without 

preemption and with a capacity constraint—is NP-

complete.  

 

Proof: This is demonstrated via polynomial-time 

reduction of the well-known NP-complete set partitioning 

issue to the MinTBT problem as follows:  

For a set S of positive numbers and an integer k, the K-

Partition problem is NP-complete [22]; divide S into k 

ranges such that the sums of all the ranges are near to one 

another.  

 

The MinTBT problem can be converted from the K-

Partition problem as follows:  

The allocation of K ranges of jobs with the capacity 

constraint g is equivalent to partitioning J by capacity for a 

collection of jobs J where each job has a capacity demand 

di (specified as a positive number) (i.e., the sum of each 

range is at most g). On the other hand, if K-Partition can 

be solved for a given collection of intervals, a schedule can 

be created for that set of intervals. Our issue is NP-hard 

because K-Partition is NP-hard in the strict sense. In this 

manner, we have established the NP-completeness of the 

MinTBT issue. In the particular scenario where all jobs 

have the same (unit) process time and can be scheduled in 

one fixed time period, Khandekar et al. [2] have 

demonstrated that it is already NP-hard to approximate our 

problem.  

 

Bounds for Approximation ratio when g is one unit and 

di is one unit. 

The typical interval scheduling problem with start-time 

and end-time constraints, where each job requires a one-

unit capacity and the total capacity of a machine is one 

unit, is what our problem simplifies to when g is one unit 

and di is one unit.  

Theorem 2: When the demand is one unit and the 

combined capacity of each machine is also one unit, there 

are algorithms to discover the MinTBT problem's optimal 

solution in polynomial time, notably in the situation of 

MFFDE(I) = OPT(I) = len (I).  

Proof: Let's set the capacity parameter g to 1 since it is a 

unit-based parameter. Each machine can only handle one 

job at a time due to the capacity 1 requirement for each 

job. In this situation, regardless of whether there are jobs 

that overlap or not, OPT(I) = len(I) is true using Definition 

1 of interval length and Definition 2 of span. MFFDE(I) is 

also the total of lengths of all intervals by assigning each 

interval to distinct machines for continuous working 

intervals.  

 

Bounds for Approximation ratio in general case when 

g>1. 

 

Observation 3: The unit demand case, or di = 1, as 

illustrated in Ref. [12], is a specific case of 1 di g. (let us 

call it a general demand case). The unit demand example 

depicts the worst-case scenario for FFD and MFFDE 

algorithms in terms of minimizing the overall busy time.  

Proof: Think about the general demand scenario, in which 

1 di g The enemy is created in the following way: All g 

groups of requests have the same start time at si=0, 

demand di (for 1 I h, _(i=1)hdi=g), and each has an end 

time at ei=T/kg-1, where T denotes the amount of time 

being taken into account, k denotes a natural number, and j 

denotes the modality of the group in question if I mod g 0, 

otherwise j de The best course of action in this situation is 

to allocate all of the longest requests to machine (m1) for a 

busy time of dgT, all of the second-longest requests to 

machine (m2) for a busy time of dg-1 T/k,..., and finally, 

all of the shortest requests to machine (mg) with a busy 

time of diT/kg-I. As a result, the total busy time of the best 

course of action is dgT.  
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We think of the worst scenario (upper bound). The upper 

bound will make ALGx/OPT the largest while maintaining 

all other constraints for any offline algorithm, let's call it 

ALGx. If di has the smallest value, that is, di=1, then Eq. 

(7.1) will have the least value when k and T are supplied. 

In other words, the unit demand situation is the worst-case 

scenario.  

Remark 1: For the worst-case FFD scenario depicted in 

Figure 7.1, we can quickly verify that Observation 3 is 

accurate. We only take into account the unit demand case 

for the upper bound because that is the MinTBT problem's 

worst-case scenario.  

 

 
Figure 1 Generalized instance for the proof of the upper bound of 

FFD. 

 

In References [2,12], the observation described below is 

made: 

 

Observation 4: In the worst scenario for the FFD 

algorithm, where m is the total number of machines 

employed, we have span (Ii + 1) 3w(Ii)/g.  

 

Remark 2 A span (Ii + 1) 3w(Ii)/g result is established and 

shown for the FFD method in Ref. [12]. The process time 

for a job on a machine Mi is called pi. Let iL or ig 

represent the job that finished on machine Mi+1 with the 

earliest or latest completion timings, respectively, in Ii + 1. 

We also have span (Ii + 1) 3w(Ii)/g because our suggested 

approach is also based on the FFD algorithm for process 

time and takes earlier start-times into account first when 

ties exist.  

 

Theorem 3 Our suggested MFFDE algorithm for the 

MinTBT problem has an upper bound on the 

approximation ratio of 3.  

Proof Let's stipulate that the machine Mi + 1 is given the 

assignment of all the jobs in Ji + 1. The assignment's total 

busy time for such a set is exactly its span.  

 

 
 

Eq. (7.6) should theoretically have the upper bound when 

MFFDE (J i) has the biggest value and (3/g) w (J m) has 

the smallest value at the same time, however this is 

typically not the case. This is how the analysis is 

presented:  

1. If all long jobs are allocated to machine M 1 and 

MFFDE (J 1) =span (J 1) has the upper bound OPT(J), 

then allocations on other machines have little impact 

on OPT(J), and 3/(g) w (J m) is very small (which can 

be ignored in comparison to span (J 1); otherwise, 

MFFDE (J 1) = span (J 1) cannot reach the upper 

bound OPT (J). In this instance, span (J 1), which is 

very close to or equal to OPT, dominates _(I=1) 

mMFFDE (J i) (J). 

2. If MFFDE (J 1) =span (J 1) is less than OPT, then (J). 

We take the worst-case scenario into consideration 

since it is for the upper bound (i.e., OPT(J) is not 

dominated by MFFDE (J 1)). As shown in Figures 7.1 

and 7.2, in the worst situation, span (I (i+1))3w (I i/g), 

making it simple to verify that MFFDE (J 1) (3/g) w 

(J m). Set ∆ 0 = ∆ (1 =) ∆ (2 =) ∆ 3, When jobs have 

the identical process timings, MFFDE actually takes 

into account the earlier start-time first, therefore 

MFFDE (J 1) =span (J 1) = _ (0)-2, (3/g) w (J m) = 

(3/g) w (J g) = (3/g) (g (0) + _0) = 3 (0) + (3 _ (0)/ g). 

OPT(J) in this instance equals g (0) + g 0. Therefore, 

when g is big, MFFDE (J 1) -(3/g) w (J m) = -2 0-(3 

0/ g) is much smaller than OPT(J). We may deduce 

MFFDE (J 1)- (3/g) w (J m) + (3/g) w(J) from Eq. 

(7.7) as 3 OPT (J). Using Figure 7.2 as the worst 

scenario, a tight upper bound is demonstrated in this 

situation (which is shown in the next proof).  

3. We may readily discover that MFFDE(J) is very near 

to or equal to OPT for certain circumstances, such as 

one-sided clique and clique cases [2,12]. (J).  

 

 
Figure 2 Generalized instance for the proof of the upper bound of 

MFFDE. 

 

We have demonstrated Theorem 3 by integrating the 

aforementioned three analyses. 

Because we are aiming for the upper bound, a different, 

simpler proof just takes the worst case into account. The 
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worst-case scenario for the FFD method is depicted in 

Figure 7.1, as was mentioned in   References [2,12]. Since 

the MFFDE method takes into account the earliest start-

time first (ESTF) when two requests have the same 

amount of processing time, we can simply verify that 

MFFDE(J)= OPT(J). We further develop the MFFDE 

algorithm's worst-case scenario and offer the following 

evidence.  

 

Proof 
Table 1 Eight VM types in Amazon EC2 

VM 

Type 

Compute 

units 

Memory 

(GB) 

Storage 

(GB) 

1-1(1) 1 1.875 211.25 

1-2(2) 4 7.5 845 

1-3(3) 8 15 1690 

2-1(4) 6.5 17.1 422.5 

2-2(5) 13 34.2 845 

2-3(6) 26 68.4 1690 

3-1(7) 5 1.7 422.5 

3-2(8) 20 6.8 1690 

 
Table 2 Three PM types for divisible configuration 

PM 

Type 

CPU Memory 

(GB) 

Storage 

(GB) 

Pmin 

(W) 

Pmax 

(W) 

1 16 30 3380 210 300 

2 52 136.8 3380 420 600 

3 40 14 3380 350 500 

 

Algorithm 

We contrast the following three algorithms: 

1. (FFD [2,12] assigns all VM requests to the first 

available PM after first sorting them according to their 

non-increasing process times;  

2. The theoretical lower bound, known as the optimal 

solution (OPT), is calculated by multiplying the total 

of the minimum number of machines required over all 

time slots by the duration of each slot. We consider 

that all VMs completely utilize the requested capacity 

(the worst case). The simulations are executed ten 

times for each set of VM queries. The average of the 

10 runs is used to calculate all the findings.  

 

Simulation using real traces 

We use the easily accessible Lawrence Livermore National 

Lab Thunder log from the Parallel Workloads Archive 

[27] to model incoming VM requests because there is a 

lack of information from actual Cloud data centers 

regarding the energy use of computing resources. The 

Lawrence Livermore National Laboratory has a sizable 

Linux cluster dubbed Thunder that is responsible for 

gathering this log. We can extract pertinent information 

from the log that is compatible with our problem model, 

such as the request number, start-time, desired time, and 

requested processor count. Because our simulation's time 

slots are set at one minute, we convert seconds—the time 

unit used in the log—to minutes. Additionally, we adjust 

the quantity of processors required to fit the eight 

categories of VM demands indicated in Table 7.2. We 

perform the simulations with an adequate number of PMs 

to allow for the successful allocation of all VM requests 

without any rejections.  

 

Figures 7.4–7.6 display, for the growing number of VM 

requests, the total busy time (in minutes), total energy 

usage (in kilowatt hours), and total simulation time (in 

milliseconds) (from 1000 to 7000).  

 

 
Figure 4 Total busy time (min) for increasing number of VM 

requests. 

 

 
Figure 5 Total energy consumption (kWh) for increasing number 

of VM requests. 

 

 
Figure 6 Total simulation time (ms) for increasing number of VM 

requests. 
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Simulation with artificial data 

Data center energy consumption evaluation: the total 

busy time (in minutes) and total energy use (in kilowatt 

hours), respectively, for the rising maximum duration (in 

slots) of VM requests are shown in Figures 7.7 and 7.8. 

(From 50 to 800). Results from the MFFDE are not more 

than three times those from the best solution (OPT). This 

supports our theoretical conclusions and findings 

regarding overall energy use. All queries have exponential 

service times and follow the Poisson arrival pattern. The 

maximum intermediate interval between two arrivals is set 

at 50 slots, the mean interarrival interval is set at 5, and the 

maximum duration of requests is set at 50, 100, 200, 400, 

and 800 slots, respectively. The total arrivals (VM 

requests) are 1000, there are 125 requests for each sort of 

VM, and there are 60 PMs (20 for each PM type). Each 

slot lasts for 5 minutes. For instance, if a virtual machine 

(VM) has 20 slots of requested time (service time), its real 

time is 20 x 5 = 100 minutes.  

 

 
Figure 7.  Total busy time (min) for increasing maximum 

duration (slots) of VM requests. 

 

Figure 8 Total energy consumption (kWh) for increasing 

maximum duration (slots) of VM requests. 

 

V. CONCLUSION AND FUTURE SCOPE  

 

The best-known bounds for multiple machine scheduling 

are improved in this chapter. According to [2,12], there is 

currently no polynomial time solution for the problem of 

scheduling all jobs nonpreemptively inside their start-time-

end-time windows while reducing the overall busy time of 

all machines under the constraints of machine capacity. 

We put forth an approximation algorithm, the MFFDE, 

which in the general case is a 3-approximation and is 

nearly optimal in the special and average instances. The 

MFFDE algorithm can be used to increase energy 

efficiency in Cloud computing and other related fields. 

The MFFDE algorithm is a solid approximation bound for 

minimizing the maximum makespan while minimizing the 

overall busy time because it combines aspects of the FFD 

strategy (biggest process time first) and the ESTF 

algorithm. The makespan will not be sacrificed in order to 

reduce the overall busy time Approximation bound for 

minimizing the maximum makespan while minimizing the 

overall busy time because it combines aspects of the FFD 

strategy (biggest process time first) and the ESTF 

algorithm. The makespan will not be sacrificed in order to 

reduce the overall busy time.  
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