
 © 2022, IJCSE All Rights Reserved 8

International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol. 10, Issue.11, November 2022 E-ISSN: 2347-2693

Energy Efficient Offline Parallel Scheduling in Cloud Computing by

Reducing Total Busy Time

Sebagenzi Jason

Department of Information Technology, AUCA University, Kigali 2461, Rwanda

Author’s Mail Id: sebagenzij@gmail.com, Tel: +250782386040

DOI: https://doi.org/10.26438/ijcse/v10i11.815 | Available online at: www.ijcseonline.org

Received: 12/Oct/2022, Accepted: 31/Oct/2022, Published: 30/Nov/2022

Abstract - The basic scheduling issue is examined in this chapter. On n identical computers with bounded capacity, n

deterministic jobs need to be scheduled offline. Each work has a start time, a finish time, a processing time, and a machine

capacity requirement. The purpose is to schedule all of the jobs no proactively in their start-time–end-time windows,

subject to machine capacity limits so that the overall busy time of the machines is minimized. Minimizing the overall busy

time for the scheduling of several identical machines is the name we give to this issue (MinTBT). Power-aware scheduling

for Cloud computing, optical network design, customer service systems, and other relevant fields can all benefit from

solving this issue. In the particular case where all jobs have the same process time and can be scheduled in a set time

interval, scheduling to reduce busy time is already NP-hard. The 5-approximation approach for exceptional situations

utilizing the first-fit-decreasing (FFD) algorithm is one of the best-known solutions to this problem. In this chapter, we

suggest and demonstrate a modified first-fit-decreasing-earliest 3-approximation technique for the general case and gain

further results for particular situations. Then, we demonstrate how our findings might be used in cloud computing to

increase energy efficiency.

Keywords - Energy-efficient scheduling; offline algorithm; online algorithm; MFFDE algorithm; BFF algorithm; GRID

algorithm; approximation ratio; competitive ratio.

I. INTRODUCTION

In order to represent the task scheduling issue in machines,

we use a three-field notation system. This format is

suggested in Ref. [1] as, which, respectively, specifies the

task characteristics, processor environment, and goal

function. For instance, the multiprocessor problem of

reducing the completion time (makespan) when each job

has a set release date and deadline is referred to as

P|rj,ej|Cmax. When each task has a release date and

deadline defined and a m number of processors is supplied

as part of the problem type, the multiprocessor problem of

minimizing the total completion time is known as Pm |rj,ej|

Cj.

The notation used in this chapter to represent several

machines (each with capacity g) is Pg|rj,ej|ibji. The goal is

to reduce the total busy time of all employed machines,

and each work has a start time and end time that are set

throughout the intervals in which it should be processed.

The input is formally a collection of n jobs, J=J1, J2... Jn.

Each job Jj has a processing interval [sj, ej] that it must be

completed within; the job Jj process time is defined as Pj =

ej-sj+1. The capacity parameter g1, which represents the

maximum capacity offered by a single machine, is also

provided. The working time interval length bi of a

machine I represents its busy time. The objective is to

assign tasks to machines in a way that minimizes the total

busy time of all machines, as determined by B=ibi. It

should be noted that the output of the method includes the

number of machines (m>1) to be employed and accepts an

integral value. As far as we are aware, Khandekar et al. [2]

are among the first to address this issue, and Brucker [3]

discusses the subject and relevant references therein.

Unless otherwise stated, indices are written in lower case,

whereas a list of jobs, time periods, and machines are

written in upper case.

With cloud computing, software, computational, and

storage network resources can be shared, allocated, and

aggregated as needed. The concealment and abstraction of

complexity, the efficient utilization of remote resources,

and virtualized resources are a few of the major

advantages of cloud computing. A big problem is

increasing the energy efficiency of cloud data centers.

While Jing et al. [5] undertake a state-of-the-art research

study for green Cloud computing and identify three hot

research areas, Beloglazov et al. [4] offer a taxonomy and

assessment of energy-efficient data centers for Cloud

computing.

Virtual machine (VM) resources are made available by

Cloud Infrastructure as a Service provider with specific

compute units, as Amazon EC2 [6]. A customer makes a

time-limited request for certain computing units of

resources and pays for them according to the total amount

of time they have been used. The overall power-on (busy)

time of all computing resources and the total energy cost

of those resources for a provider are strongly correlated.

Therefore, in order to reduce energy expenses, a provider

 International Journal of Computer Sciences and Engineering Vol.10(11), Nov 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 9

seeks to reduce the overall busy time. As a result, we

propose and demonstrate a 3-approximation technique in

this chapter called modified first-fit-decreasing-earliest

(MFFDE), which may be used to schedule virtual

machines in cloud data centers in a way that uses the least

amount of energy possible.

II. RELATED WORK

On parallel machines, job scheduling has been thoroughly

studied. Traditional interval scheduling [7-9] involves real-

time interval job delivery, job processing on a single

machine that can only handle one job at a time.

Numerous studies have been done on scheduling with

fixed intervals, where each job must be processed on a

machine during the time interval between its release time

and due date, or each job must be processed during the

fixed interval between its start time and end time,

assuming a machine can process one job at a time. Studies

of real-time scheduling with capacity demands, where

each machine has a capacity, are also available; However,

Khandekar et al. [2] are among the first to articulate the

goal of minimizing the overall busy time, to the best of our

knowledge. There has also been prior research on the issue

of allocating tasks to a group of machines in order to

reduce overall costs [10], but in these studies, the cost of

allocating each task is fixed. In contrast, the cost of

scheduling each work in our scenario depends on the other

operations that are planned on the same machine in the

corresponding time interval; as a result, it might vary over

time and across various machines. Our scheduling issue

differs from batch scheduling of incompatible jobs [3], as

was mentioned in [2].

The scheduling problem is NP-hard in the broad sense

[11]. When the jobs are intervals on the line, like in

Chapter 6, it is demonstrated that the problem is NP-hard

for g=2. The scheduling problem, when jobs are provided

as intervals on the line with unit demand, is taken into

account by Flammini et al. [12]. Flammini et al. provide a

4-approximation approach and improved bounds for

various subclasses of inputs for this variant of the problem.

When no interval is adequately contained in another

interval (i.e., the input forms a suitable interval graph) or

when any two intervals intersect (i.e., the input forms a

clique; see also Reference [2]), Flammini et al. specifically

provide a 2-approximation technique. Additionally,

Flammini et al. offer a 2-approximation for bounded

durations of time, meaning that any job's length (or

process time) is constrained by a fixed integer d.

By dividing all jobs into wide and narrow jobs based on

their needs when =2, which is a demand parameter of

narrow jobs relative to the entire capacity of a machine,

Khandekar et al. [2] offer a 5-approximation approach for

the scheduling problem. Only in this unique circumstance

are the results based on =2 valid. In this chapter, we

propose a 3-approximation approach to solve our

scheduling problem, expanding and improving the findings

of Ref. [2].

In terms of energy efficiency, one of the difficult

scheduling issues in cloud data centers is to take into

account the allocation and migration of virtual machines

with full life cycle limitations, which is sometimes

overlooked [13]. The interrelationships between power

consumption, resource usage, and performance of

aggregated workloads are examined by Srikantaiah et al.

[14]. By condensing active tasks, Lee and Zomaya [15]

offer two online heuristic methods for resource-efficient

utilization of Cloud computing systems. In a Xen

virtualized system, Liu et alinvestigation.'s of performance

and energy modeling for live VM migration and

evaluation of the models using five sample workloads. By

reducing the total number of machines employed and the

total number of migrations using updated best-fit bin

packing heuristics, Beloglazov et al. [10] investigate the

offline allocation of VMs. Real-time services are modeled

by Kim et al. [17] as real-time VM requests, and they

employ dynamic voltage frequency scaling techniques.

Mathew et al[18] .'s proposal for an ideal offline algorithm

and an online algorithm for content delivery networks

combines load balancing with energy economy.

Constrained mixed-integer programming is used by Rao et

al. [19] to model the issue and suggest a rough resolution.

In order to reduce overall costs, Lin et al. [20] suggest

online and offline algorithms for data centers that turn off

unused servers. However, research on VM scheduling that

takes into account set processing intervals is still lacking.

As a result, we show how our suggested 3-approximation

approach can be used for VM scheduling in cloud

computing in this chapter. Similar problem models are

taken into consideration by Mertzios et al. [21], but only in

relation to specific exceptional circumstances. While we

concentrate on energy economy in Cloud data centers, they

primarily offer constant factor approximation algorithms

for both total busy time minimization and throughput

maximization concerns.

III. METHODOLOGY

Based on the following assumptions, the objective of

energy-efficient scheduling is to satisfy all criteria with the

least number of machines and their combined busy times:

 Unless otherwise stated, the time is formatted in

slotted windows, and all data are deterministic. The

total number of slots is k=T/I0 since we discretely

divide the complete time period [0, T] into slots of

equal length (always making it a positive integer). The

system's start-time is set to s0=0. The interval of a

request, j, can then be expressed in slot format as

[StartTime, EndTime, RequestedCapacity] = [si, ei,

di], where si and ei are nonnegative integers for both

the start-time and end-time.

 Each task in a job is distinct. Except for the ones that

the start-time and end-time imply, there are no further

precedence restrictions. This chapter does not take

preemption into account either.

 Each request's necessary capacity is a positive integer

in the range [l, g].

 International Journal of Computer Sciences and Engineering Vol.10(11), Nov 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 10

 Interrupting a request and continuing it on another

machine is not permitted, unless otherwise

specifically indicated, presuming that each request is

assigned to a single machine when processed.

 We can derive the following significant definitions

and observations from the aforementioned

presumptions:

Definition 1: The length of Ii is |Ii|=t-s+1 for a time

interval Ii = [s, t] where s and t are the start-time and end-

time, respectively. Len(I)=|I|= (I =1) k |Ii|, or the length of

a set of pairwise intervals, is defined as the sum of the

lengths of each interval in the set, where I= (I = 1) k |Ii|.

Definition 2: The length of the union of all intervals taken

into account is known as span(I), and it is defined as

span(I) = |I |.

Example 1:

 I = [1.4], [2, 4], [5, 6], in which case span(I) = [1,

4] + [4, 6] = (4 - 1) + 1 + (6 - 5) + 1 = 6, and

Len(I) = [1, 4] + [2, 4] + [5, 6] = 9. Keep in mind

that equality and span(I) Len(I) only apply if and

only if I is a collection of pairwise no overlapping

intervals.

Definition 3: Let OPT(I) stand for the minimized overall

busy time across all machines for any instance I and

capacity parameter g1. In this context, busy time refers

only to when all machines are turned on. To reduce the

overall busy time is to minimize the sum of makespan on

all machines, according to Definition 2 of span(I). It

should be noted that a machine's total power-on time is the

total of all of its power-on times. Similar to Example 1, a

machine is active (powered on) during the times [1, 5] and

[5, 6]. The total busy time of this machine, based on

Definition 1 of the interval for each job, is (51) +(65) =5

time units (or slots). The machine's overall busy time does

not encompass the range [0, 1].

Definition 4: If the total busy time is at most C times that

of an optimal solution, an offline deterministic method is

said to be a C-approximation for the goal of minimizing

the total busy time.

Definition 5: The needed capacity of each job di is a

natural number between 1 and g, i.e., 1 di g, assuming that

the start-time and end-time of all jobs are nonnegative

integers.

Definition 6: The necessary workload for any job j is w(j),

which is equal to the capacity demand times the process

time, or w(j)=djpj. Then, W(J)= jnw(j) represents the total

workload of all tasks J.

In Ref. [2], the following observations are listed.

The following bounds hold for any instance J and capacity

parameter g1:

i. Capacity bound: OPT(J)≥W(J)/g;

ii. Span bound: OPT(J)≥span(J).

Because g is the most capacity that any solution can attain,

the capacity bound is valid. The span bound is valid since,

for g=1, only one machine is required.

Observation 2: OPT(J)len is the upper bound for the ideal

total busy time (J). When g=1 or when g is greater than 1,

the equality is maintained and no periods overlap.

IV. RESULTS AND DISCUSSION

The machines are designated as M1, M2, and are used to

analyze any scheduler S. where Ji is the group of tasks that

the scheduler S has given to the machine Mi. Bi=span(Ji)

for all I 1, where span(Ji) is the span of the set of job

intervals scheduled on Mi, is the length of a machine's

overall busy period.

We get the following outcomes for the goal of minimizing

the total busy time of several similar machines without

preemption subject to fixed interval and capacity

limitations (referred to as MinTBT):

 In the general situation, scheduling without preemption

and with capacity constraints (MinTBT) is an NP-

complete problem for minimizing the total busy time of

numerous identical machines (Theorem 1).

 When the demand is one unit and the combined

capacity of each machine is also one unit, there are

algorithms that can discover the MinTBT problem's

optimal solution in polynomial time, therefore in this

situation, MFFDE(I)=OPT(I)=len(I) (Theorem 2). This

demonstrates the outcome in a unique case that can be

used with cloud data centers that use less energy.

 Our suggested MFFDE algorithm's approximation ratio

for the MinTBT issue has an upper constraint of 3.

(Theorem 3). One of our key findings that directs our

approximation of the algorithm design is this.

 There is a specific case of 1 di g for the unit demand

scenario, which has di=1, as illustrated in Ref. [12]. (let

us call it a general demand case). The unit demand case

provides the worst-case scenario for first-fit-decreasing

(FFD) and MFFDE algorithms in terms of minimizing

the overall busy time (Observation 3).

 There are techniques to identify the optimal minimum

number of machines for the MinTBT problem in

polynomial time for scenarios when the capabilities of

all requests form a highly divisible sequence (Theorem

4). This makes it possible to create algorithms that are

roughly and nearly optimal.

 There are algorithms to determine the MinTBT

problem's ideal resolution in polynomial time for the

cases where the capacity parameter g=. (Theorem 5).

 The overall busy time of all physical machines (PMs)

dominates the total energy consumption of all PMs for

a linear power model and a given set of VM requests in

cloud computing, i.e., a longer total busy time of all

PMs for a scheduler result in a higher total energy

consumption (Theorem 6).

 This paper's remaining material is organized as

follows: Our suggested approximation algorithm and

its approximation bounds are presented in Section 7.2.

Its applicability to VM scheduling in cloud computing

 International Journal of Computer Sciences and Engineering Vol.10(11), Nov 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 11

is covered in Section 7.3. The performance of MFFDE,

FFD, and the theoretical best solution are compared in

Section 7.4. The conclusion and future directions for

this field of study are described in Section 7.5.

Approximation Algorithm and its approximation ratio

bound.

The longest processing time (LPT) is one of the best

approximation techniques for offline non-real-time

scheduling. It is well known that LPT has the best upper

bound for minimizing the maximum makespan in the

scenario where a conventional multiprocessor system is

used [4]. The general example is covered in this chapter,

and the start and finish times of jobs are fixed. When

allocating work, we must take into account the defined

start and end times of each task as well as the machine

capacity limitation. If two jobs have the same process

time, our MFFDE algorithm, as displayed in Algorithm 1,

schedules them in the reverse order of their process times

and gives preference to the earlier start time. If two jobs

have the exact same start time, end time, and process time,

however, it arbitrarily breaks ties. Each task is assigned to

the first available machine (so as to use as few machines as

possible to minimize the total busy time).

ALGORITHM 1 MFFDE Algorithm.

To determine how challenging the overall issue is:

Theorem 1: In the general situation, the MinTBT

problem—which seeks to minimize the total busy time of

multiple identical machines in offline scheduling without

preemption and with a capacity constraint—is NP-

complete.

Proof: This is demonstrated via polynomial-time

reduction of the well-known NP-complete set partitioning

issue to the MinTBT problem as follows:

For a set S of positive numbers and an integer k, the K-

Partition problem is NP-complete [22]; divide S into k

ranges such that the sums of all the ranges are near to one

another.

The MinTBT problem can be converted from the K-

Partition problem as follows:

The allocation of K ranges of jobs with the capacity

constraint g is equivalent to partitioning J by capacity for a

collection of jobs J where each job has a capacity demand

di (specified as a positive number) (i.e., the sum of each

range is at most g). On the other hand, if K-Partition can

be solved for a given collection of intervals, a schedule can

be created for that set of intervals. Our issue is NP-hard

because K-Partition is NP-hard in the strict sense. In this

manner, we have established the NP-completeness of the

MinTBT issue. In the particular scenario where all jobs

have the same (unit) process time and can be scheduled in

one fixed time period, Khandekar et al. [2] have

demonstrated that it is already NP-hard to approximate our

problem.

Bounds for Approximation ratio when g is one unit and

di is one unit.

The typical interval scheduling problem with start-time

and end-time constraints, where each job requires a one-

unit capacity and the total capacity of a machine is one

unit, is what our problem simplifies to when g is one unit

and di is one unit.

Theorem 2: When the demand is one unit and the

combined capacity of each machine is also one unit, there

are algorithms to discover the MinTBT problem's optimal

solution in polynomial time, notably in the situation of

MFFDE(I) = OPT(I) = len (I).

Proof: Let's set the capacity parameter g to 1 since it is a

unit-based parameter. Each machine can only handle one

job at a time due to the capacity 1 requirement for each

job. In this situation, regardless of whether there are jobs

that overlap or not, OPT(I) = len(I) is true using Definition

1 of interval length and Definition 2 of span. MFFDE(I) is

also the total of lengths of all intervals by assigning each

interval to distinct machines for continuous working

intervals.

Bounds for Approximation ratio in general case when

g>1.

Observation 3: The unit demand case, or di = 1, as

illustrated in Ref. [12], is a specific case of 1 di g. (let us

call it a general demand case). The unit demand example

depicts the worst-case scenario for FFD and MFFDE

algorithms in terms of minimizing the overall busy time.

Proof: Think about the general demand scenario, in which

1 di g The enemy is created in the following way: All g

groups of requests have the same start time at si=0,

demand di (for 1 I h, _(i=1)hdi=g), and each has an end

time at ei=T/kg-1, where T denotes the amount of time

being taken into account, k denotes a natural number, and j

denotes the modality of the group in question if I mod g 0,

otherwise j de The best course of action in this situation is

to allocate all of the longest requests to machine (m1) for a

busy time of dgT, all of the second-longest requests to

machine (m2) for a busy time of dg-1 T/k,..., and finally,

all of the shortest requests to machine (mg) with a busy

time of diT/kg-I. As a result, the total busy time of the best

course of action is dgT.

 International Journal of Computer Sciences and Engineering Vol.10(11), Nov 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 12

We think of the worst scenario (upper bound). The upper

bound will make ALGx/OPT the largest while maintaining

all other constraints for any offline algorithm, let's call it

ALGx. If di has the smallest value, that is, di=1, then Eq.

(7.1) will have the least value when k and T are supplied.

In other words, the unit demand situation is the worst-case

scenario.

Remark 1: For the worst-case FFD scenario depicted in

Figure 7.1, we can quickly verify that Observation 3 is

accurate. We only take into account the unit demand case

for the upper bound because that is the MinTBT problem's

worst-case scenario.

Figure 1 Generalized instance for the proof of the upper bound of

FFD.

In References [2,12], the observation described below is

made:

Observation 4: In the worst scenario for the FFD

algorithm, where m is the total number of machines

employed, we have span (Ii + 1) 3w(Ii)/g.

Remark 2 A span (Ii + 1) 3w(Ii)/g result is established and

shown for the FFD method in Ref. [12]. The process time

for a job on a machine Mi is called pi. Let iL or ig

represent the job that finished on machine Mi+1 with the

earliest or latest completion timings, respectively, in Ii + 1.

We also have span (Ii + 1) 3w(Ii)/g because our suggested

approach is also based on the FFD algorithm for process

time and takes earlier start-times into account first when

ties exist.

Theorem 3 Our suggested MFFDE algorithm for the

MinTBT problem has an upper bound on the

approximation ratio of 3.

Proof Let's stipulate that the machine Mi + 1 is given the

assignment of all the jobs in Ji + 1. The assignment's total

busy time for such a set is exactly its span.

Eq. (7.6) should theoretically have the upper bound when

MFFDE (J i) has the biggest value and (3/g) w (J m) has

the smallest value at the same time, however this is

typically not the case. This is how the analysis is

presented:

1. If all long jobs are allocated to machine M 1 and

MFFDE (J 1) =span (J 1) has the upper bound OPT(J),

then allocations on other machines have little impact

on OPT(J), and 3/(g) w (J m) is very small (which can

be ignored in comparison to span (J 1); otherwise,

MFFDE (J 1) = span (J 1) cannot reach the upper

bound OPT (J). In this instance, span (J 1), which is

very close to or equal to OPT, dominates _(I=1)

mMFFDE (J i) (J).

2. If MFFDE (J 1) =span (J 1) is less than OPT, then (J).

We take the worst-case scenario into consideration

since it is for the upper bound (i.e., OPT(J) is not

dominated by MFFDE (J 1)). As shown in Figures 7.1

and 7.2, in the worst situation, span (I (i+1))3w (I i/g),

making it simple to verify that MFFDE (J 1) (3/g) w

(J m). Set ∆ 0 = ∆ (1 =) ∆ (2 =) ∆ 3, When jobs have

the identical process timings, MFFDE actually takes

into account the earlier start-time first, therefore

MFFDE (J 1) =span (J 1) = _ (0)-2, (3/g) w (J m) =

(3/g) w (J g) = (3/g) (g (0) + _0) = 3 (0) + (3 _ (0)/ g).

OPT(J) in this instance equals g (0) + g 0. Therefore,

when g is big, MFFDE (J 1) -(3/g) w (J m) = -2 0-(3

0/ g) is much smaller than OPT(J). We may deduce

MFFDE (J 1)- (3/g) w (J m) + (3/g) w(J) from Eq.

(7.7) as 3 OPT (J). Using Figure 7.2 as the worst

scenario, a tight upper bound is demonstrated in this

situation (which is shown in the next proof).

3. We may readily discover that MFFDE(J) is very near

to or equal to OPT for certain circumstances, such as

one-sided clique and clique cases [2,12]. (J).

Figure 2 Generalized instance for the proof of the upper bound of

MFFDE.

We have demonstrated Theorem 3 by integrating the

aforementioned three analyses.

Because we are aiming for the upper bound, a different,

simpler proof just takes the worst case into account. The

 International Journal of Computer Sciences and Engineering Vol.10(11), Nov 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 13

worst-case scenario for the FFD method is depicted in

Figure 7.1, as was mentioned in References [2,12]. Since

the MFFDE method takes into account the earliest start-

time first (ESTF) when two requests have the same

amount of processing time, we can simply verify that

MFFDE(J)= OPT(J). We further develop the MFFDE

algorithm's worst-case scenario and offer the following

evidence.

Proof
Table 1 Eight VM types in Amazon EC2

VM

Type

Compute

units

Memory

(GB)

Storage

(GB)

1-1(1) 1 1.875 211.25

1-2(2) 4 7.5 845

1-3(3) 8 15 1690

2-1(4) 6.5 17.1 422.5

2-2(5) 13 34.2 845

2-3(6) 26 68.4 1690

3-1(7) 5 1.7 422.5

3-2(8) 20 6.8 1690

Table 2 Three PM types for divisible configuration

PM

Type

CPU Memory

(GB)

Storage

(GB)

Pmin

(W)

Pmax

(W)

1 16 30 3380 210 300

2 52 136.8 3380 420 600

3 40 14 3380 350 500

Algorithm

We contrast the following three algorithms:

1. (FFD [2,12] assigns all VM requests to the first

available PM after first sorting them according to their

non-increasing process times;

2. The theoretical lower bound, known as the optimal

solution (OPT), is calculated by multiplying the total

of the minimum number of machines required over all

time slots by the duration of each slot. We consider

that all VMs completely utilize the requested capacity

(the worst case). The simulations are executed ten

times for each set of VM queries. The average of the

10 runs is used to calculate all the findings.

Simulation using real traces

We use the easily accessible Lawrence Livermore National

Lab Thunder log from the Parallel Workloads Archive

[27] to model incoming VM requests because there is a

lack of information from actual Cloud data centers

regarding the energy use of computing resources. The

Lawrence Livermore National Laboratory has a sizable

Linux cluster dubbed Thunder that is responsible for

gathering this log. We can extract pertinent information

from the log that is compatible with our problem model,

such as the request number, start-time, desired time, and

requested processor count. Because our simulation's time

slots are set at one minute, we convert seconds—the time

unit used in the log—to minutes. Additionally, we adjust

the quantity of processors required to fit the eight

categories of VM demands indicated in Table 7.2. We

perform the simulations with an adequate number of PMs

to allow for the successful allocation of all VM requests

without any rejections.

Figures 7.4–7.6 display, for the growing number of VM

requests, the total busy time (in minutes), total energy

usage (in kilowatt hours), and total simulation time (in

milliseconds) (from 1000 to 7000).

Figure 4 Total busy time (min) for increasing number of VM

requests.

Figure 5 Total energy consumption (kWh) for increasing number

of VM requests.

Figure 6 Total simulation time (ms) for increasing number of VM

requests.

 International Journal of Computer Sciences and Engineering Vol.10(11), Nov 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 14

Simulation with artificial data

Data center energy consumption evaluation: the total

busy time (in minutes) and total energy use (in kilowatt

hours), respectively, for the rising maximum duration (in

slots) of VM requests are shown in Figures 7.7 and 7.8.

(From 50 to 800). Results from the MFFDE are not more

than three times those from the best solution (OPT). This

supports our theoretical conclusions and findings

regarding overall energy use. All queries have exponential

service times and follow the Poisson arrival pattern. The

maximum intermediate interval between two arrivals is set

at 50 slots, the mean interarrival interval is set at 5, and the

maximum duration of requests is set at 50, 100, 200, 400,

and 800 slots, respectively. The total arrivals (VM

requests) are 1000, there are 125 requests for each sort of

VM, and there are 60 PMs (20 for each PM type). Each

slot lasts for 5 minutes. For instance, if a virtual machine

(VM) has 20 slots of requested time (service time), its real

time is 20 x 5 = 100 minutes.

Figure 7. Total busy time (min) for increasing maximum

duration (slots) of VM requests.

Figure 8 Total energy consumption (kWh) for increasing

maximum duration (slots) of VM requests.

V. CONCLUSION AND FUTURE SCOPE

The best-known bounds for multiple machine scheduling

are improved in this chapter. According to [2,12], there is

currently no polynomial time solution for the problem of

scheduling all jobs nonpreemptively inside their start-time-

end-time windows while reducing the overall busy time of

all machines under the constraints of machine capacity.

We put forth an approximation algorithm, the MFFDE,

which in the general case is a 3-approximation and is

nearly optimal in the special and average instances. The

MFFDE algorithm can be used to increase energy

efficiency in Cloud computing and other related fields.

The MFFDE algorithm is a solid approximation bound for

minimizing the maximum makespan while minimizing the

overall busy time because it combines aspects of the FFD

strategy (biggest process time first) and the ESTF

algorithm. The makespan will not be sacrificed in order to

reduce the overall busy time Approximation bound for

minimizing the maximum makespan while minimizing the

overall busy time because it combines aspects of the FFD

strategy (biggest process time first) and the ESTF

algorithm. The makespan will not be sacrificed in order to

reduce the overall busy time.

ACKNOWLEDGMENT

My acknowledgment is addressed to anyone who

contributes and gave the input and constructive

explanations on the improvements of the paper.

AUTHOR CONTRIBUTION

Sebagenzi Jason proposed and designed Energy Efficient

Offline Parallel Scheduling in Cloud Computing by

Reducing Total Busy Time added to the existing

techniques for power management in cloud computing.

REFERENCES

[1]. Hoogeveen JA, van de Velde SL, Veltman B. Complexity of

scheduling multiprocessor tasks with prespecified processor

allocations. Discrete Appl Math. Vol.55, Issue.3, pp.259–272,

1994.
[2]. Khandekar R, Schieber B, Shachnai H, Tamir T. Minimizing

busy time in multiple machine real-time

scheduling. Proceedings of IARCS annual conference on

foundations of software technology and theoretical computer

science (FSTTCS 2010). Chennai, India: LIPIcs, Schloss

Dagstuhl—Leibniz-Zentrum fuer Informatik; Vol.8, pp.169–

180, 2010.

[3]. Brucker P. Scheduling algorithms 5th ed. Berlin, Heidelberg,

New York: Springer; 2007.

[4]. Beloglazov A, Buyya R, Lee YC, Zomaya AY. A taxonomy

and survey of energy-efficient data centers and Cloud

computing systems. Adv Comput. Vol.82, pp.47–111, 2011.

[5]. Jing SY, Ali S, She K, Zhong Y. State-of-the-art research study

for green Cloud computing. J Supercomput, pp.1–24, 2011.

[6]. Graham RL. Bounds on multiprocessing timing

anomalies. SIAM J Appl Math., Vol.17, Issue.2, pp.416–429,

1969.
[7]. Kleinberg JM, Tardos E. Algorithm design Boston, MA:

Addison-Wesley: Pearson Education, Inc.; 2006.

[8]. Kovalyov MY, Ng CT, Cheng TCE. Fixed intervals scheduling:

models, applications, computational complexity and

 International Journal of Computer Sciences and Engineering Vol.10(11), Nov 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 15

algorithms. Eur J Oper Res., Vol.178, Issue.2, pp.331–342,

2007.
[9]. Beloglazov A, Abawajy JH, Buyya R. Energy-aware resource

allocation heuristics for efficient management of data centers

for Cloud computing. Future Gen Comput Syst. Vol.28, Issue.5,

pp.755–768, 2012.

[10]. Winkler P, Zhang L. Wavelength assignment generalized

interval graph coloring. Proceedings of fourteenth annual

ACM-SIAM symposium on discrete algorithms (SODA

2003) Baltimore, MD: ACM/SIAM; pp.830–831, 2003.

[11]. Flammini M, Monaco G, Moscardelli L, et al. Minimizing total

busy time in parallel scheduling with application to optical

networks. Theor Comput Sci., Vol.411, Issue.40–42, pp.3553–

3562, 2010.

[12]. Kolen AW, Lenstra JK, Papadimitriou CH, Spieksma FC.

Interval scheduling: a survey. Nav Res Log., Vol.54, Issue.5,

pp.530–543, 2007.

[13]. Srikantaiah S, Kansal A, Zhao F. Energy aware consolidation

for Cloud computing. Proceedings of USENIX workshop on

power aware computing and systems (HotPower 2008) San

Diego, CA: USENIX; pp.10–14, 2008.

[14]. Lee YC, Zomaya AY. Energy efficient utilization of resources

in Cloud computing systems. J Supercomput. Vol.60, Issue.2,

pp.268–280, 2012.

[15]. Liu H, Xu C, Jin H, Gong J, Liao X. Performance and energy

modeling for live migration of virtual machines, the 20th

international symposium on high performance distributed

computing. pp.171–182, 2011.

[16]. Kim KH, Beloglazov A, Buyya R. Power-aware provisioning of

virtual machines for real-time Cloud services. Concurr Comput

Pract Exp. Vol.23, Issue.13, pp.1491–1505, 2011.

[17]. Mathew V, Sitaraman RK, Shenoy PJ. Energy-aware load

balancing in content delivery networks. Proceedings of IEEE

INFOCOM Orlando, FL: IEEE; pp.954–962, 2012.

[18]. Rao L, Liu X, Xie L, Liu W. Minimizing electricity cost:

optimization of distributed internet data centers in a multi-

electricity-market environment. Proceedings of IEEE

INFOCOM 2010 San Diego, CA: IEEE; pp.1145–1153, 2010.

[19]. Lin M, Wierman A, Andrew LLH, Thereska E. Dynamic right-

sizing for power-proportional data centers. Proceedings of

IEEE INFOCOM 2011 Shanghai, China: IEEE; pp.1098–1106,

2011.
[20]. Mertzios GB, Shalom M, Voloshin A, Wong PWH, Zaks

S. Optimizing busy time on parallel machines. Proceedings of

IPDPS Shanghai, China: IEEE; pp.238–248, 2012.

AUTHOR PROFILES

Sebagenzi Jason pursed Bachelor of

science from Adventist University of

Central Africa (AUCA-Rwanda), and

Master of Science in information

Technology from Jain University

(India) in year 2021. He is currently

Ph.D. In computer science major in

cloud computing from Jain University
(India) and the Dean of Information Technology Faculty.

