

 © 2022, IJCSE All Rights Reserved 9

International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol. 10, Issue.8, August 2022 E-ISSN: 2347-2693

Migration Architecture Monolithic to Microservice on Information

Technology Consultant Company

Lutfi Ardiansyah

1*
, Yuli Karyanti

2

1,2

Dept. of Computer Science and Information Technology, Gunadarma University, Depok, Indonesia

*Corresponding Author: lutfi_ardiansyah@ymail.com, Tel.: +62-81281-22136-2

 DOI: https://doi.org/10.26438/ijcse/v10i8.914 | Available online at: www.ijcseonline.org

Received: 23/Jul/2022, Accepted: 08/Aug/2022, Published: 31/Aug/2022

Abstract— This research aims to migrate the architecture from a monolithic to a microservices architecture on applications

that were originally built with a monolithic architecture by an IT consulting firm. The goal is to migrate from monolithic

architecture to microservices architecture to overcome problems that occur in applications with monolithic architectural

designs that have been delivered to clients by an IT consulting company to improve customer satisfaction by improving the

quality of the application. Microservices is one of the most popular architectural styles today. It is an independent, usable

service modeled around a business domain. The advantages of using a microservices architecture in developing systems

are flexibility and system maintenance. One method that is widely used in system migration is the Strangler Fig

Application. There are 3 main stages: 1. Identifying assets to be relocated; 2. transferring assets; and 3. rerouting relocated

assets. The migration results in a monolithic architecture totaling 2491 records consisting of 87 columns taking 2 hours 59

minutes 18 seconds or 1 data point for 4.3 seconds and heap memory of 99.0 percent, while the microservices architecture

with an increase in data of 384 records takes 1 minute 33 seconds or 1 data point for 0.03 seconds and heap memory of

12.8 percent after implementation of the new architecture.

Keywords— Microservices, Monolithic, Migration System, Strangler Fig Application

I. INTRODUCTION

This research aims to migrate the architecture from a

monolithic to a microservices architecture on applications

that were originally built with a monolithic architecture by

an IT consulting firm. The goal is to migrate from

monolithic architecture to microservices architecture to

overcome problems that occur in applications with

monolithic architectural designs that have been delivered

to clients by an IT consulting company to improve

customer satisfaction by improving the quality of the

application.

Like many older enterprise applications, the FTGO

application is a monolith, consisting of a single Java Web

Application Archive (WAR) file. Over the years, this has

become a large and complex application. Despite the best

efforts of the FTGO development team, it became an

example of the Big Ball of Mud pattern. Software delivery

speed has slowed down. Worse still, the FTGO app has

been written using some increasingly outdated

frameworks. The FTGO app shows all the symptoms of a

monolithic hell [1].

This architectural migration is carried out on one of the

applications for project management that were developed

using the Java framework, namely Java Spring, with a

monolithic architecture and problems that occur when

uploading data. The main problems are the decline in

performance when uploading as data grows and problems

when there are data upload activities in the task module

and project. Memory usage will be high, other modules

affected will be slow, and worst of all, the application

cannot be accessed at all.

Usually, the response time should be as fast as possible,

but it's also possible that the computer reacts so quickly

that the user cannot keep up with the feedback. For

example, a scrolling list can move so fast that the user

cannot stop it in time to keep the desired element within

the available window. 0.1 seconds is the limit for making

the user feel that the system reacts instantly, meaning that

no special feedback is required except to display the results

[2].

Microservices are independently usable services modeled

around a business domain. They communicate with each

other over the network, and as an architectural choice,

offer many options for solving any problems you may

encounter. Therefore, the microservices architecture is

based on several collaborating microservices. Migration

was carried out using the Strangler Fig Application

technique. A technique that is often used when rewriting a

system is called "strangler fig application" [3].

II. RELATED WORK

Application of Microservice Architecture in the

Management System of Pos Indonesia Polytechnic Project

Courses by Mohammad Harry Khomas Saputra and Luthfi

 International Journal of Computer Sciences and Engineering Vol.10(8), Aug 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 10

Muhammad Nabil. The problems in this research are the

slow process of system development and handling of

damage, and the difficulty of the development process and

handling of system errors by the development team. The

purpose of this research is to make an information system

easier to break down into several parts and to make it

easier for developers to develop information systems by

separating the components of the application. The result of

this research is that the effect produced when developing a

system on a microservice architecture is less disturbing to

other systems when developing to reduce the scope of

development [4].

Refactoring Microservice Architecture on PT. Graha

Usaha Teknik Attendance Application by Rizki Mufrizal

and Dina Indarti. The problem with this research is the

difficulty of the application maintenance process, the

application performance is decreasing, and the update

process is getting more difficult. The purpose of this

research is to solve the existing problems. The results of

this research are based on the results of software testing

using a load test. Microservices architecture can be more

optimal than monolithic architecture [5].

Implementation of Microservices Architecture on E-

Commerce Web Service by Juan Andrew Suthendra, and

Magdalena Ariance Ineke Pakereng. The problem with this

research is that the monolithic architecture of the

application is more complex and larger, and if one part of

the code is changed, it will affect other parts of the code.

The result of this research is to use microservices

architecture in developing easier system flexibility and

maintenance. System performance can also be maximized

because it can be built using different programming

languages and databases. Service changes and

improvements will not affect the work of other services if

they are independent of each other. This is important

because business processes will continue to evolve, and

systems must adapt to changes [6].

Microservices and It's Applications : An Overview by

Nupura Torvekar, and Pravin S. Game. The problem with

this research is that traditional monolithic architecture was

built as a single unit, which was difficult to scale and was

not suitable for the development of complex processes.

The purpose of this research is to get a pattern that is

strong, flexible, and reliable. The result of this research is

that the comparative analysis provided can help the readers

in the identification of the contribution and an overall view

of the utilization of this pattern for further studies. This

work can be further enhanced by implementing the micro

services for their real-time use cases and analyzing their

performance [7].

eGovernment Integration Framework for Fragmented

Systems by Sameer S. Paradkar. The problem with this

research is interoperability for further development in

eGovernment. The purpose of this research is to solve the

problem of interoperability. It is resolved during the

system design stage by leveraging service orientation, i.e.,

microservices and API. The result of this research is the

proposed framework that delivers several eServices to the

government, citizens, and business communities [8].

III. METHODOLOGY

Figure 1. Flowchart of research methodology stages

Figure 1 shows the stages used in this research. consisting

of 9 steps, 3 of which are designs from the Strangler Fig

Application and 7 of which are migratory stages.

A. Analysis System

To find out what problems exist in the current monolithic

architecture, in this research there are 3 problems, namely:

 When there is one module that is experiencing

interference, it will have an impact on other

modules causing it to be unable to access.

 The existing code will be more complicated and

difficult as the existing features increase.

 International Journal of Computer Sciences and Engineering Vol.10(8), Aug 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 11

 Decreased data upload performance as the

application size increases.

B. Data Collection

This stage is used to collect the data needed in the research.

In this research, the data collected is a list of modules that

exist in the monolithic application.

Table 1. List modules

No. Label Name

1. Action Logs action_logs

2. Activity activity

3. Activity Logs activity_logs

4. Administration Logs administration_logs

5. Approval Task approval_task

6. Assignee assignee

7. Async Managers async_managers

8. Attachment attachment

9. Branchs branchs

10. Comment comments

11. Company company

12. Configs ref_email_list

13. Cron Configurations cron_configurations

14. Cron Logs cron_logs

15. Dashboard dashboard

16. Dashboard Executive executive_dashboard

17. Data Permissions record_role

18. Demo demo

19. Document Category category_document

20. Documents documents

21. Flow flow

22. Form form

23. Generate Numbers generate_number

24. Geographic geographic

25. Groups groups

26. Home home

27. Http Request Logs http_request_logs

28. Iframe iframe

29. Integrate System Integrate_system

30. Kanban kanban

31. Kota kota

32. Locations locations

33. Logging File logging_file

34. LogSummary log_summary

35. Maps maps

36. Maps Layers maps_layer

37. Master Data master_data

38. Member member

39. Member Assignee member_assignee

40. Menus menus

41. Module Permissions module_permissions

42. Modules modules

43. Notifications notifications

44. Outboxs mail_outbox

45. Project project

46. Project Category project_category

47. Project Detail project_detail

48. Report Project report_project

No. Label Name

49. report_detail report_detail

50. Sent Items mail_sentitem

51. Settings settings

52. Status status

53. Sub Branchs sub_branchs

54. Sub Wilayah sub_wilayah

55. Task task

56. Task Detail task_detail

57. Task Progress task_progress

58. Templates ref_template

59. Todo todo

60. Users users

61. Wilayah wilayah

62. Workspace workspace

63. Workspace Member workspace_member

64. Workspace Panel workspace_panel

C. Analysis Current System

Figure 2. Design architecture monolithic

This stage has entered the stage of system migration, at this

stage the aim is to find out an overview of the running

system and as a basic reference for building microservices

architecture in determining what tools will be used. In this

monolithic architecture, this application has a general

design as shown in Figure 2. when the user accesses the

application, it will be directed directly to a java service,

and from the java application it will access the data in the

database.

D. Identification Asset Current System

Modules are identified on the running system by querying

directly to the module table in the database, which is

obtained during the data collection stage. The purpose of

this stage is so that no module is missed or left behind

when determining which module to move.

E. Identify Asset to Move

After identifying the existing modules on the running

system, the next step is to identify which modules will be

moved. The determination of which modules will be

moved in the case of this application is based on the

problems that occur, namely the existence of activities that

make the system inaccessible. To find out what activities

cause the system to be inaccessible, monitoring is carried

out on the server monitoring dashboard. In addition, the

determination of which module will be moved is also

based on the slowing performance of the module. To see

which performance begins to slow down, it can be seen

from the length of time it takes to upload several data on

the module.

 International Journal of Computer Sciences and Engineering Vol.10(8), Aug 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 12

Figure 3. Memory consumption when uploading project

Figure 3 is the condition of the server when there is an

upload project, which causes the server heap memory to be

99.0% and causes the application to be inaccessible.

Table 2. Detail data upload project

No. Name Description

1. Columns 87

2. Records 2491

3. Start Time 14:57:39

4. End Time 17:56:57

5. Total Time 10758 seconds

6. Record / s 1 record / 4.3 second

Table 2 is detail data of proses upload project totalling

2491 records consisting of 87 columns taking 10758

seconds or 1 data for 4.3 second.

Based on this problem, there are 2 modules to be moved.

The first is the project module (project, project_category,

project_detail) and the second is the task module (task,

task_detail).

Table 3. List of modules to be moved

No. Label Name

1. Project project

2. Project Category project_category

3. Project Detail project_detail

4. Task task

5. Task Detail task_detail

F. Move Asset

In this research, the transfer from the current system to the

new system requires adjustments first. The transfer of this

module is done by creating a new project and moving

some of the required source code to the module, because

there are additional supporting tools, namely Rabbit MQ as

a broker that will be used for communication between

services to make it easier. During the module move, some

new source code was added for the Rabbit MQ

configuration.

G. Redirect Calls

After moving the specified modules, the next step is to

reroute the split services. This project uses an additional

tool, namely Rabbit MQ, to be able to communicate with

each other between main services and other services.

There is an additional RabbitMQ supporting library as a

message broker with the aim of minimizing memory usage

by utilizing the queuing system features of RabbitMQ and

as routing services to communicate using the channel

features available RabbitMQ.

Figure 4. RabbitMQ work queue

P = Producer

Cn = Consumer (n).

Figure 4 shows the flow of the process in the RabbitMQ

queuing system. P send a message to the channel, the first

incoming process will be processed first on the channel by

the C on the channel. The next process will be carried out

by the consumer until the previous process has been

completed.

H. Software Testing

The next stage is software testing. Testing is carried out to

ensure the modules on the new system are running well

and there are no errors. Testing is done by doing the same

thing with the running system by doing data upload

activities.

I. Monitoring and Evaluation

The next and final stage is the monitoring and evaluation

stage. After testing the software on the new architecture,

monitoring is carried out on the new architecture, for

monitoring the performance of the new system.

IV. RESULTS AND DISCUSSION

A. Arsitektur New System

Figure 5. Design architecture new system

Figure 5. is a new design with a microservices architecture.

In this microservices architecture design, the migration is

done at the backend level of Java Spring Boot. The

implementation of database as a service is not carried out

because the problem occurs at the backend level of Java

Spring Boot because the heap memory is based on server

monitoring.

 International Journal of Computer Sciences and Engineering Vol.10(8), Aug 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 13

Services are divided into 3 (Main Services, Project

Services, and Task Services). Communication between

services is done using RabbitMQ. When the user uploads

project or task data, it will first go through the server and

then to the main services. From the main services, the

process will be forwarded by sending a message to

RabbitMQ. After the message is sent by Main Services,

project services, or task services as consumers, will run the

process.

With this architectural design, when there is a problem or

excessive memory usage in a project or task module, it will

not interfere with the main services or applications because

they are in separate services. so that the application can run

normally and only project or task modules cannot run.

B. Performance Upload Result

Table 4. Detail data upload project architecture

microservices

No. Name Description

1. Columns 87

2. Records 2875

3. Start Time 14:44:19

4. End Time 14:45:54

5. Total Time 93 seconds

6. Record / s 1 record / 0.03 second

Table 4. is the result of the upload process to the module

project after moving to the microservices architecture

design. The data used is the same data as the system on the

monolithic architecture, as many as 87 columns, because

there is a time lag between the uploads of the data module

project and the upload of the data module project on the

microservices architecture. There is an increase in data by

384 records, so the total data that will be uploaded during

the microservices architecture is 2875 records. Although

there is an increase in data when uploading on the

microservices architectural design, the performance shows

better results with a total time required of 93 seconds, or 1

record for 0.03 seconds.

C. Memory Consumption

Figure 6. Memory consumption architecture microservices

When software testing is carried out on services that have

been separated from main services, monitoring is carried

out on servers with a microservices architecture. Based on

this monitoring, it was observed that memory consumption

was at 12.8 percent, and in the last 30 days, after the

migration to the microservices architectural design, it was

monitored to be safe and stable.

V. CONCLUSION AND FUTURE SCOPE

Based on the results of the research, it can be concluded

that the migration process from monolithic architecture to

microservices architecture based on the stages of the

Strangler Fig Application method can be carried out for the

system migration process from monolithic to microservices.

And by solving problems that exist in applications with a

monolithic architectural design, an IT consultant can

overcome the decline in application performance as data

increases and the development of the application causes the

page to be unable to access when the load is high. From the

upload time, which previously took 10758 seconds with

2491 records, became faster with a total time of 93 seconds

with the addition of 384 records for a total of 2875 records

and more optimal memory usage.

In this research, the tools used are limited based on the

problems that exist in the application with the monolithic

architectural design. Suggestions for further research can be

migrated with more complete tools such as the application

of API gateway, services discovery, database as a service to

get maximum performance and results.

REFERENCES

[1] Chris Richardson, Microservices Patterns With Examples in

Java. Shelter Island, NY: Manning Publications Co., 2019.

[2] Jakob Nielsen, Usability Engineering. California: Elsevier,

1993. doi: 10.1016/C2009-0-21512-1.

[3] Sam Newman, Monolith to Microservices Evolutionary Patterns

to Transform Your Monolith, Second Edition. Gravenstein

Highway North: O’Reilly Media, Inc., 2020.

[4] Mohammad Harry Khomas Saputra and Luthfi Muhammad

Nabil, “PENERAPAN ARSITEKTUR MICROSERVICE

PADA SISTEM TATA KELOLA MATAKULIAH PROYEK

POLITEKNIK POS INDONESIA,” Teknik Informatika, vol.

13, no. 3, pp. 22–28, Aug. 2021, Accessed: Aug. 1, 2022.

[Online]. Available:

https://ejurnal.poltekpos.ac.id/index.php/informatika/article/vie

w/1667

[5] R. Mufrizal and D. Indarti, “Refactoring Arsitektur

Microservice Pada Aplikasi Absensi PT. Graha Usaha Teknik,”

Jurnal Nasional Teknologi dan Sistem Informasi, vol. 5, no. 1,

pp. 57–68, Apr. 2019, doi: 10.25077/TEKNOSI.v5i1.2019.57-

68.

[6] J. A. Suthendra and M. A. I. Pakereng, “Implementation of

Microservices Architecture on E-Commerce Web Service,”

ComTech: Computer, Mathematics and Engineering

Applications, vol. 11, no. 2, pp. 89–95, Dec. 2020, doi:

10.21512/comtech.v11i2.6453.

[7] N. Torvekar and P. S. Game, “Microservices and Its

Applications An Overview,” International Journal of Computer

Sciences and Engineering, vol. 7, no. 4, pp. 803–809, Apr.

2019, doi: 10.26438/ijcse/v7i4.803809.

[8] S. S. Paradkar, “eGovernment Integration Framework for

Fragmented Systems,” International Journal of Computer

Sciences and Engineering, vol. 9, no. 1, pp. 51–55, Jan. 2021,

doi: 10.26438/ijcse/v9i1.5155.

 International Journal of Computer Sciences and Engineering Vol.10(8), Aug 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 14

AUTHORS PROFILE

Mr. Lutfi Ardiansyah Completed his

Bachelor of Information Systems from

Gunadarma University, Indonesia in

2017. Currently working at Information

Technologi Company as Software

Engineer. His focusing on development

product and starter pack back end java

framework..

Mrs. Yuli Karyanti Currently Working

as lecturer at the Faculty of Information

Technology at Gunadarma University

and as the person in charge of the UPT

Gunadarma University.

