

 © 2018, IJCSE All Rights Reserved 1129

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-7, July 2018 E-ISSN: 2347-2693

Implementation of Validation of Requirements in Agent Development by

Means of Ontology

G. K. Shankhdhar

1*
, M. Darbari

2

1
Dep. of Computer Application, Babu Banarasi Das University, Lucknow, India

2
Dep. of IT, Babu Banarasi Das National Institute of Technology and Management, Lucknow, India

*Corresponding Author: g.kant.82@gmail.com , Tel.: +91-9792681898

Available online at: www.ijcseonline.org

Accepted: 10/Jul/2018, Published: 31/Jul/2018

Abstract— One significant limitation in Multi-Agent Systems development methodologies is lack of proper requirements

validation. The authors have tried to implement requirement validation in Multi-Agent Systems using ontologies.

Organizational Multi-Agent Systems Engineering is used as the agent development methodology. The aim of this paper is to

include an appropriate method for validation of the requirements in Multi-Agent System development. In addition to working

as a knowledge base, the authors in this paper have used ontologies to support requirements validation. Requirements

validation is performed through rules that ascend from requirements and enforcement of these rules is done through a formal

language, Semantic Web Rule Language. Genomic Information Retrieval is taken as case study. The Java Agent Development

Environment (JADE) framework is used along with the Protégé 5.2.0 for ontology development. Apache Jena API, OWLAPI

and SWRLAPI are used for implementation of the Multi-Agent System.

Keywords— Multi- Agent System, Protégé, Jena, JADE, OWLAPI, SWRLAPI, agent communication, OWL, RDF

I. INTRODUCTION

The requirements must be put formally as properties in

ontology. These formalized requirements called ‘Rules’ are

executed by the reasoner to allow ontology to be debugged

and unsatisfiable concepts and axioms are highlighted. The

ontology is designed in Protégé 5.2.0. Jena API along with

OWL API and SWRL API is used to interact with the

ontology, named ‘DNAONT’. The whole process is

maneuvered programmatically in Java with Eclipse 4.5.2.

SWRL, Semantic Web Rule Language is used for framing

requirements in a formal specification, called Rules. These

rules form the basis of ontology debugging by the reasoner.

The paper is organized as follows, Section I contains the

introduction of requirements validation, Section II contains

the related work concerned with development of MAS done

recently, Section III contains the detailed MAS development

process for GIRS, Genomic Information Retrieval System,

Section IV contains the detailed discussion on requirement

validation and section V brings the conclusion of research

work with future directions.

II. RELATED WORK

A. Requirements Validation in MAS

During requirement specification process of software

development activities, many existing systems or business

process requirements are captured using natural language or

specialized tools such as UML (Unified Modelling

Language) or MAS (Multi-Agent System) Methodology

specific tools like AT
3
 (Agent Toolkit 3)[1]. However, the

capturing of informal requirements into formalized properties

using an ontology as a knowledge base has not been taken

into attention by software developers due to time and budget

constraints. It is critical for the informally captured

requirements to be formally specified as Rules or Policies in

order to perform requirement validation.

Reference [2] advocates unification of best of breed activities

from existing MAS methodologies. It proposes an alternative

approach that focusses on the use of domain knowledge

through ontologies as offering the best potential for unifying

access to them.

B O-MaSE and Recent Agent Development Methodologies:

O-MaSE (Organizational Multi-Agent Systems Engineering)

is selected as MAS Methodology due to its ‘organizational

meta model’ using method fragments and guidelines. These

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1130

three elements form the layers that can be used and

developed independent of each other. The method fragments

can be reused in a different scenario posed by an

organization and in concomitance with the guidelines. The

Requirement Analysis and Design phase are

diagrammatically shown in figures 1 and 2.

Figure 1. Requirement Analysis Phase in O-MaSE

Figure 2. Design Phase in O-MaSE

C Multi-Agent Development Frameworks

Tools for Ontology development and integration with MAS

are centered on APIs built for agent communication. Full-

fledged architecture frameworks are distributed that had the

capability for complete design of multi-agent systems.

DECAF (Distributed, Environment Centered Agent

Framework)[3] and JADE (Java Agent Development

Environment)[4] are two of the best known architectures.

These frameworks provide services for inter agent

communication, planning, monitoring and co-ordination. The

architecture simulates operating system type services with

addition of learning and self diagnosis. The revelation of ad

hoc versions of JADE through the LEAP project enables

deploying of JADE agents seamlessly on various Java-based

environments such as Android devices and J2ME-CLDC

MIDP 1.0 devices and even partially connected NAT, IP

address changes and firewalls. Other contributions in MAS

architectures are TAEMS, RETSINA[5] and EMERALD[6].

D Ontological Support to MAS

The word ontology was taken from philosophy where it

means “study of the nature of being”. The most common

definitions state that an ontology is a specification of a

conceptualization [7] or that an ontology is the shared

understanding of some domain of interest. Ontologies

provide domain representation for multi-agent systems. It

defines everything comprehensively in the domain. An

ontology contains classification, properties, objects, literals

and most importantly relationships between individual

elements. Ontology provides the vocabulary for the messages

passed between communicating agents. It specifies meaning

to agent communication. This makes it easy to combine and

add heterogeneous agents at runtime in order to function

together even if they are unknown to their peers.

The ontological support in the multi agent system proffers

reasoning. XML provides syntax. RDF(S), Resource

Description Framework provides basic relational language

and simple ontological primitives. OWL, web Ontology

Language offers powerful decidability in an ontology

language. But SWRL, Semantic Web Rule Language

combining OWL and RuleML extends OWL. SQWRL

(Semantic Query-Enhanced Web Rule Language) is used to

query the Ontology. As SPARQL works over RDF, SQWRL

works over OWL Ontologies.

In this implementation of MAS, Protégé 5.2.0 is used as an

ontology design toolkit.

E DNA Sequencing

As a case study for implementing inter-agent

communication, DNA pattern search in existing varied and

heterogeneous Genome Repositories is chosen.

From the viewpoint of a computer science researcher the

important concerns regarding sequencing a DNA are:

The Genome contains the DNA and the whole genetic

structure. This genetic structure keeps the complete

information necessary for an organism to live its life. This

genetic material is similar in many organisms. Biologists and

Life Science’s experts sequence DNA in the form of

sequences of four characters, A, C, T and G. This is done in

order to represent a DNA programmatically. A DNA

structure is made up of the combinations of these four

elements:

1. Thymine (T)

2. Cytosine (C)

3. Guanine (G)

4. Adenine (A)

Since the DNA of an organism is similar to other organisms,

conditions arise when Biologists look for similarity in DNAs

like in areas like Pharmacy. There are requirements when a

particular extract of a DNA has to be searched in disparate

and heterogeneous data sources ranging from plain text files

to plethora of databases acting as repositories of fully

sequenced DNAs. The full discussion on DNA Sequencing is

out of the scope of this paper. As a researcher, my quest

deals only with inter-agent communication focusing

validated policies and conflict detection and resolution in

agents.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1131

III. MULTI-AGENT SYSTEM DEVELOPMENT THROUGH

O-MASE

A Requirements Gathering and Problem Analysis

The various phases of MAS development are necessary to

understand in order to know the various artifacts produced

during these phases. These artifacts are used to build

ontology. The GIRS analysis diagrams like Goal diagram,

Role Diagram, Agent diagram, Interaction diagram showing

message exchange between agents and the State or Plan

diagram are comprehensively discussed in [7]. Goal diagram

being the most elementary is shown below. In the first phase

of agent development the requirements of the end user are

thoroughly investigated and studied. The requirements are

the basis on which the organization policies are framed. They

provide the exaction of operation by the agents. These

policies have to be compulsorily adhered by the agents. In

later sections we will see how these policies are validated

through SWRL rules and ontological reasoning. This phase

involves three basic activities: Model Goals, Refine Goals

and Model Domain. The requirements are first

compartmentalized into goals that the system will achieve

with the most general goal at the top and successive sub

goals down the goal hierarchy. This process is completed

with a goal model for dynamic systems (GMoDS). Modeling

a domain captures the object types, relationships and agent

behaviors in the environment the agents will perceive and

act. The GMoDS for the GIRS is shown in figure 3. Agent

Tool3 (AT
3
) distributed as a Java plug in is used for the

construction of all work products created in O-MaSE.

The GIRS requirements can be quantized and enumerated as:

R1. Accept a DNA Pattern of a fixed character maximum

length (usually 1024) that has to be searched over the

internet.

R2. The DNA Pattern that has to be searched must only

contain ‘A’, ’C’, ‘T’ and ‘G’ as character set.

R3. The break-up size of a DNA Pattern should be 20

characters.

R4. No special characters and white spaces are allowed.

R5. The searched results along with the annotation and web

links to resources should be returned to the user.

R6 Total time from query submission to result display can

be maximum 3.2 seconds

These requirements are transformed into GMoDS as depicted

in the figure below.

Figure 3. Goal Model for GIRS in O-MaSE

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1132

B Solution Analysis

This phase comprises of Modeling Roles and Defining Roles.

In this, Roles on the basis of the Goals are identified. The

GMoDS acts as input to this phase, resulting into well

defined Roles.

C Architecture Design

Architecture Design deals with modeling agent classes,

protocols and policies. Agent classes are obtained by Role

Model. Roles, if necessary are combined for similar

functionality to Agent capabilities. The agents in GIRS are

derived from the role model to produce Agent Diagram. The

sequence of inter agent communication through messages

results in the Protocol Model[7]. Administrator launches the

Initiator Agent that starts the UI Agent and the Wrapper

Agent by reading the startup configuration file. The

Facilitator Agent and the Router Agent as part of the FIPA

(Foundation for Intelligent Physical Agents) are handled by

the JADE Architecture for orchestrating the agent

communication process. The user wanting to search a

particular DNA pattern over the internet has to supply the

search pattern to the UI Agent. The UI Agent with the help

of DROOLS reasoner through JAVA’s Jena Package checks

and validates all the policies derived from the requirements,

discussed shortly.

The search pattern received by the UI Agent is in the form of

‘A’, ‘C’, ‘T’ and ‘G’ characters and has maximum size of

1024 characters e.g., “ACTTTTGTGTCAAAC”. The UI

Agent forwards the search pattern to the Wrapper Agent. The

Wrapper Agent checks if a similar search pattern has recently

been searched, otherwise utilizing the Mapping Information

routes the search pattern to different subscribed data

sources[8]. The Source Agents are responsible for

maintaining XML files of their respective databases. The

XML files hold the annotation details of the organisms like

origin, classification, version and description. When a match

occurs, the annotation details are returned to the UI Agent

and the Mapping Information is updated. GIRS Architecture

is shown in figure 4.

As part of the Architecture Design, policies stating the rules

that the agents must adhere to, are also derived. Some

policies or rules through requirements stated in GIRS can be

stated as:

P1: ONLY A, C, T, or G characters can be used to represent

a DNA Pattern.

P2: The search string cannot contain white spaces, hyphens

or any special character or numbers.

P3: Max Length of a search pattern can be set but assumed to

be 1024 chars.

P4: Break-up size of search pattern can be set but assumed to

be 20 chars.

P5: Patterns not conforming to P1, P2, P3 and P4 will be

immediately discarded.

P6: Total time from query submission to result display can

be maximum 3.2 seconds.

P7: Queries failing to meet P6 will be held for resubmission.

D. Low Level Design

Low level design deals with the states through which the

agent undergoes. This is pictorially represented by Finite

State Machine (FSM) also called a Plan Model [9]. This

automaton logically proofs the existence and functionality of

the agents.

Figure 4. The GIRS architecture with Requirement Validation

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1133

IV. VALIDATION OF REQUIREMENTS

The implementation of the GIRS is developed in Java with

Eclipse 4.5.2 incorporating Jena API, JADE, OWLAPI and

SWRLAPI. Specifically OWLAPI and SWRLAPI are used

to define rules and reason the ontology named DNAONT[10]

shown in figure 5 which along with the knowledge base

holds the constraints in the form of rules that are associated

with agents in order to work within the domain of the

organizations and abide to the policies framed by the

organization. At the beginning of the MAS development

process, the DNAONT ontology has a basic set of Classes,

Properties, Individuals and SWRL Rules [11, 12].

As the architectural and low level design of a MAS

progresses, UML/AT
3
 diagrams are created carrying formal

information of the fulfilled requirements by the system in

design. These requirements need to be validated [13].

Now an ontology will be generated based upon the diagrams

using UML to OWL generator. Since the basic DNAONT

and the ontology generated by UML/AT
3
 toolkit have the

same structure and knowledge-base architecture, they are

merged.

After merging the two ontologies, the DROOLS reasoner

infers the Axioms in Protege which will then list all possible

errors and we can use this information to make corrections to

the model [14]. This is done programmatically using

SWRLAPI with minimal user intervention.

The policies P1 and P2, discussed here, are specified and

enforced by the formal language, SWRL. The rule can be

stated as:

“PatternContent(?p) ^ has_dna_pattern(?p, ?pt) ^

swrlb:matches(?pt, "[ACTG]*") ^ Length(?pt) ^

swrlb:lessThan(?pt, 20) -> ver_pat(?p, ?pt) ^

VerifiedDNAPattern(?p)”

After execution of the rules, the verified DNA patterns

become instances of the class VerifiedDNAPattern with the

property ver_pat set. This scenario is shown in tables 1 and

2. Initially all the four individuals belong to the class

PatternContent and have has_dna_pattern property set.

Individual named ‘Platypus’ and ‘Red_Ant’ do not qualify

for validation because the former is not 20 characters in

length and the later contains ‘S’ character which does not

occur in the set {‘A’,’C’,’T’,’G’} [15, 16]. But when the

SWRL rule in our example is executed by the Drools Rule

Engine, the patterns conforming to the rule then become

objects of VerifiedDNAPattern class and also have their

ver_pat property set. An extract of the DNAONT ontology

representing the above scenario is shown in Figure 5.

The code for the inference by the Rule Engine is given

below:

OWLOntologyManager ontologyManager =

OWLManager.createOWLOntologyManager();

 org.semanticweb.owlapi.model.OWLOntology ontology

= ontologyManager.loadOntologyFromOntologyDocument (new

File("D:/ONT/DNA_ONT/DNAONT.owl"));

// Create a SWRL rule engine using the SWRLAPI

org.swrlapi.core.SWRLRuleEngine swrlRuleEngine =

SWRLAPIFactory.createSWRLRuleEngine(ontology);

Set<SWRLAPIRule> sets = swrlRuleEngine.getSWRLRules();

for(SWRLAPIRule item : sets){

 System.out.println(item.toString());

 }

swrlRuleEngine.infer();

swrlRuleEngine.exportInferredOWLAxioms();

ontology.saveOntology();

System.out.println("DNAONT Ontology Saved To Disk after

successful DROOL Reasoner’s Inference. Now all Rules are

validated and only the validated rules have their ver_pat property

set and they become the member of VerifiedDNAPattern Class");

Figure 5. DNAONT Ontology built in Protégé 5.2.0

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1134

Table 1. Axioms before Rule Engine Inference

Class Property Individual Value

PatternContent has_dna_pattern Chimp CGCGTACTGTACTGCCGAAT

PatternContent has_dna_pattern Beetel AACCTTGGGGAACCTTCCTT

PatternContent has_dna_pattern Platypus CGCGTACTGTACTGCCGAA

PatternContent has_dna_pattern Red_ant CGCGTACTGTACTGCCGASA

Table 2. Axioms after Rule Engine Inference with validated Individuals having ver_pat property and VerifiedDNAPattern Class set

Class Property Individual Value

PatternContent, VerifiedDNAPattern has_dna_pattern, ver_pat Chimp CGCGTACTGTACTGCCGAAT

PatternContent, VerifiedDNAPattern has_dna_pattern, ver_pat Beetel AACCTTGGGGAACCTTCCTT

PatternContent has_dna_pattern Platypus CGCGTACTGTACTGCCGAA

PatternContent has_dna_pattern Red_ant CGCGTACTGTACTGCCGASA

V. CONCLUSION AND FUTURE SCOPE

The major limitation of current Multi-Agent System
Development methodologies is centered on improper
validation of requirements. The authors have proposed an
implementation that leverages the strength of Ontology
designed for this purpose in Protégé 5.2.0. In order to
validate the requirements, they are framed as formal
properties that can be evaluated against a formal language
[17]. In this paper, SWRL is used as a formal language. The
framed requirements are called rules or policies. These
policies, designed in SWRL are executed on the DROOLS
reasoner and rule engine to act in accord. The agent
development is done in JADE and the semantic
programming is dealt with Apache Jena Package together
with OWLAPI and SWRLAPI. The Java IDE used is Eclipse
4.5.2. As future work, context-sensitive policies can be
implemented in MAS in scenarios where the policies change
with time, particularly after MAS implementation.

REFERENCES

[1] Scott Deloach, O-MaSE: A customisable approach to designing

and building complex, adaptive multi-agent systems,

https://www.researchgate.net, 2010.

[2] Beydoun, G. & Low, G. Complex Intell. Syst. (2016) 2: 235.

https://doi.org/10.1007/s40747-016-0025-5

[3] Kieth Decker, DECAF, A Multi-Agent System for Automated

Genomic Annotation, Kluwer Academic Publishers, 7,7-27,

2003.

[4] Fabio, Bellifemine, Giovanni Caire, Dominic Greenwood,

Developing Multi Agent Systems with JADE, Wiley, 2007.

[5] Katia P. Sycara, Martin van Velsen, Massimo Paolucci, Joseph

Andrew Giampapa, The RETSINA MAS infrastructure, Research

Gate, July 2003.

[6] Kalliopi Kravari, Efstratios Kontopoulos and Nick Bassiliades,

EMERALD: A Multi-Agent System for Knowledge-based

Reasoning Interoperability in the Semantic Web, Research

Gate, May 4-7, 2010.

[7] Gaurav Kant Shankhdhar, Manuj Darbari, Building Custom,

Adaptive and Heterogeneous Multi-Agent Systems for Semantic

Information Retrieval Using Organizational-Multi-Agent

Systems Engineering, O-MaSE, IEEE Explore, ISBN: 978-1-

5090-3480-2, 2016.

[8] Atul Verma , Narendra Jha, Verified Message Exchange in

Providing Security for Cloud Computing in Heterogeneous and

Dynamic Environment, International Journal of Applied

Information Systems, 2017.

[9] Gaurav Kant, Manuj Darbari, Change Management in Semantic

Web Services in Legal Domain using FSM & XXM Publication:

IJAIS volume9/number1/751-1359, 2015.

[10] Sumit Kumar Mishra, V.K. Singh, Ontology Development For

Wheat Information System Description: Publication: IJRET-

International Journal of Research in Engineering and Technology

2015, V0l4/I05.

[11] Gaurav Kant, Manuj Darbari, Introducing Two Level

Verification Model for Reduction of Uncertainty of Message

Exchange in Inter Agent Communication in Organizational-

Multi-Agent Systems Engineering, O-MaSE, IOSR Journal of

Computer Engineering (IOSR-JCE),

http://www.iosrjournals.org/iosr-jce/pages/19(4)Version-2.html,

2017

[12] Nasserine Hamrouni, Verification and validation for MAS APN,

6th International Conference on Sciences of Electronics

Technologies of Information and Telecommunications (SETIT),

2012.

[13] Gaurav Kant Shankhdhar and M Darbari. Article: Legal Semantic

Web- A Recommendation System. International Journal of

Applied Information Systems 7(3):21-27, May 2014. Published

by Foundation of Computer Science, New York, USA.

[14] Regulated Open Multi-Agent Systems (ROMAS), A Multi-Agent

Approach for Designing Normative Open Systems, Springer,

2015.

[15] Jogannagari M.R., Kothari P.R, “The complexity of Validation

Testing in Component Based Software Engineering”,

International Journal of Computer Science and Engineering,

IJCSE,Volume 5, Issue 12, 2017.

[16] Yagyasen, Diwakar, and Manuj Darbari. (2014) "Application of

Semantic Web and Petri Calculus in Changing Business

Scenario." Modern Trends and Techniques in Computer Science.

Springer International Publishing, 2014. 517-528.

[17] K. Laxmi Pradeep, K. Madhavi, "Approaches for Efficient

Learning Software Models: A Survey", International Journal of

Computer Sciences and Engineering, Vol.6, Issue.1, pp.108-113,

2018.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1135

Authors Profile

Mr. G.K. Shankhdhar, having more than 7 years of
experience in teaching software engineering
subjects. He is the author of numerous research
papers in MAS and IOT. Currently pursuing PhD
from Babu Banarasi Das University is working on
the post of Assistant Professor. Has industry
experience in software development and training
with Microsoft Certifications in Dot Net.

Dr. Manuj darbari, an Experienced Associate
Professor with a demonstrated history of working in
the telecommunications industry.

Skilled in Mathematical Modeling, Analytical Skills,
Computer Science, Research Design, and
Entrepreneurship. Have been awarded a PhD
focused in Business Administration from University
of Lucknow. Associate Professor at Babu Banarasi Das National
Institute of Technology. He is a member of IEEE and author of
many valuable research papers in the fields of Business Analytics,
MAS, Cloud and many more.

