

 © 2019, IJCSE All Rights Reserved 1106

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-5, May 2019 E-ISSN: 2347-2693

Load Balancing Strategy based on Genetic Algorithm for Cloud Computing

Tulsidas Nakrani

1*
, Dilendra Hiran

2
, Chetankumar Sindhi

3

1
Research Scholar, Faculty of Computer Science, PAHER University, Udaipur, India

2
 Principal, Faculty of Computer Applications, PAHER University, Udaipur, India

3
Lead, Sr. Software Engineer, Nividous Software Solutions Pvt Ltd, Ahmedabad, India

*Corresponding Author: nakranitulsidas@gmail.com, Tel.: +91-98797-92211

DOI: https://doi.org/10.26438/ijcse/v7i5.11061111 | Available online at: www.ijcseonline.org

Accepted: 17/May/2019, Published: 31/May/2019

Abstract— today, cloud computing technology is becoming popular because it provides on-demand services for distributed

resources like databases, servers, software, infrastructure, etc. Web traffic and service provisioning is increasing day by day.

Load balancing is the biggest challenge in cloud computing, which distribute the workload dynamically across the different

nodes to make sure that no node is overwhelmed or underutilized. That can be considered as an optimization problem. A good

load balancing must adopt its strategy to the changing environment and the types of tasks. This paper proposes a new load

balancing strategy which is based on genetic algorithm. The algorithm thrives to balancing the load of the cloud infrastructure

while trying minimizing the make span of a given tasks set. The proposed load balancing policy is simulated using Cloud

Analyst. The results of the simulation for sample application show that the proposed algorithm surpassed the existing algorithm

like Round Robin, First Come First Serve, and Stochastic Hill Climbing.

Keywords-Cloud Computing, Cloud Analyst, Load balancing, Genetic algorithm

I. INTRODUCTION

The latest large scale distributed Computing is called Cloud.

Describes a category of sophisticated IT services on demand

or from cloud service providers such as Google, Amazon and

Microsoft [1]. This IT infrastructure is used by companies

and individuals to admittance from everywhere in the globe.

A possible cloud service provider offers software, storage and

software as "service". Cloud computing adapts pay as you go

modal which can helps the organization to save hardware and

software cost [2]. This technology is broadly accepted by

industry because of exponential growth of it. As the size of

the cloud increases, cloud computing service providers

require mass demand management. The biggest challenge is

to maintain the same or better performance every time an

epidemic occurs. Therefore, despite the bright prospect of

cloud computing, many critical aspects must be explored for

their perfect realization [3]. One of these problems is Load

balancing.

It is considered as one of the essentials to use the full assets

of parallel and circulated frameworks. Load Balancing

permits appropriation of outstanding task at hand crosswise

over at least one server, data centres, hard drives, or other

registering assets, along these lines giving Cloud Service

Providers (CSP) a component to convey application demands

over any number of utilization arrangements situated in server

farms. Burden adjusting components can be extensively sorted

as concentrated or decentralized, dynamic or static, and

occasional or non-intermittent. There has been not much

research on load balancing procedures in distributed computing

condition [4]. It utilizes Minimum Execution Time (MET) to

allot request to each activity in subjective way to the hubs on

which it is relied upon to be executed quickest, paying slight

reverence to the current load on that centre. Utilization of some

current allocation systems like Min-Min, Round Robin and

FCFS for load balancing additionally exists in writing. An

insightful policy for load balancing proposed by B. Jana et. al.

[5]. They propose a novel model to adjust information

circulation to improve distributed computing execution in

information serious applications, for example, dispersed

information mining. Some soft computing strategies like Ant

Colony [5] is also discussed in literature.

In this paper soft computing approach called genetic

algorithm has been proposed which use the natural selection

procedure system. For analysis of an algorithm CloudAnalyst

visual simulator is used. The different algorithms like FCFS, RR

and Stochastic hill climbing are compared with the outcome of

this algorithm [6]. We organized the rest of the paper follows.

Section-II covers related work is done regarding load

balancing technique. Section-III covers methodology to

propose the GA algorithm for load balancing. Section-IV

presents the results of the simulation and its analysis with a

general description of CloudAnalyst. Finally, section-V

covers Conclusion and future scope.

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1107

II. RELATED WORK

The load balancing technique, FCFS with the policy of the

nearest data centre broker to allocate assets for virtual

machines, the results of the FCFS algorithm are compared

with the existing known algorithms that include RR and the

accelerated algorithm. Response time(RT) is shorter in some

clusters than in RR and accelerated algorithm [6].The

problem of load distribution in different hosts of a scattered

system solved in present work to improve the utilization of

resources and the response time of the work by analyzing a

variant of the RR algorithm. Overload and load situations are

avoided. Load balancing ensures all processors and node in

the system runs approximately the similar workload at any

given time. The proposed algorithm shows a improved retort

time than the former algorithms[7]. A Stochastic Hill

climbing local optimization approach is used to assign jobs to

virtual machines (VMs). There are two main families of

procedures for solving an optimization problem. Complete

methods that guarantee both the search for a valid transfer of

values to variables, and the proof that there is no such

activity. These methods often show good performance and

guarantee a correct and optimal response for all inputs. In the

cloud computing, in the worst-case they need exponential

time that is not acceptable. The other methods cannot

guarantee proper answers for all input. Instead of that these

methods find satisfying task to solve exertion with high

probability. A variant of the Hill Climbing Stochastic Hill

Climbing algorithm is one of imperfect approaches to solving

these optimization problems. The local and stochastic

optimization algorithm be a cycle that moves continuously in

the upward direction value that is uphill. It stops when it

reaches a peak where no neighbour has a higher value. This

variant randomly selects upward movements and the

probability of selection may vary with the increase in upward

movement. Therefore, activities are associated with a set of

actions by making minor changes to the original activity.

Each element of the kit is evaluated based on some criteria

designed to approach a valid task to improve the results of the

status assessment.

III. METHODOLOGY

Even if Cloud computing is energetic in nature but load

balancing problem is formulate by assigning N jobs to M

processing unit at any given point of time[8]. Following symbols

are used to formulate the load balancing dilemma using genetic

algorithm.

(Puv) is calculated for all processing unit. Each vector consists

of Nips. The cloud service provider needs to pay estimate

penalty (Cd) to customer in the event of job finishing late than

predefine deadline given by service provider.

Table 1: Symbols used to formulate genetic algorithm for load balancing

Puv Processing unit vector

Nips No of instructions executed by the
machine per second (in Millions)

Cei Cost of execution of instruction

Cd Cost of delay in execution of instruction

Juv Job unit vector

t Type of service required by the job

Nic Number of instructions present in the job

Tjv Job arrival time

Twc Worst case completion time

w1,w2 Predefined weight

Puv = f (Nips, Cei, Cd) (1)

Likewise

Juv = f (t, Nic, Tjv , Twc) (2)

Where t represents the type of service required by the job like

SAAS,PAAS and IAAS. The Cloud service supplier needs to

distribute N Jobs to all M processors such that objective

function Z is minimized as shown in (3).

Z= w1 * Cei, (Nic * Nips) + w2 * Twc (3)

It is very difficult to decide / optimize weights, a criterion

could be that the more the factor is general, the greater the

weight. Logic is the preference or importance of users for one

factor in particular compared to the other. Here the

optimization has been performed on the set of weights of the

data. The weights are measured as weight1(w1) = 0.8 and

weight(w2) = 0.2, so their total is 1.

Therefore, the trouble of load balancing is intricate and that

can be considered as a computationally obdurate problem.

Such a trouble cannot be manipulated by linear programming,

so it is rather hard to find the best possible solution globally

using deterministic polynomial time algorithms or rules. GAs

[9] is considered one of the largely widely used artificial

intelligent techniques used primarily for effective search and

optimization. It is a stochastic local search algorithm that is

based on natural and genetic selection mechanisms. GAs has

been revealed to be very resourceful and stable in finding

optimal global solutions, especially in the complex and / or

large research space. In this manuscript, GA is anticipated as

a load balancing policy for CC to find optimal solution i.e. to

find the processors to assign a workload to that processor.

The arrival of a job is considered linear and the

rescheduling of the works is not considered, since the solution

will have an optimal global nature. A proposed algorithm is

explained in this section.

A. Proposed Algorithm

A simple GA has three main operations like selection,

operation and replacement. The advantage of this technique is

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1108

that it can manage a large research space, applicable to

complex objective functions and can avoid being stuck in an

local optimal solution. The GA working principle used in

load balancing in CC is shown in Figure 2. The GA details

are described below.

1).Generation of the initial population: GA works in the

representation of a fixed bit string of an individual solution.

Therefore, all possible solutions in a solution space are

encoded in binary strings. From this, an initial populace of ten

(10) many chromosomes is randomly selected.

2). Crossover: The purpose of this phase is to select most of

the time people better than torque set for the crossover. The

fitness value of every single chromosome is calculated using

the fitness function proposed in 3. This series of

chromosomes is randomly exposed to a single point where the

portion depends on the cut on one side of a site. The passage

is replaced with the other side. This generates a new couple of

folks.

3). Mutation: a very small value (0.05) is now taken as the

probability of mutation. Depending on the value of the

mutation, the chromosome bits alternate from 1 to 0 or from 0

to 1. The production of this is a new pairing set prepared for

crossing.

This GA procedure is recurring until the most suitable

chromosome is found (optimal solution) or the termination

condition (maximum iteration number) is exceeded.

The proposed algorithm steps are as follows:

Step 1: After encoding in binary string, it arbitrarily initialize

a populace of dispensation units.[Start].

Step 2: Estimate the strength value of every populace using

(3) [Fitness].

Step 3: Do following until utmost iteration are exceed or best

possible solution is not found.

Step 3 (a): Consider the chromosome with the smallest

strength two times and reduce the chromosome with the

maximum fitness value to build the coupling group

[Selection]

Step 3 (b): cross a single point by randomly selecting the

crossing point to form a new offspring. [Crossover].

Step 3 (c): mutate new offspring with a probability of

mutation of (0,05) [Mutation].

Step 3 (d): put the fresh progeny new population and use this

population for the next iteration cycle [Acceptance].

Step 3 (e): test for the final condition [test].

Step 4: stop

IV. RESULTS AND ANALYSIS OF SIMULATION

The anticipated GA algorithm is pretend by considering an

"Internet Banking" situation of an intercontinental bank in a

CloudAnalyst toolkit [10].

A. Cloud Analyst

To maintain the infrastructure and relevance level needs

arising from the cloud computing concept, such as on-demand

virtualization modeling, resource simulators are required.

Few simulators are available such as CloudSim[11] and

CloudAnalyst. In this paper simulation tool , CloudAnalyst is

used. In Figure 1 (a) shows GUI of simulation tool and (b)

shows its architecture. It is GUI based simulation tool and we

can make different experiment on it.

CloudAnalyst uses the functionality of CloudSim and runs a

GUI-based simulation. It allows setting parameters to

configure a simulation environment to study any cloud

research problem [12, 13]. Depending on the parameters that

the tool calculates, the simulation result also shows them in

graphic form.

Figure 1. CloudAnalyst (a)CloudAnalyst GUI (b)Architecture of Cloud
Analyst

A hypothetical configuration was generated using

CloudAnalyst. Where, the world is separated into 6 "Regions"

that coincide with the 6 main continents of the world. Six

"User Bases" are considered as a model of a collection of user

representative the six main continents of the globe. It has been

considered a particular instance region for all client bases and

it is supposed that there are a number of users registered

online during peak hours, of which only one out of 20 is

online throughout the initial a small amount of hours. Table 2

shows the details of the client bases used for the

experimentation. Each simulated "data centre host" has a

particular number of dedicated virtual machines (VMs) for the

application. Each machine has 4 GB RAM and 100 GB of

storage space and each machine has 4 CPUs and each CPU

has a capacity of 10,000 MIPS.

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1109

B. Simulation Configuration

Different scenarios are consider for testing from a single

centralized data centre in the cloud (DC). Therefore, all

requests from users around the world are processed by this

unique DC which has 75, 50 and 25virtual cloud

configuration (CC) machines assigned to the request. This

simulation construction is shows details in Table 3 with the

calculated global average response time (RT) in ms for GA,

SHC, RR and FCFS. Figure 2. shows performance analysis.

Combination of 25,50 and 75 Virtual machines for two data

center are shown in table 4 and the performance analysis is

shown in Figure 3. Subsequently three(3),four(4),five(5) and

Six(6) data centres are considered with a combination of

75,50 and 25 VMs for each CC as shown in Tables 5, 6, 7 and

8.

Table 2. Configuration of simulation environment

Sr.

No

User Base Region No of users

in Peak hrs.

No of

users in off
Peak hrs.

1. UB1 0-North America 4,10,000 85,000

2. UB2 1-South America 5,10,000 1,25,000

3. UB3 2-Europe 3,40,000 75,000

4. UB4 3-Asia 7,80,000 1,35,000

5. UB5 4-Africa 1,35,000 22,000

6. UB6 5-Oceania 1,45,000 45,500

C. Simulation Configuration

The study of the complexity of any algorithm includes

time-space complexity of an algorithm. The basic operations

performed in the genetic algorithm are the calculation of

fitness and the selection operation, the crossover operation

and the mutation operation. In the genetic algorithm, the

initialization of the population is measured to be pre-

processed, so its complication is not considered for analysis.

To encode in a binary sequence a time complexity is

maximum n1, for the evaluation of the function (3) it is

maximum (c × k) to verify the cost c of the k chromosomes.

The selection process has a time complexity is maximum m,

for a crossing point, the time complexity is at most m, where

m is the length of chromosome and for the mutation wherever

m. The three operations of GA are repeated iteratively until

the ending process criteria are satisfied, so that the total time

complexity G is given by,

G = O {n1 + (c × k) + (n2 + 1)(m + m + m)} (4)

Table 3: Simulation status and average response time

Sr.

N
o.

Cloud

Config.

No of VMs

in each Data
Center

Res.

Time
using GA

(in ms)

Res.

Time
using

SHC

(in ms)

Res.

Time
using

RR

(in ms)

Res.

Time
using

FCFS

(in ms)

1. CC1 25 328.02 328.05 331 331.12

2. CC2 50 327.95 328.02 328.85 328.45

3. CC3 75 245.12 328.75 328.98 328.98

Figure 2. Analysis of Performance of GA,FCFS, RR and SHC
Results based on one data center

Table 4. Simulation setting and average response time

Sr.

No

Cloud

Config.

No of

VMs in
each

Data

Center

Res.

Time
using

GA

(in ms)

Res.

Time
using

SHC

(in ms)

Res.

Time
using

RR

(in ms)

Res.

Time
using

FCFS

(in ms)

1. CC1 25 360.75 364.98 371.25 376.32

2. CC2 50 356.01 359.00 367.47 373.01

3. CC3 75 354.99 360.01 365.01 371.00

4. CC4 25,50 351.01 357.05 363.05 369.12

5. CC5 25,75 351.59 356.97 364.24 367.22

6. CC6 75,50 351.98 357.03 362.04 359.98

 Figure 3. Analysis of Performance of GA,FCFS, RR and SHC
 Results based on two data center

Table 5. Simulation scenario and average response time

Sr.

No.

Cloud

Config.

No of

VMs in

each

Data
Center

Res.

Time

using

GA
(in ms)

Res.

Time

using

SHC
(in ms)

Res.

Time

using

RR
(in ms)

Res.

Time

using

FCFS
(in ms)

1. CC1 25 350.02 356.62 360.97 363.14

2. CC2 50 349.98 355.05 362.29 363.32

3. CC3 75 345.89 350.53 355.98 361.37

4. CC4 25,50,
75

345.78 349.89 356.01 360.66

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1110

Figure 4. Analysis of Performance of GA,FCFS, RR and SHC

Results based on three data centre

Table 6. Simulation scenario and average response time

Sr.

No

Cloud

Config.

No of

VMs in

each
Data

Center

Res. Time

using GA

(in ms)

Res.

Time

using
SHC

(in ms)

Res.

Time

using
RR

(in ms)

Res.

Time

using
FCFS

(in ms)

1. CC1 25 348.76 354.26 359.27 360.85

2. CC2 50 345.45 350.62 356.84 359.86

3. CC3 75 340.56 346.37 351.99 358.35

4. CC4 25,50,
75

337.79 344.18 351.02 355.89

Figure 5. Analysis of Performance of GA,FCFS,RR and SHC

Results based on four data center

Table 7. Simulation scenario average response time

Sr.

No

Cloud

Config.

No of

VMs in
each

Data

Center

Res. Time

using GA
(in ms)

Res.

Time
using

SHC

(in ms)

Res.

Time
using

RR

(in ms)

Res. Time

using
FCFS

(in ms)

1. CC1 25 335.62 342.76 348.56 352.04

2. CC2 50 325.98 332.85 339.75 345.45

3. CC3 75 322.91 329.45 335.86 342.78

4. CC4 25,50,

75

319.97 326.65 333.98 337.96

Figure 6. Analysis of Performance of GA,FCFS, RR and SHC

Results based on five data center

Table 8. Simulation scenario and calculated overall average response time

Sr.

No

Cloud

Config.

No of

VMs in

each

Data
Center

Res. Time

using GA

(in ms)

Res.

Time

using

SHC
(in ms)

Res.

Time

using

RR
(in ms)

Res. Time

using

FCFS

(in ms)

1. CC1 25 330.55 336.95 341.85 349.25

2. CC2 50 322.99 331.55 338.12 344.01

3. CC3 75 321.52 327.76 333.47 339.85

4. CC4 25,50,

75

315.30 323.54 331.47 338.30

Figure 7. Analysis of Performance of GA,FCFS,RR and SHC

Results based on six data center

V. CONCLUSION AND FUTURE SCOPE

In this paper, a load balancing strategy based on genetic

algorithms for cloud computing has been designed to provide

proficient use of assets in the cloud environment. The

investigation of the results shows that the proposed load

balancing strategy not only outperforms some existing

techniques, but also guarantees the QoS requirement of the

customer job. Although it has been assumed that all jobs have

the same priority, which may not be the real case, this can be

accommodated in the JUV and can later be taken care of in

the fitness function. A very simple GA approach was also

used; however, variation and cross-selection strategy might

be applied as future work to achieve more efficient and

adequate results.

REFERENCES

[1] R. Buyya, J. Broberg, and A. M. Goscinski, Cloud Computing:

Principles and Paradigms. John Wiley & Sons, 2010.

[2] M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali,

―Cloud Computing: Distributed Internet Computing for IT and

Scientific Research,‖ IEEE Internet Computing, vol. 13, Issue. 5,

pp. 10–13, 2009.

[3] R. Mishra, ―Ant colony Optimization: A Solution of Load

balancing in Cloud,‖ IJWesT, vol. 3, Issue. 2, pp. 33–50, 2012.

[4] B. Mondal, K. Dasgupta, and P. Dutta, ―Load Balancing in Cloud

Computing using Stochastic Hill Climbing-A Soft Computing

Approach,‖ Procedia Technology, vol. 4, pp. 783–789, 2012.

[5] B. Jana, M. Chakraborty, and T. Mandal, ―A Task Scheduling

Technique Based on Particle Swarm Optimization Algorithm in

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1111

Cloud Environment,‖ in Soft Computing: Theories and

Applications, pp. 525–536, 2019.

[6] F. Saeed, ―Load Balancing on Cloud Analyst Using First Come

First Serve Scheduling Algorithm,‖ in Advances in Intelligent

Networking and Collaborative Systems, pp. 463–472, 2019.

[7] G. Liu and X. Wang, ―A Modified Round-Robin Load Balancing

Algorithm Based on Content of Request,‖ in 2018 5th International

Conference on Information Science and Control Engineering

(ICISCE), pp. 66–72, 2018.

[8] K. Dasgupta, B. Mandal, P. Dutta, J. K. Mandal, and S. Dam, ―A

Genetic Algorithm (GA) based Load Balancing Strategy for Cloud

Computing,‖ Procedia Technology, vol. 10, pp. 340–347, 2013.

[9] P. Devarasetty and S. Reddy, ―Genetic algorithm for quality of

service based resource allocation in cloud computing,‖ Evol. Intel.,

2019.

[10] B. Wickremasinghe, R. N. Calheiros, and R. Buyya,

―CloudAnalyst: A CloudSim-Based Visual Modeller for Analysing

Cloud Computing Environments and Applications,‖ in 2010 24th

IEEE International Conference on Advanced Information

Networking and Applications, pp. 446–452, 2010.

[11] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and

R. Buyya, ―CloudSim: a toolkit for modeling and simulation of

cloud computing environments and evaluation of resource

provisioning algorithms,‖ Software: Practice and Experience, vol.

41, issue. 1, pp. 23–50, 2011.

[12] A.A. Ekre, N.M. Nimbarte, S.V. Balamwar, "An Empirical

Proposition to Load Balancing Effectuate on AWS Hybrid Cloud",

International Journal of Scientific Research in Computer Science

and Engineering, Vol.6, Issue.4, pp.9-17, 2018

[13] Deepti Sharma, Vijay B. Aggarwal, "Dynamic Load Balancing

Algorithms for Heterogeneous Web Server Clusters", International

Journal of Scientific Research in Computer Science and

Engineering, Vol.5, Issue.4, pp.56-59, 2017

Authors Profile

Mr. T V Nakrani pursed Bachelor of Computer

Application from North Gujarat University,

Patan, Gujarat , India in 2003. and Master of

Computer Application from Gujarat University,

Ahmedabad, India in 2006. He is currently

pursuing Ph.D. and currently working as

Assistant Professor in Department of Computer

Application(MCA), Sankalchand Patel University, Visnagar,

Gujarat, India since 2011. His main research work focuses on Cloud

Computing technology. He has 13 years of teaching experience and

3 years of Research Experience.

Dr. Dilendra Hiran pursued Ph.D in Computer

Science from Pacific University, Udaipur in

2015. He Completed his Mmaster of Science in

Mathematics and Computer Science in 1999

and Bachelor of Science in Mathamatics from

MLSU, Udaipur in 1994. He is currently

working as Principal, Faculty of Computer

Application at Pacific University, Udaipur

Dr. Chetankumar K Sindhi pursued Ph.D. in

Computer Science and Application from

Hemchandracharya North Gujarat University,

Patan in 2011. He completed his Master of

Science in Industrial Mathematics and Computer

Science & Application, Bachelor of Science in Mathematics from

the same University respectively in 2005 and 2002. He is currently

working as a Lead, Sr. Software Engineer in Nividous Software

Solutions Pvt Ltd. He has 14 years of experience in Academics,

Industry, and Research.

