
 © 2018, IJCSE All Rights Reserved 1094

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-7, July 2018 E-ISSN: 2347-2693

Secure Data Sharing in Cloud Computing Using Revocable-

Storage Identity-Based Encryption

Maadala Chandra Sekhar
1
*, Keerthi Kethineni

2

1*Computer Science and Engineering, Qis College Engineering and Technology, Ongole

 2 Computer Science and Engineering, Qis College Engineering and Technology, Ongole

Available online at: www.ijcseonline.org

Accepted: 06/Jul/2018, Published: 31/Jul/2018

Abstract—Cloud computing provides a flexible and convenient way for data sharing, which brings various benefits for both

the society and individuals. But there exists a natural resistance for users to directly outsource the shared data to the cloud

server since the data often contain valuable information. Thus, it is necessary to place cryptographically enhanced access

control on the shared data. Identity-based encryption is a promising cryptographically primitive to build a practical data sharing

system. However, access control is not static. That is, when some user’s authorization is expired, there should be a mechanism

that can remove him/her from the system. Consequently, the revoked user cannot access both the previously and subsequently

shared data. To this end, we propose a notion called revocable-storage identity-based encryption (RS-IBE), which can provide

the forward/backward security of cipher text by introducing the functionalities of user revocation and cipher text update

simultaneously. Furthermore, we present a concrete construction of RS-IBE, and prove its security in the defined security

model. The performance comparisons indicate that the proposed RS-IBE scheme has advantages in terms of functionality and

efficiency, and thus is feasible for a practical and cost-effective data-sharing system. Finally, we provide implementation

results of the proposed scheme to demonstrate its practicability.

Keywords—Cloud computing, data sharing, revocation, Identity-based encryption, ciphertext update, decryption key exposure.

I. INTRODUCTION

CLOUD computing is a paradigm that provides massive

computation capacity and huge memory space at a low cost

[1]. It enables users to get intended services irrespective of

time and location across multiple platforms (e.g., mobiled

evices, personal computers), and thus brings great

convenience to cloud users. Among numerous services

provided by cloud computing, cloud storage service, such

as Apple’s iCloud [2], Microsoft’s Azure [3] and Amazon’s

S3 [4], can offer a more flexible and easy way to share data

over the Internet, which provides various benefits for our

society [5], [6]. However, it also suffers from several

security threats,which are the primary concerns of cloud

users [7].

 Firstly, outsourcing data to cloud server implies

that data is out control of users. This may cause users’

hesitation since the outsourced data usually contain

valuable and sensitive information. Secondly, data sharing

is often implemented in an open and hostile environment,

and cloud server would become a target of attacks. Even

worse, cloud server itself may reveal users’ data for illegal

profit. Thirdly, data sharing is not static. That is, when a

user’s authorization gets expired, he/she should no longer

possess the privilege of accessing the previously and

subsequently shared data. Therefore, while outsourcing

data to cloud server, users also want to control access to

these data such that only those currently authorized users

can share the outsourced data.

A natural solution to conquer the aforementioned problem

is to use cryptographically enforced access control such as

identity-based encryption (IBE). Furthermore, to overcome

the above security threats, such kind of identity-based

access control placed on the shared data should meet the

following security goals:

• Data confidentiality: Unauthorized users should be

prevented from accessing the plaintext of the shared

data stored in the cloud server. In addition, the cloud server,

which is supposed to be honest but curious, should also be

deterred from knowing plaintext ofthe shared data.

• Backward secrecy: Backward secrecy means that, when

a user’s authorization is expired, or a user’s

secret key is compromised, he/she should be prevented

from accessing the plaintext of the subsequently shared data

that are still encrypted under his/her identity.

• Forward secrecy: Forward secrecy means that, when a

user’s authority is expired, or a user’s secret key

is compromised, he/she should be prevented from accessing

the plaintext of the shared data that can be

previously accessed by him/her.

 The specific problem addressed in this paper is

how to construct a fundamental identity-based

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1095

cryptographical tool to achieve the above security goals.

We also note that there exist other security issues that are

equally important for a practical system of data sharing,

such as the authenticity and availability of the shared data

[8], [9], [10], [11], [12]. But the research on these issues is

beyond the scope of this paper.

1.1 Motivation

It seems that the concept of revocable identity-based

encryption (RIBE) might be a promising approach that

fulfills the aforementioned security requirements for data

sharing. RIBE features a mechanism that enables a sender

to append the current time period to the cipher text such

that the receiver can decrypt the cipher text only under the

condition that he/she is not revoked at that time period. As

indicated in Figure 1, a RIBE-based data sharing system

works as follows: Step 1: The data provider (e.g., David)

first decides the users (e.g., Alice and Bob) who can share

the data. Then, David encrypts the data under the identities

Alice and Bob, and uploads the cipher text of the shared

data to the cloud server.

Step 2: When either Alice or Bob wants to get the shared

data, she or he can download and decrypt the corresponding

cipher text. However, for an unauthorized user and the

cloud server, the plaintext of the shared data is not

available.

Step 3: In some cases, e.g., Alice’s authorization gets

expired, David can download the cipher text of the shared

data, and then decrypt-then-re-encrypt the shared data such

that Alice is prevented from accessing the plaintext of the

shared data, and then upload the re-encrypted data to the

cloud server again.

Key authority Data provider Storage server Users

Encrypt and upload data sharing Key management Key

management Cipher text update Fig. 1. A natural RIBE-

based data sharing system

 Obviously, such a data sharing system can provide

confidentiality and backward secrecy. Furthermore, the

method of decrypting and re-encrypting all the shared data

can ensure forward secrecy. However, this brings new

challenges. Note that the process of decrypt-then-re-encrypt

necessarily involves users’ secret key information, which

makes the overall data sharing system vulnerable to new

attacks. In general, the use of secret key should be limited

to only usual decryption, and it is inadvisable to update the

cipher text periodically by using secret key.

 Another challenge comes from efficiency. To update

the cipher text of the shared data, the data provider has to

frequently carry out the procedure of download-decrypt-

encrypt- upload. This process brings great communication

and computation cost, and thus is cumbersome and

undesirable for cloud users with low capacity of

computation and storage. One method to avoid this problem

is to require the cloud server to directly re-encrypt the

cipher text of the shared data. However, this may introduce

cipher text extension, namely, the size of the cipher text of

the shared data is linear in the number of times the shared

data have been updated. In addition, the technique of proxy

re-encryption can also be used to conquer the

aforementioned problem of efficiency. Unfortunately, it

also requires users to interact with the cloud server in order

to update the cipher text of the shared data.

1.2 Related work

1.2.1 Revocable identity-based encryption The concept of

identity-based encryption was introduced by Shamir [13],

and conveniently instantiated by Boneh and Franklin [14].

IBE eliminates the need for providing a public

key infrastructure (PKI). Regardless of the setting of IBE or

PKI, there must be an approach to revoke users from the

system when necessary, e.g., the authority of some user is

expired or the secret key of some user is disclosed. In the

traditional PKI setting, the problem of revocation has been

well studied [15], [16], [17], [18], [19], and several

techniques are widely approved, such as certificate

revocation list or appending validity periods to certificates.

However, there are only a few studies on revocation in the

setting of IBE. Boneh and Franklin [14] first proposed a

natural revocation way for IBE. They appended the current

time period to

the ciphertext, and non-revoked users periodically received

private keys for each time period from the key authority.

Unfortunately, such a solution is not scalable, since it

requires the key authority to perform linear work in the

number of non-revoked users. In addition, a secure channel

is essential for the key authority and non-revoked users to

transmit new keys. To conquer this problem, Boldyreva,

Goyal and Kumar [20] introduced a novel approach to

achieve efficient revocation. They used a binary tree to

manage identity such that their RIBE scheme reduces the

complexity of key revocation to logarithmic (instead of

linear) in the maximum number of system users. However,

this scheme only achieves selective security. Subsequently,

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1096

by using the aforementioned revocation technique, Libert

and Vergnaud [21] proposed an adaptively secure RIBE

scheme based on a variant ofWater’s IBE scheme [22],

Chen et al. [23] constructed a RIBE scheme from lattices.

Recently, Seo and Emura [24] proposed an efficient RIBE

scheme resistant to a realistic threat called decryption key

exposure, whichmeans that the disclosure of decryption key

for current time period has no effect on the security of

decryption keys for other time periods. Inspired by the

above work and [25], Liang et al. [26] introduced a cloud-

based revocable identity-based proxy re-encryption that

supports user revocation and ciphertext update. To reduce

the complexity of revocation, they utilized a broadcast

encryption

Scheme [27] to encrypt the cipher text of the update key,

which is independent of users, such that only non-revoked

users can decrypt the update key. However, this kind of

revocation method cannot resist the collusion of revoked

users and malicious non-revoked users as malicious non

revoked users can share the update key with those revoked

users. Furthermore, to update the cipher text, the key

authority in their scheme needs to maintain a table for each

user produces the re-encryption key for each time period,

which significantly increases the key authority’s workload.

1.2.2 Forward-secure cryptosystems

In 1997, Anderson [28] introduced the notion of forward

security in the setting of signature to limit the damage of

key exposure. The core idea is dividing the whole lifetime

of a private key into T discrete time periods, such that the

compromise of the private key for current time period

cannot enable an adversary to produce valid signatures for

previous time periods. Subsequently, Bellare and Miner

provided formal definitions of forward-secure signature and

presented practical solutions. Since then, a large number of

forward-secure signature schemes [29], [30], [31], [32],

[33] has been proposed.

 In the context of encryption, Canetti, Halevi and

Katz [34] proposed the first forward-secure public-key

encryption scheme. Specifically, they firstly constructed a

binary tree encryption, and then transformed it into a

forward-secure encryption with provable security in the

random oracle model. Based on Canetti et al’s approach,

Yao et al. [35] proposed a forward-secure hierarchical IBE

by employing two hierarchical IBE schemes, and Nieto et

al. [36] designed a forward-secure hierarchical predicate

encryption.

 Particularly, by combining Boldyreva et al.’s [20]

revocation technique and the aforementioned idea of

forward security1, in CRYPTO 2012 Sahai, Seyalioglu and

Waters [37] proposed a generic construction of so-called

revocablestorage attribute-based encryption, which

supports user

revocation and ciphertext update simultaneously. In other

words, their construction provides both forward and

backward secrecy. What must be pointed out is that the

process of ciphertext update of this construction only needs

public information. However, their construction cannot be

resistant to decryption key exposure, since the decryption is

a matching result of private key and update key.

1.3 Our contributions

In this paper, we introduce a notion called revocable

storage identity-based encryption (RS-IBE) for building a

cost-effective data sharing system that fulfills the three

security goals. More precisely, the following achievements

are captured in this paper: We provide formal definitions

for RS-IBE and its

corresponding security model;

• We present a concrete construction of RS-IBE. The

proposed scheme can provide confidentiality and

backward/forward2 secrecy simultaneously;

• We prove the security of the proposed scheme in the

standard model, under the decisional ℓ-Bilinear

Diffie-Hellman Exponent (ℓ-BDHE) assumption. In

addition, the proposed scheme can withstand decryption

key exposure;

• The proposed scheme is efficient in the following ways:

1. They utilized the idea to provide the forward secrecy of

ciphertext, rather than secret key as in the original case.

2. As in [37], our scheme achieves forward security under

the assumption that the encrypted data is stored in the cloud

and users do not store the encrypted/decrypted data locally.

 – The procedure of ciphertext update only needs

public information. Note that no previous identity-based

encryption schemes in the literature can provide this

feature;

 – The additional computation and storage complexity,

which are brought in by the forward secrecy, is all upper

bounded by O(log(T)2), where T is the total number of

time periods.

 Outline. The remainder of this paper is structured

as follows: In section 2, we introduce the preliminaries

involved in our construction. Then we present the

definitions of RSIBE in section 3, and provide the concrete

construction in section 4, followed with the corresponding

security analysis, performance discussions, and the

implementation results of the scheme. Finally, we conclude

in section 5.

II. PRELIMINARIES

In this section, we first briefly present the basic concepts on

bilinear pairing and decisional ℓ-BDHE assumption. Then,

an algorithm used to perform efficient revocation is

introduced.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1097

2.1 Bilinear pairing and complexity assumption

Definition 1 (Bilinear pairing). Let G1 and G2 be two

cyclic groups with prime order q, and g be a generator of

G1. A bilinear pairing is a map e : G1×G1 → G2 with the

following properties:

• Bilinearity: e(ua, hb) = e(u, h)ab for all u, h ∈ G1, a, b ∈

Z∗q . • Non-degeneracy: e(g, g) 6= 1.

• Computability: There exists an efficient algorithm to

compute e(u, h) for any u, h ∈ G1.

Definition 2 (Decisional ℓ-BDHE Assumption). The

decisional ℓ-BDHE problem is formalized as follows.

Choose a group G1 with prime order p according to the

security parameter λ. Select a generator g of G1 and a, s R

←− Zp, and let fi = gai Provide the vector f = (g, gs, f1, ...,

fℓ, fℓ+2, ..., f2ℓ) and an element

D ∈ G2 to a probabilistic polynomial-time (PPT) algorithm

C, it outputs 0 to indicate that D = e(gs, gaℓ+1

), and outputs 1 to indicate that D is a random element

from G2. The advantage of C solving the decisional ℓ-

BDHE problem in G1 is defined as follows:

Advℓ−dBDHE C (λ) =___ Pr_C(f ,D = e(gs, gaℓ+1)) = 0_

− Pr_C(f ,D R ←− G2) = 0____

 We say that the decisional ℓ-BDHE assumption

holds in G1 provided that no PPT algorithm can solve the

decisional ℓ-BDHE problem with a non-negligible

advantage.

2.2 KUNodes algorithm

Our RS-IBE scheme uses the same binary tree structure

introduced by Boldyreva, Goyal and Kumar [20] to achieve

efficient revocation. To describe the revocation mechanism,

we first present several notations. Denote by ε the root node

of the binary tree BT , and Path(η) the set of nodes on the

path from ε to the leaf node η (including ε and η). For a

non-leaf node θ, we let all and θr stand for its left and right

child, respectively. Given a time period t and revocations

list RL, which is comprised of the tuples (ηi, ti) indicating

that the node ηi was revoked at time period ti, the algorithm

KUNodes(BT ,RL, t) outputs the smallest subset Y of

nodes of BT such that Y contains an ancestor for each node

that is not revoked before the time period t.

Fig. 2. An instance of the algorithm KUNodes

 Informally, to identify the set Y, the algorithm first

marks all the ancestors of revoked nodes as revoked, then

outputs all the non-revoked children of revoked nodes. As

an example,we present two instances of the algorithm

KUNodes in Figure 2. The formal description is given

below.

Algorithm 1 KUNodes(BT ,RL, t)

1: X,Y←− ∅

2: for all (ηi, ti) ∈ RL do

3: if ti ≤ t then

4: Add Path(ηi) to X

5: end if

6: end for

7: for all θ ∈ X do

8: if θl /∈ X then

9: Add θl to Y

10: end if

11: if θr /∈ X then

12: Add θr to Y

13: end if

14: end for

15: if Y = ∅ then

16: Add the root node ε to Y

17: end if

18: return Y

III. DEFINITION AND SECURITY MODEL OF RS-

IBE

In this section, we first provide the formal definition of

RSIBE, and then give the corresponding security model.

3.1 Syntax of RS-IBE

Definition 3 (Revocable-Storage Identity-Based

Encryption).

A revocable-storage identity-based encryption scheme with

message space M, identity space I and total number of time

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1098

periods T is comprised of the following seven polynomial

time algorithms:

• Setup(1λ, T,N): The setup algorithm takes as input the

security parameter λ, the time bound T and the

maximum number of system users N, and it outputs the

public parameter PP and the master secret key

MSK,associated with the initial revocation list RL = ∅ and

state st.

• PKGen(PP,MSK, ID): The private key generation

algorithm takes as input PP, MSK and an identity ID ∈ I,

and it generates a private key SKID for ID and an updated

state st.

• KeyUpdate(PP,MSK,RL, t, st): The key update algorithm

takes as input PP,MSK, the current revocation list RL, the

key update time t ≤ T and the state st, it outputs the key

update KUt.

• DKGen(PP, SKID,KUt): The decryption key generation

algorithm takes as input PP, SKID and KUt, and

it generates a decryption key DKID,t for ID with time

period t or a symbol ⊥ to illustrate that ID has been

previously revoked.

• Encrypt(PP, ID, t,M): The encryption algorithm takes as

input PP, an identity ID, a time period t ≤ T ,

and a message M ∈ M to be encrypted, and outputs a

ciphertext CTID,t.

• CTUpdate(PP,CTID,t, t′): The ciphertext update

algorithm takes as input PP, CTID,t and a new time period

t′ ≥ t, and it outputs an updated ciphertext CTID,t′ .

• Decrypt(PP,CTID,t,DKID,t′): The decryption algorithm

takes as input PP, CTID,t, DKID,t′ , and it

Recovers the encrypted message M or a distinguished

symbol ⊥ indicating that CTID,t is an invalid ciphertext.

• Revoke(PP, ID,RL, t, st): The revocation algorithm takes

as input PP, an identity ID ∈ I to be revoked,

the current revocation list RL, a state st and revocation

time period t ≤ T , and it updates RL to a new one.

Definition 4 (Correctness of RS-IBE). We say that a RS-

IBE scheme is correct provided that, for any (PP,MSK,RL,

st) ←

Setup(1λ, T,N), ID ∈ I, t ≤ T , M ∈ M, all possible states st

and a revocation lists RL, if ID is not revoked at time

period t, then for (SKID, sk)←

PKGen(PP,MSK,ID),KUt←

Key

Update(PP,MSK,RL,t,sk),DKID,t←DKGen(PP,SKID,KU

t), and CTID,t′ ←Encrypt(PP, ID, t′ ,M), it is required

that:

• If t ≥ t′, then Decrypt(PP,CTID,t′ ,DKID,t) = M.

Otherwise, Decrypt (PP,CTID,t′ ,DKID,t) =⊥ with all but

negligible probability.

• For t ≥ t′, it holds that CTUpdate(PP,CTID,t′ , t) ≡

Encrypt(PP, ID, t,M) holds.

Here, ≡ indicates equality in statistical distribution.

3.2 Security model

Definition 5 (IND-RID-CPA). A RS-IBE scheme is

INDRID- CPA secure provided that for any PPT adversary

A, it has negligible advantage in the following security

game between a challenger C and the adversary A:

• Setup. C performs Setup(1λ, T,N) → (PP,MSK) and

sends PP to A;

• Phase 1. A makes the following queries in an adaptive

way:

 a. OSK(ID): C performs PKGen(PP,MSK, ID) →

(SKID, st) and returns SKID to A;

 b. OKU(t): C runs KeyUpdate(PP,MSK,RL, t, st) →

KUt and returns KUt;

 c. ODK(ID, t): C runs PKGen(PP,MSK, ID) →

(SKID, st) and DKGen(PP, SKID,KUt) → DKID,t, then

forwards DKID,t to A;

 d. ORV (ID, t): C updates the current revocation list

RL by running Revoke(PP, ID,RL, t, st) → RL and

returns the updated RL to A;

 • Challenge. A signals the query is over and sends

(M0,M1, ID∗, t∗, st) to C subject to the restriction that

M0,M1 ∈ M and |M0| = |M1|. Then, C chooses a random

bit β R ←− {0, 1} and returns the challenged ciphertext

CTID∗,t∗ ← Encrypt(PP, ID∗, t∗,Mb) to A;

• Phase 2. A begins another query phase as phase 1; •

Guess. A outputs a bit β′ as a guess of β; The restrictions

explicitly made on A’s queries in the game are as follows:

1) OKU(t) and ORV (ID, t) can only be queried in a

sequential order in time. That is, the time t should be

greater thanor equal to the time of all previous queries;

2) ORV (ID, t) cannot be queried if OKU(t) was queried;

3) If OSK(ID∗) was queried then ORV (ID∗, t) must be

queried, where t ≤ t∗;

4) ODK(ID, t) cannot be queried before OKU(t) was

queried;

5) ODK(ID∗, t∗) cannot be queried. The adversary A’s

advantage in the above game is defined as

 AdvIND-RID-CPA RS-IBE,A (λ, T,N) =___ Pr_β′ = β_

− 12___

Remark 1. In the security game above, we do not provide

aquery oracle for the ciphertext update algorithm

CTUpdate sincethe adversary can run it to a ciphertext

just by using the public parameter PP.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1099

IV. RS-IBE RESISTANT TO DECRYPTION KEY

EXPOSURE

In this section, we first present a concrete construction of

RSIBE resistant to decryption key exposure, and then

discuss its security and performance.

4.1 Construction

Our construction involves two binary trees BT and T to

manage identity and time period, respectively. More

precisely, for identity revocation, we follow Boldyreva et

al.’s [20] strategy. That is, given an identity ID, we

randomly store it in a leaf node η of BT , and generate the

corresponding secret key SKID = {(θ, SKID,θ)}θ∈Path(η)

as in previous RIBE schemes [20], [24]. If the user ID is

not revoked at time period t, there exists a node θ ∈ Path(η)

∩ KUNodes(BT ,RL, t). Consequently, given the update

key KUt = {(θ,KUt,θ)}θ∈KUNodes(BT ,RL,t), the user ID

can obtain the decryption key for time period t by re-

randomizing and combining (θ, SKID,θ) and (θ,KUt,θ).

However, for a user that is revoked at time period t, there is

no such node. As a result, the user cannot decrypt the

ciphertext that is produced under its identity after the time

period t (including t). Let T = 2ℓ be the total number of

system time periods. For each 1 ≤ i ≤ T , the time period ti

∈ {0, 1}ℓ is associated with the i-th leaf node vti of T .

Here, we arrange all leaf nodes of T in numerical order

from left to right. Given a node v of T , let bv ∈ {0, 1}≤ℓ be

the binary sequence corresponding to the path from the root

node of T to v, where 0 and 1 indicate that the path passes

through the left and right child of the parent node,

respectively. Conversely, given a string b ∈ {0, 1}≤ℓ, let vb

be the node that has a path b from the root node to it.

Furthermore, denote by bv[j] and ti[j] the j-th bit of bv and

ti respectively, and |bv| the length of bv. In addition, for

each leaf node vt of the binary T , we define the following

set: Tt = {v|Parent(v) ∈ Path(vt), v /∈ Path(vt)} ∪ {vt},

where Parent(v) denotes by the parent node of v. As

presented in [34], such a set features the following property

 Property 1. Given two time periods t and t′ such that t < t′,

for each node v′ ∈ Tt′ , there exists a node v ∈ Tt such that

bv is a prefix of bv′ . In other words, there exists a string b′

∈ {0, 1}l such that bv′ = bv||b′, where l = |bv′ | − |bv|.

 As presented subsequently, the above property

enablesus to update the ciphertext from time periods t to t′.

For explanatory purpose, we give a binary tree with depth

3, which means that the total number of time period is 8. As

shown in Figure 3, the leftmost and rightmost leaf nodes

vt1 and vt8 correspond to the strings 03 and 13

respectively. The sets Tt1 = {v1, v01, vt2 , vt1} and Tt5 =

{v11, vt6 , vt5}. We present the concrete construction

below.

• Setup(1λ, T,N): Given a security parameter λ, the total

number of time periods T = 2ℓ, the maximum number of

users N, this algorithm performs as follows:

1) Choose bilinear groups (G1,G2) with prime order

p > 2λ and the corresponding bilinear map e : G1 × G1

→G2.

2) Select group elements g, g2R ←− G1 and an integerα R

←− Z∗ p, and set g1 = gα. Furthermore, pick two random

vectors u = (u0, u1, ..., un) ∈ Gn+1 1 and h = (h0, h1, ...,

hℓ) ∈ Gℓ+1 1 , and for each ID ∈ I = {0, 1}n and t ∈ {0,

1}ℓ, define the following two functions3:

Fu(ID) =u0 Y i=1 uID[i] i , Fh(t) = h0 ℓ Y j=1 ht[j] j . Here,

ID[i] is the ith bit of ID.

 3) Let the master secret key be MSK = gα2 , and

initializethe state st with a binary tree BT of depth log(N)

and the revocation list RL = ∅.

4) Publish the public parameter as PP = {G1,G2, e, g, g1,

g2, u, h}.

• PKGen(PP,MSK, ID): For an identity ID ∈ I, this

algorithm generates its secret key according to the

following way:

1) Randomly choose and assign a leaf node η of BT to ID.

2) For each node θ ∈ Path(η),

a. Recall gθ,0 from BT if it has been defined previously4.

Otherwise, pick gθ,0 R ←− G1, and store the pair (gθ,0,

gθ,1 = g2/gθ,0) in the node θ.

b. Choose rθ,0 R ←− Z∗ p, and compute: SKID,θ = (SKθ,0,

SKθ,1) = (gα θ,0Fu(ID)rθ,0 , grθ,0).

3) Update the state as st = BT , and then return the secret

key SKID = {(θ, SKID,θ)}θ∈Path(η).

• KeyUpdate(PP,MSK,RL, t, sk): For each node θ ∈

KUNodes(BT ,RL, t), do the following.

1) Extract the pre-defined value gθ,1 from BT .

2) Choose rθ,1 R ←− Z∗ p and set KUt,θ = (KUθ,0,KUθ,1)

= (gα θ,1 · Fh(t)rθ,1 , grθ,1).

3) Return KUt = {(θ,KUt,θ)}θ∈KUNodes(BT ,RL,t).

• DKGen(PP, SKID,KUt): If ID was revoked during time

period t, return ⊥. Otherwise, there exists some node

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1100

θ ∈ Path(η) ∩ KUNodes(BT ,RL, t). For this node θ, parse

SKID,θ = (SKθ,0, SKθ,1) and KUt,θ =(KUθ,0,KUθ,1).

Then, choose r0, r1 R ←− Z∗ p, compute and return

DKID,t = (DKt,1,DKt,2,DKt,3) = (SKθ,0 · KUθ,0 ·

Fu(ID)r0 · Fh(t)r1 , SKθ,1 · gr0 ,KUθ,1 · gr1).

• Encrypt(PP, ID, t,M): To encrypt M ∈ G2 with IDat time

period t, choose stR ←− Z∗ p, select sv R ←− Z∗p for each

node v ∈ Tt. Particularly, let svt = st. Then, set the

ciphertext as CTID,t = �ID, t,C0,C1,C2, {Cv}v∈Tt_,

where

C0=M.e(g1,g2)stC1=g−st,C2=Fu(ID)st,Cv=(Cv,0,Cv,|bv|+

1,

 Cv,|bv|+2, ...,Cv,ℓ)= _�h0 |bv| Y j=1 hbv[j] j _sv ,

hsv |bv|+1, hsv |bv|+2..., hsv ℓ _.

3. We naturally require that n _ log(N)

4. As indicated in [20], a pseudo-random function can be

used to recomputed g_,0 when necessary instead of having

to store it in the node θ

• CTUpdate(PP,CTID,t, t′): Parse the ciphertext as CTID,t

= �ID, t,C0,C1,C2, {Cv}v∈Tt_,where Cv =

(Cv,0,Cv,|bv|+1,Cv,|bv|+2, ...,Cv,ℓ). To update the

ciphertext from time period t to t′ ≥ t, do the following:

1) For each node v′ ∈ Tt′ , find a node v ∈ Tt such that bv

,is a prefix of bv′ .

2) Choose st′ R←−Z∗ p, select sv′ R ←− Z∗ p for each

node v′ ∈ Tt. Particularly, let svt′ = st′

3) Compute C′0 = C0 · e(g1, g2)st′ , C′1 = C1 · g−st′ , C′2

= C2 · Fu(ID)st′ , Cv′ = (Cv′,0,Cv′,|bv′ |+1,Cv′,|bv′ |+2,

...,Cv′,ℓ) = _Cv,0 · |bv′ | Y j=|bv|+1 Cv,j · �h0 |bv′ | Y j=1

hbv′ [j] j _sv′ , Cv,|bv′ |+1 · hsv′ |bv′ |+1, ...,Cv,ℓ · hsv′ ℓ _.

4) Return CTID,t′ = �ID, t′,C′0 ,C′1 ,C′2 , {Cv′}v′∈Tt′ _.

• Decrypt(PP,CTID,t,DKID,t′): If t′ < t return ⊥.

Otherwise, update the ciphertext CTID,t to get CTID,t′ ,

and parse CTID,t′ = �ID, t′,C′0,C′1,C′2, {Cv′}v′∈Tt′ _ and

DKID,t′ = (DKt′,1,DKt′,2,DKt′,3). Then, return

M = C′0 · e(C′1 ,DKt′,1) · e(C′2 ,DKt′,2) · e(Cvt′

,0,DKt′,3).

• Revoke(PP, ID,RL, t, st): To revoke ID at time period t,

update the revocation list by RL ← RL ∪ {(ID, t)} and

return the updated RL.

CORRECTNESS. We verify the correctness of our scheme

as follows: Firstly, given a node θ ∈ KUNodes(BT ,RL, t)

∩ Path(η), we have that

DKt,θ=(SKθ,0·KUθ,0·Fu(ID)r0·Fh(t)r1 ,

SKθ,1gr0,KUθ,1·gr1)=(gα2Fu(ID)rθ,0+r0Fh(t)rθ,1+r1 ,

grθ,0+r0 , grθ,1+r1).

 Then, for a ciphertext CTID,t =�ID, t,C0,C1,C2,

{Cv}v∈Tt_,we note that Cvt,0 = Fh(t)st . Thus, it holds that

C0·e(C1,DKt,1)·e(C2,DKt,2)· e(Cvt,0,DKt,3)

= M · e(g1, g2)st · e(g−st , gα 2 · Fu(ID)rθ,0+r0 ·

Fh(t)rθ,1+r1) · e(Fu(ID)st , grθ,0+r0) · e(Fh(t)st , grθ,1+r1)

= M · e(g1, g2)st · e(g−st , gα 2)

= M.

 Furthermore, note that the algorithm

CTUpdate choosesfresh random exponents {sv′}v′∈Tt′ to

update the original ciphertext CTID,t. Thus, CTID,t′ is not

only a valid ciphertext under time period t′, but also is

statistically indistinguishable from the output of

Encrypt(PP, ID, t′,M).

4.2 Security analysis

Theorem 1. If there exists a PPT adversary A breaking the

INDRID- CPA security of the proposed RS-IBE scheme,

then there exists an algorithm C solving the decisional ℓ-

BDHE problem such that

Advℓ−dBDHE C (λ) ≥ 1 32T q2(n + 1) · AdvIND-RID-

CPA RS-IBE,A (λ, T,N),

where q is the maximum number5 of secret key queries and

decryption key queries, and T = 2ℓ is the total number of

time periods

 Proof. Given a PPT adversary A breaking the IND-

RIDCPA security of the proposed RS-IBE scheme, we will

construct an algorithm C to solve the decisional ℓ-BDHE

problem. More precisely, given a random instance of ℓ-

BDHE problem in the form of a turple (G1, G2, e, p, f, D)

where f = (g, gs, f1, ..fℓ, fℓ+2, ..., f2ℓ) and fi = gai ∈ G1 for

1 ≤ i ≤ 2ℓ, the algorithm C can decide if D = e(fℓ+1, gs) by

simulating the experiment according to the following steps.

 Setup. The algorithm C randomly guesses a time

period the adversary A will choose to be challenged.

Denote it by t∗. To generate public parameter PP, the

algorithm C proceeds as follows:

1) Choose α′ R ←− Z∗p and let g1 = f1gα′ and g2 = fℓ,

which implicitly sets as α = (a + α′) and the master secret as

MSK = gα 2 = g(a+α′), an unknown value to C.

2) Let m = 4q and select an integer ρ R ←− {0, 1, ..., n}.

Furthermore, choose n+1 random integers x0, x1, ..., xn ∈

{0, 1, ...,m − 1} and another n + 1 random integers y0, y1,

..., yn ∈ Zp. For an identity ID ∈ {0, 1}n, define the

following two functions:

J(ID) = (p − mρ) + x0 + n X i=1 ID[i]xi,

K(ID) = y0 + n X i=1 ID[i]yi.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1101

3) Assign u0 = gx0−mρ 2 gy0 and ui = gxi 2 gyi for each 1

≤ i ≤ n, and let u = (u0, u1, ..., un). Note that the above

assignment implies that Fu(ID) = gJ(ID) 2 gK(ID).

4) Choose random integers γ0, γ1, ..., γℓ ∈ Zp and set h0 =

gγ0 Qℓ j=1 ft∗[j] j and hj = gγjf−1 ℓ−j+1 for 1 ≤ j ≤ ℓ. Let h

= (h0, h1, ..., hℓ).

5) Publish the public parameter as

PP = {G1,G2, e, g, g1, g2, u, h}.

 Before starting to answer the adversary A’s

queries, the algorithm C flips a coin ctype R ←− { 0, 1} to

guess that A belongs to which type of adversaries, which

are distinguished as follows: -

 • Type-1 adversaries (i.e., ctype = 0) choose to query

OSK(ID∗) at some point, but ID∗ is revoked before the

challenged time period t∗.

• Type-2 adversaries (i.e., ctype = 1) do not query

OSK(ID∗) at any time.

 Depending on A’s type (i.e., the bit ctype), the

algorithm C deals with A’s behaviors by using different

strategies separately.

• The case ctype = 0.

 Denote by IDk the input of C’s kth query on

OSK(·). The algorithm C initially chooses k∗ R ←− {1, ...,

q} as a guess that A’s k∗th key query happens to be

OSK(ID∗) (i.e., IDk∗ =

5. For simplicity, we assume that the maximum number of

secret key queries is equal to the one of decryption key

queries. =ID∗) with probability 1/q, and randomly selects a

leaf node η∗ of BT to store ID∗.

Phase1. C responds to A’s queries according to the

following way:

• OKU(t): For each node θ ∈ KUNodes(BT ,RL, t), the

algorithm C does the following:

1) Retrieve Yθ from θ if it was defined. Otherwise, it

chooses Yθ R ←− G1 and stores it in θ.

2) If t = t∗, it must be that θ /∈ Paht(η∗), since ID∗ is

revoked before the time period t∗. The algorithm

C chooses rθ,1 R ←− Zp, and computes

KUt,θ = (KUθ,0,KUθ,1) = (Y −1 θ Fh(t)rθ,1 , grθ,1).

Observe that KUt,θ is correctly formed as its assignment

implicitly sets gα θ,1 = Y −1 θ .

3) If t 6= t∗, there exists an integer 1 ≤ l ≤ ℓ such that t∗[l]

6= t[l]. Without loss of generality, assume

l is the smallest such integer. If θ /∈ Paht(η∗), the algorithm

C does the same as in the case t = t∗. Otherwise, C

performs as follows: Choose r′θ ,1

R ←− Zp and let rθ,1 = al t[l]−t∗[l] + r′θ,1, and set KUt,θ =

(KUθ,0,KUθ,1) = (Y −1 θ gα 2 Fh(t)rθ,1 , grθ,1).

Observe that KUt, θ is well-defined in this case as its

assignment implicitly sets gα θ,1 = Y −1

θ · gα 2 . As shown in Figure 4, KUt,θ is computable for C.

4) Return KUt = {(θ,KUt,θ)}θ∈KUNodes(BT ,RL,t) •

OSK(IDk): Let IDk be the input of the k-th private key

query.

 – For k 6= k∗, if J(IDk) = 0, the algorithm C aborts.

Otherwise, C randomly chooses a node η from BT and

stores IDk in η, and then for each θ ∈ Path(η) does the

following:

1) Recall Yθ if it was defined. Otherwise,

choose Yθ R ←− G1.

2) If θ ∈ Path(η∗), choose rθ,0 R ←− Zp, and Compute

SKIDk,θ = (SKθ,0, SKθ,1) = (Yθ · Fu(IDk)rθ,0 , grθ,0).

Observe that KUt,θ is well-defined in this case as its

assignment sets gα θ,0 = Yθ

3) If θ /∈ Path(η∗), choose r′θ,0 R ←− Zp and set rθ,0 = −a

J(IDk) + r′θ,0, and let

SKIDk,θ = (SKθ,0, SKθ,1)= (Yθ · gα2 · Fu(IDk)rθ,0 ,

grθ,0). Observe that KUt,θ is well-defined in this case as its

assignment implicitly sets gα θ,0 = Yθ·gα 2.In addition, we

can see that SKIDk,θ is also computable for C:

SKθ,0 = Yθ · ga+α′2 · (gJ(IDk)m 2 gK(IDk))rθ,0

 = Yθ · gα′ 2 · (gJ(IDk) 2 gK(IDk))r′ θ,0 · f −K(IDk) J(IDk)

1

KUθ,0 = Y −1θ · gα2 · Fh(t)rθ,1 = Y −1θ · gα′2 ·

fℓ+1·�gγ0ℓYj=1ft∗[j]ℓ−j+1ℓYj=1(gγj f−1

ℓ−j+1)t[j]_rθ,1

 = Y −1θ · gα′· fℓ+1 · grθ,1(γ0+Pℓj=1 t[j]γj) ·�

l−1Yj=1ft∗[j]−t[j]ℓ−j+1 _rθ,1 · (ft∗[l]−t[l]

ℓ−l+1)rθ,1 · �ℓYj=l+1ft∗[j]−t[j]ℓ−j+1 _rθ,1

 = Y −1θ · gα′2 · fℓ+1 · grθ,1(γ0+Pℓj=1 t[j]γj) ·

f−1ℓ+1 · fr′θ,1(t∗[l]−t[l])ℓ−l+1 �ℓYj=l+1ft∗[j]−t[j]

ℓ−j+1 _alt[l]−t∗[l] �ℓYj=l+1ft∗[j]−t[j]ℓ−j+1 _r′θ,1

 = Y −1θ · gα′2 gr′θ,1(γ0+Pℓj=1 t[j]γj) · f1

t[l]−t∗[l] (γ0+Pℓj=1 t[j]γj)l · fr′θ,1(t∗[l]−t[l])ℓ−l+1

·

ℓYj=l+1(fℓ−j+l+1)t∗[j]−t[j]t[l]−t∗[l] ·ℓY

j=l+1fr′θ,1(t∗[j]−t[j])ℓ−j+1 .

KUθ,1 = grθ,1 = gr′θ,1 · (fl)1t[l]−t∗[l] .

Fig. 4. KUt,_ is computable for C.

and SKθ,1 = grθ,0 = gr′θ,0 · f−1J(IDk)1 .

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1102

 – For k = k∗ (i.e., IDk = ID∗), if J(IDk∗) 6= 0, the

algorithm C aborts. Otherwise, for each θ ∈

Path(η∗), the algorithm C proceeds as follows:

1) Retrieve Yθ from BT if it was defined. Otherwise,

choose Yθ R ←− G1.

2) Select rθ,0 R ←− Zp, and compute

SKID∗,θ=(SKθ,0, SKθ,1)=(Yθ·Fu(ID∗)rθ,0,grθ,0).

Observe that KUt,θ is well-defined in this case as its

assignment sets gα θ,0 = Yθ.

• ODK(ID, t): The algorithm C conducts a query OSK(ID),

and then runs DKGen(PP, SKID,KUt). Now we show that

by the definitions of OKU(·) and OSK(·), the output of

ODK(·, ·) is also correctly formed. Given the input (ID, t),

we distinguish them into the following three sub-cases:

– In case ID = ID∗, it must be that t 6= t∗. By the

definitions, for each θ ∈ Path(η∗) ∩KUNodes(PP,RL, t),

we have that

KUt,θ = (Y −1θ · gα2 · Fh(t)rθ,1 , grθ,1),

SKID∗,θ = (Yθ · Fu(ID∗)rθ,0 , grθ,0),

gαθ,1 = Y −1θ · gα2 , gαθ,0 = Yθ.

This implies that gαθ,0 · gαθ,1 = gα2 . Thus, The

decryption key DKID∗,t is correctly formed.

– In case ID 6= ID∗ and t = t∗, it must be that

KU Nodes(PP,RL, t∗) ∩ Path(η∗) = ∅. Thus, for each node

θ ∈ KU Nodes(PP,RL, t∗) ∩ Path(η), it holds that θ /∈

Path(η∗). Furthermore, we have that

KUt∗,θ = (Y −1θ · Fh(t)rθ,1 , grθ,1),

SKID∗,θ = (Yθ · gα2 · Fu(ID∗)rθ,0 , grθ,0),

gαθ,1 = Y −1θ , gαθ,0 = Yθ · gα2 .

This also implies that gαθ,0 · gαθ,1 = gα2 . Thus, the

decryption key DKID,t∗ is also correctly

formed.

– In the case ID 6= ID∗ and t 6= t∗, for each node θ ∈

KUNodes(PP,RL, t) ∩ Path(η), if

θ ∈ Path(η∗) then the case is the same as the case ID = ID∗.

Otherwise, the case is the same as the case ID 6= ID∗ and t

= t∗. Therefore, the decryption key DKID,t is also correctly

formed in this case.

Challenge. Given (M0,M1) and (ID∗, t′∗) on which the

adversary A wishes to be challenged, if either ID∗ 6=

IDk∗or t∗ 6= t′∗, the algorithm C aborts. Otherwise, it

randomly flips a coin β ∈ {0, 1}, and generates the

challenged ciphertextas follows:

1) Compute

C∗ 0 = MβD · e(gs, fℓ)α′ ,C∗ 1 = (gs)−1,C∗ 2 =

(gs)K(ID∗);

2) For the node vt′∗ ∈ Tt′∗ , compute

C∗ vt′∗ = (C∗ vt′∗ ,0) = ((gs)γ0+Pℓ j=1 t′∗[j]γj);

3) For each node v ∈ Tt′∗ \ {vt′∗}, choose sv R ←− Zp,

and compute

 Cv = (C∗ v,0,C∗ v,|bv|+1,C∗ v,|bv|+2, ...,C∗ j=1

 |bv|+1, hsv |bv|+2, ..., hsv ℓ _;

4) Return the challenged ciphertext

 CTID∗,t′∗ = �C∗0 ,C∗ 1 ,C∗ 2 , {C∗

 Now, we show that if D = e(gs, fℓ+1) then

CTID∗ ,t′∗ is correctly formed. To this end, recall that

Fu(ID∗) = gK(ID∗)and Fh(t′∗) = gγ0+Pℓ j=1 t′∗ [j]γj

, as well as observe that

D · e(gs, fℓ)α′ = e(gs, fℓ+1) · e(gα′, fℓ)s

 = e(ga, fℓ)s · e(gα′ , fℓ)s

 = e(ga+α′ , fℓ)s

 = e(g1, g2)s.

 In addition, if D is a random element in G2, then Mβ

isperfectly hidden from the adversary A’s view.

Phase 2. C proceeds the same as in Phase 1.

 Guess. Eventually, the adversary A outputs a bit β′ as

a guess of β. If β = β′, the algorithm C outputs 0, and 1

otherwise. • The case ctype = 1. Recall that the adversary A

does not query OSK(ID∗) in this case at any time.

However, A may make several decryption key queries on

the challenged identity ID∗ . Denote the time of such

queries by Count∗ . The algorithm C flips an unbiased coin

to guess if Count∗ = 0 or not. If not, C randomly guesses

that A’s k∗ th decryption key query happens to be the first

one on ID∗ .

⋆ The case Count∗ = 0.

Phase 1. The algorithm C answers A’s queries as follows:

• OKU(t): For each node θ ∈ KUNodes(BT ,RL, t),

the algorithm C does the following:

1) Recall Yθ from BT if it was defined. Otherwise, choose

Yθ R ←− G1 and store it in the node θ.

2) Select rθ,1 R ←− Zp, and compute

KUt,θ = (KUθ,0,KUθ,1) = (Y −1 θ · Fh(t)rθ,1 , grθ,1

).

3) Return KUt = {(θ,KUt,θ)}θ∈KUNodes(BT ,RL,t). •

OSK (IDk): If J(IDk) 6= 0, the algorithm C aborts.

Otherwise, to generate the secret key for the identity IDk,

the algorithm C proceeds as follows:

1) Randomly choose a leaf node η from BT and store ID in

η;

2) For each node θ ∈ Path(η), retrieve Yθ from BT if it was

defined. Otherwise, choose Yθ R ←− G1 and store it in the

node θ.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1103

3) Choose r′θ,0 R ←− Zp and let rθ,0 = − a J(IDk) +r′θ ,0

for each node θ ∈ Path(η), and set

SKIDk,θ =(SKθ,0, SKθ,1) = (Yθ · gα 2 · Fu(IDk)rθ,0 ,

grθ,0).

As shown in the case ctype = 0, the value SKID,θ is

correctly formed, and is computable for the algorithm C.

5) Return SKIDk = {(θ, SKIDk,θ)}θ∈Path(η).

 • ODK(ID, t): The algorithm C queries OSK(ID) and

subsequently runs DKGen(PP, SKID,KUt), and returns the

corresponding output. Similar to the case ctype = 0, we can

verify that the output of the decryption key query is well

defined.

Challenge. Given (M0,M1) and (ID∗ , t′∗), the algorithm

C checks if J(ID∗) = 0 and t∗ = t′∗ . If not, C

aborts.Otherwise, C generates the challenged ciphertext

according to the same way as in the case ctype = 0.

Phase 2. C acts the same as in Phase 1.

Guess. C acts the same as in the case ctype = 0.

⋆ The case Count∗ 6= 0.

 Phase 1. The algorithm C uses the following strategy to

answer A’s queries.

• OKU(t) and OSK(ID): The algorithm proceeds the same

as in the case Count∗ = 0.

• ODK(IDk, t): Let (IDk, t) be the input of A’s decryption

key query.

– If k < k∗ , the algorithm C proceeds the sameas in the

case Count∗ = 0;

 – If k = k∗ (i.e., IDk = ID∗), it must be t 6= t∗ . Thus,

there exists the smallest index 1 ≤ l ≤ ℓ such that t[l] 6=

t∗ [l]. The algorithm C does the following:

1) Choose r0, r′1 R ←− Zp and implicitly assign

r1 = al t[l]−t∗ [j] + r′1;

2) Compute and return m

DKID∗ ,t = (DKt,1,DKt,2,DKt,3) = (gα 2

Fu(ID∗)r0Fh(t)r1 , gr0, gr1).

We can see that DKID∗ ,t is well-formed. Furthermore,

as shown in the case ctype = 0, the value DKID∗ ,t is

also computable for C.

– If k > k∗ , the way to response the query depends on

IDk. More precisely, if IDk = ID∗ , the algorithm

proceeds the same as in the case k = k∗ . Otherwise, C

proceeds the same as in the case k < k∗ .

Challenge. C acts the same as in the case ctype = 0.

Phase 2. C proceeds the same as in Phase 1.

Guess. C performs the same as in the case ctype = 0.

Analysis of C. To enable the algorithm C to complete the

experiment without aborting, the following conditions are

required to be fulfilled:

1) E1: t∗ = t′∗ ;

2) In the case ctype = 0:m

 • E2,1: For OSK(IDk∗), it must be IDk∗ = ID∗ ;

 • E2,2: For 1 ≤ k 6= k∗ ≤ q, it must be J(IDk) 6= 0;

 • E2,3: J(ID∗) = 0;

3) In the case (ctype = 1 ∧ Count∗ = 0):

• E3,1: For 1 ≤ k ≤ q, it must be J(IDk) 6= 0; • E3,2:

J(ID∗) = 0;

4) In the case (ctype = 1 ∧ Count∗ 6= 0):

 • E4,1: For 1 ≤ k ≤ q, it must be J(IDk) 6= 0;

• E4,2: For ODK(IDk∗ , t), it must be IDk∗ = ID∗ ;

• E4,3: J(ID∗) = 0.

Denote by E the event that C does not abort the

experiment, we can that

E = �(E1 ∧ E2,1 ∧ E2,2 ∧ E2,3) ∨ (E1 ∧ E3,1 ∧ E3,2) ∨

(E1 ∧ E3,1 ∧ E3,2 ∧ E3,3)_.

 Furthermore, by using Waters’s [38] “artificial

abort” technique, we obtain that

Pr[E1 ∧ (E2,1 ∧ E2,2 ∧ E2,3)] ≥ 1 2·1T·1 q·1 8q(n + 1)

 Pr[E1 ∧ (E3,1 ∧ E3,2)] ≥ 1 4 · 1 T · 1 8q(n + 1) Pr[E1

∧ (E3,1 ∧ E3,2 ∧ E3,3)] ≥ 1 4 · T q· 1 8q(n + 1)

Pr[E] ≥ min nPr_E1 ∧ (E2,1 ∧ E2,2 ∧ E2,3)_,

Pr_E1 ∧ (E3,1 ∧ E3,2)_, Pr_E1 ∧ (E3,1 ∧ E3,2 ∧ E3,3)_o

≥ 1 32T q2(

Now, recall that under the condition that C does not abort,

if D = e(gs, gaℓ+1) then C perfectly simulates the

experiment, and thus Pr_C(f,D = e(gs, gaℓ+1)) = 0_ =

�AdvIND-RID-CPA RS-IBE,A (λ, T,N) + 1 2 _ · Pr[E].

 However, if D is a random element from G2 then

encrypted message M∗ β is perfectly hidden from the A’s

view, and thus

Pr[C(f,D R ←− G2) = 0] = 1 2 · Pr[E].

By combining the above equalities, we get that

Advℓ−dBDHE C (λ) =___ Pr_C(f,D = e(gs, gaℓ+1)) = 0_

− Pr_C(f,D R ←− G2) = 0____ m≥ 1 32T q2(n + 1) ·

AdvIND-RID-CPA RS-IBE,A (λ, T,N).

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1104

This completes the proof.

4.3 Performance discussions

In this section, we discuss the performance of the proposed

RS-IBE scheme by comparing it with previous works in

terms of communication and storage cost, time complexity

and functionalities, which are summarized in Table 1,

Table 2 and Table 3.

 From Table 1 we can see that the sizes of private key

and update key in schemes [22], [24] and our scheme are

mall upper bounded by O(r logN/r), since these schemes all

utilize binary data structure to achieve revocation. On the

other hand, Liang et al.’s [26] scheme involves a broadcast

encryption scheme to distribute update key such that their

scheme has constant sizes of private key and update key.

Furthermore, by delegating the generation of re-encryption

key to the key authority, the ciphertext size of their scheme

also achieves constant. However, to this end, the key

authority has to maintain a data table for each user to store

the user’s secret key for all time periods, which brings O(T

)τG1

storage cost for the key authority. Conversely, the cipher

text size of our scheme is just linear in log(T)2. In

addition, we note that in all listed schemes, the private key

generator needs to periodically produce an update key, it

must be online if each time period is rather short, e.g., an

hour. However, from the perspective of practical

applications, the frequency of updating users’ decryption

keys should not be too small. A time period like a week,

half a month or a moth is more desirable. As a

consequence, the private key generator just needs to

produce an update key for the next

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1105

period when the current time period is over. Thus the PKG

does not need to be always online. Another limitation of

these listed schemes is that the generated ciphertext has the

size linear with the number of receivers. To overcome this

issue, a natural manner is to construct a similar scheme in

the setting of broadcast encryption. On the aspect of time

complexity, as illustrated in

Table 2, the enumerated schemes all have constant time of

/. Citation information: DOI decryption6. For two schemes

supporting ciphertext update, the time complexity of

ciphertext update in Liang et al.’scheme is linear in N since

the key authority needs to produce a re-encryption key for

each user to re-encrypt the ciphertext. However, the time

complexity of ciphertext update in our scheme is linear in

log(T)2.

 As shown inTable 3, the four schemes are all proved

secure in an adaptive-secure model, and can also provide

backward secrecy since they all supports identity

revocation. But the security of our scheme is built upon a

relatively strong security assumption, decisional ℓ-DBHE

assumption. The schemes [22], [24] and ours update user’s

secret keys in a public way, namely, the update key is

available for all users. However, Liang et al.’s [26] scheme

involves the method of broad encryption to update user’s

secret key such that only non-revoked users can obtain the

update key. Consequently, their scheme cannot resist

collusion attack of revoked users and non-revoked users.

Compared with the schemes [22] and [24], Liang et al.’s

[26] scheme and ours can both provide forward secrecy by

additionally introducing the functionality of ciphertext

update. But the procedure of ciphertext update in Liang et

al.’s [26] scheme is performed in a private and interactive

way, since it requires the key authority to periodically

produce and provide reencryption keys for the cloud server

to update ciphertext. However, in our schemes, the cloud

server itself can update ,ciphertext by just using public

parameter.

4.4 Implementation

To show the practical applicability of the proposed RSIBE

scheme, we further implement it using codes from the

Pairing-Based Cryptography library version 0.5.14 [39].

Specifically, we use the symmetric super singular curve y2

= x3 + x, where the base field size is 512-bit and the

embedding degree is 2. The implementation is taken on a

Linux-like system (Win7 + MinGW) with an Intel(R)

Core(TM) i5 CPU (650@3.20GHz) and 4.00 GB RAM. In

the implementation, we set the number of users to be N = 8

and the revoked uses to be R = 4 (the nodes η2, η3, η4, η7

in Figure 2 are revoked). In Figure 5, Figure 6 and Figure 7,

we present the running time of the basic algorithms, i.e.,

PKGen, KeyUpdate, DKGen, Encrypt, CTUpdate and

Decrypt, for different choice of the total number of time

periods T ∈ {24, 26, 28, 210, 212, 214, 216, 218}. To

generate the experimental results, we perform as the

following procedure: generate the private key and encrypt a

messageat the initial time period, then, periodically update

the private key and the ciphertext, and decrypt the

ciphertext. For a small number of time periods: T ∈ {24,

26, 28}, the running time of each algorithm is obtained by

computing the average of running the above procedure 100

times. While, for a large number of time periods: T ∈ {210,

212, 214, 216, 218}, the running time for each algorithm is

obtained by running the above procedure only once, and the

running time for update algorithm is the mean of the first

512 time periods. We observe that, the time costs of the

algorithms PKGen, 6. In our scheme, given the decryption

DKID,t and ciphertext CTID,t′ , if t _ t′ then the cloud

server would update CTID,t′ to CTID,t. Here, we just

consider the decryption complexity for an individual

KeyUpdate, DKGen and Decrypt are independent of the

total number of time periods, and no more than 40

milliseconds.

On the other hand, it takes less than 1 second for the user to

initially encrypting the message, which would beshare on

the cloud. Although the time cost of the algorithm

CTUpdate is apparently greater than other algorithms, it is

run by a cloud server with powerful capability of

computation. Thus, our RS-IBE scheme is feasible for

practical applications.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1106

V. CONCLUSIONS

Cloud computing brings great convenience for people.

Particularly, it perfectly matches the increased need of

sharing data over the Internet. In this paper, to build a cost-

effective and secure data sharing system in cloud

computing, we proposed a notion called RS-IBE, which

supports identity revocation and ciphertext update

simultaneously such that a revoked user is prevented from

accessing previously shared data, as well as subsequently

shared data. Furthermore, a concrete construction of RS-

IBE is presented. The proposed RS-IBE scheme is proved

adaptive-secure in the standard model, under the decisional

ℓ-DBHE assumption. The comparison results demonstrate

that our scheme has advantages in terms of efficiency and

functionality, and thus is more feasible for practical

applications.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful

comments and suggestions.

REFERENCES

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A

break in the clouds: towards a cloud definition,” ACM SIGCOMM

Computer Communication Review, vol. 39, no. 1, pp. 50–55, 2008.

[2] iCloud. (2014) Apple storage service. [Online]. Available:

https://www.icloud.com/
[3] Azure. (2014) Azure storage service. [Online]. Available:

http://www.windowsazure.com/

[4] Amazon. (2014) Amazon simple storage service (amazon s3).

[Online]. Available: http://aws.amazon.com/s3/

[5] K. Chard, K. Bubendorfer, S. Caton, and O. F. Rana, “Social cloud

computing: A vision for socially motivated resource sharing,”

Services Computing, IEEE Transactions on, vol. 5, no. 4, pp. 551–

563, 2012.

[6] C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou,

“Privacypreserving public auditing for secure cloud storage,”

Computers, IEEE Transactions on, vol. 62, no. 2, pp. 362–375, 2013.

[7] G. Anthes, “Security in the cloud,” Communications of the ACM,

vol. 53, no. 11, pp. 16–18, 2010.

[8] K. Yang and X. Jia, “An efficient and secure dynamic auditing

protocol for data storage in cloud computing,” Parallel and Distributed

Systems, IEEE Transactions on, vol. 24, no. 9, pp. 1717–1726, 2013.

[9] B. Wang, B. Li, and H. Li, “Public auditing for shared data with

efficient user revocation in the cloud,” in INFOCOM, 2013

Proceedings IEEE. IEEE, 2013, pp. 2904–2912.

[10] S. Ruj, M. Stojmenovic, and A. Nayak, “Decentralized access

control with anonymous authentication of data stored in clouds,”

Parallel and Distributed Systems, IEEE Transactions on, vol. 25, no.

2, pp. 384–394, 2014.

[11] X. Huang, J. Liu, S. Tang, Y. Xiang, K. Liang, L. Xu, and J. Zhou,

“Cost-effective authentic and anonymous data sharing with forward

security,” Computers, IEEE Transactionson,2014,doi:

m10.1109/TC.2014.2315619.

[12] C.-K. Chu, S. S. Chow, W.-G. Tzeng, J. Zhou, and R. H. Deng,

“Key-aggregate cryptosystem for scalable data sharing in cloud

storage,”

[13] A. Shamir, “Identity-based cryptosystems and signature schemes,”

in Advances in cryptology. Springer, 1985, pp. 47–53.

[14] D. Boneh and M. Franklin, “Identity-based encryption from the weil

pairing,” SIAM Journal on Computing, vol. 32, no. 3, pp. 586– 615,

2003.

[15] S. Micali, “Efficient certificate revocation,” Tech. Rep., 1996.

[16] W. Aiello, S. Lodha, and R. Ostrovsky, “Fast digital identity

revocation,” in Advances in Cryptology–CRYPTO 1998. Springer,

1998, pp. 137–152.

[17] D. Naor, M. Naor, and J. Lotspiech, “Revocation and tracing

schemes for stateless receivers,” in Advances in Cryptology–

CRYPTO 2001. Springer, 2001, pp. 41–62.

[18] C. Gentry, “Certificate-based encryption and the certificate

revocation problem,” in Advances in Cryptology–EUROCRYPT

2003. Springer, 2003, pp. 272–293.

[19] V. Goyal, “Certificate revocation using fine grained certificate

space partitioning,” in Financial Cryptography and Data Security.

Springer, 2007, pp. 247–259.

[20] A. Boldyreva, V. Goyal, and V. Kumar, “Identity-based encryption

with efficient revocation,” in Proceedings of the 15th ACM

conference on Computer and communications security. ACM, 2008,

pp. 417–426.

[21] B. Libert and D. Vergnaud, “Adaptive-id secure revocable

identitybased encryption,” in Topics in Cryptology–CT-RSA 2009.

Springer, 2009, pp. 1–15.

[22] ——, “Towards black-box accountable authority ibe with short

ciphertexts and private keys,” in Public Key Cryptography–PKC

2009. Springer, 2009, pp. 235–255.

[23] J. Chen, H. W. Lim, S. Ling, H. Wang, and K. Nguyen, “Revocable

identity-based encryption from lattices,” in Information Security and

Privacy. Springer, 2012, pp. 390–403.

[24] J. H. Seo and K. Emura, “Revocable identity-based encryption

revisited: Security model and construction,” in Public-Key

Cryptography– PKC 2013. Springer, 2013, pp. 216–234.

[25] “Efficient delegation of key generation and revocation

functionalities in identity-based encryption,” in Topics in Cryptology

CT- RSA 2013. Springer, 2013, pp. 343–358.

[26] K. Liang, J. K. Liu, D. S. Wong, and W. Susilo, “An efficient

cloudbased revocable identity-based proxy re-encryption scheme for

public clouds data sharing,” in Computer Security-ESORICS 2014.

Springer, 2014, pp. 257–272.

[27] D.-H. Phan, D. Pointcheval, S. F. Shahandashti, and M. Strefler,

“Adaptive cca broadcast encryption with constant-size secret keys and

ciphertexts,” International journal of information security, vol. 12, no.

4, pp. 251–265, 2013.

[28] R. Anderson, “Two remarks on public-key cryptology

(invitedlecture),” 1997.

[29] M. Bellare and S. K. Miner, “A forward-secure digital signature

scheme,” in Advances in Cryptology–CRYPTO 1999. Springer, 1999,

pp. 431–448.

[30] M. Abdalla and L. Reyzin, “A new forward-secure digital signature

scheme,” in Advances in Cryptology–ASIACRYPT 2000. Springer,

2000, pp. 116–129.

[31] A. Kozlov and L.Reyzin, “Forward-secure signatures with fast key

update,” in Security in communication Networks. Springer, 2003, pp.

241–256.

[32] X. Boyen, H.Shacham, E. Shen, and B. Waters, “Forward-secure

signatures with untrusted update,” in Proceedings of the 13th ACM

conference on Computer and communications security. ACM, 2006,

pp. 191–200.

[33] J. Yu, R. Hao, F. Kong, X. Cheng, J. Fan, and Y. Chen,

“Forwardsecure identity-based signature: security notions and

https://www.icloud.com/

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1107

construction,” Information Sciences, vol. 181, no. 3, pp. 648–660,

2011.

[34] R. Canetti, S. Halevi, and J. Katz, “A forward-secure public-key

encryption scheme,” in Advances in Cryptology–Eurocrypt 2003.

Springer, 2003, pp. 255–271.

[35] D. Yao, N. Fazio, Y. Dodis, and A. Lysyanskaya, “Id-based

encryption for complex hierarchies with applications to forward

security and broadcast encryption,” in Proceedings of the 11th ACM

conference on Computer and communications security. ACM, 2004,

pp. 354–363.

[36] J. M. G. Nieto, M. Manulis, and D. Sun, “Forward-secure

hierarchical predicate encryption,” in Pairing-Based Cryptography–

Pairing 2012. Sprnger, 2013, pp. 83–101.

[37] A. Sahai, H. Seyalioglu, and B. Waters, “Dynamiccredentials a

ciphertext delegation for attribute-based encryption,” in Advances in

Cryptology–CRYPTO 2012. Springer, 2012, pp. 199–217.

[38] B. Waters, “Efficient identity-based encryption without random

oracles,” in Advances in Cryptology–EUROC Springer, 2005, pp.

114–127.

[39] B. Lynn. (2014) Pbc library: The pairing-based cryptography

library.

Authors profile

Maadaala Chandra Sekhar completed B.Tech in

Computer Science & Engineering from JNTUK and

is pursuing Mtech in Qis college and Engineering

and Technology in Depatrment of Computer

Science and Engineering, Ongole.

Mrs. Keerthi Kethineni is currently working as an

Assistant Professor in Department of Computer

and Science and Engineering with the

Qualification M.Tech.

