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Abstract—Cloud computing provides a flexible and convenient way for data sharing, which brings various benefits for both 

the society and individuals. But there exists a natural resistance for users to directly outsource the shared data to the cloud 

server since the data often contain valuable information. Thus, it is necessary to place cryptographically enhanced access 

control on the shared data. Identity-based encryption is a promising cryptographically primitive to build a practical data sharing 

system. However, access control is not static. That is, when some user’s authorization is expired, there should be a mechanism 

that can remove him/her from the system. Consequently, the revoked user cannot access both the previously and subsequently 

shared data. To this end, we propose a notion called revocable-storage identity-based encryption (RS-IBE), which can provide 

the forward/backward security of cipher text by introducing the functionalities of user revocation and cipher text update 

simultaneously. Furthermore, we present a concrete construction of RS-IBE, and prove its security in the defined security 

model. The performance comparisons indicate that the proposed RS-IBE scheme has advantages in terms of functionality and 

efficiency, and thus is feasible for a practical and cost-effective data-sharing system. Finally, we provide implementation 

results of the proposed scheme to demonstrate its practicability. 

 

Keywords—Cloud computing, data sharing, revocation, Identity-based encryption, ciphertext update, decryption key exposure. 

 

I.  INTRODUCTION 
 

CLOUD computing is a paradigm that provides massive 

computation capacity and huge memory space at a low cost 

[1]. It enables users to get intended services irrespective of 

time and location across multiple platforms (e.g., mobiled 

evices, personal computers), and thus brings great 

convenience to cloud users. Among numerous services 

provided by cloud computing, cloud storage service, such 

as Apple’s iCloud [2], Microsoft’s Azure [3] and Amazon’s 

S3 [4], can offer a more flexible and easy way to share data 

over the Internet, which provides various benefits for our 

society [5], [6]. However, it also suffers from several 

security threats,which are the primary concerns of cloud 

users [7].  

             Firstly, outsourcing data to cloud server implies 

that data is out control of users. This may cause users’ 

hesitation since the outsourced data usually contain 

valuable and sensitive information. Secondly, data sharing 

is often implemented in an open and hostile environment, 

and cloud server would become a target of attacks. Even 

worse, cloud server itself may reveal users’ data for illegal 

profit. Thirdly, data sharing is not static. That is, when a 

user’s authorization gets expired, he/she should no longer 

possess the privilege of accessing the previously and 

subsequently shared data. Therefore, while outsourcing 

data to cloud server, users also want to control access to 

these data such that only those currently authorized users 

can share the outsourced data.  

A natural solution to conquer the aforementioned problem 

is to use cryptographically enforced access control such as 

identity-based encryption (IBE). Furthermore, to overcome 

the above security threats, such kind of identity-based 

access control placed on the shared data should meet the 

following security goals: 

• Data confidentiality: Unauthorized users should be 

prevented from accessing the plaintext of the shared 

data stored in the cloud server. In addition, the cloud server, 

which is supposed to be honest but curious, should also be 

deterred from knowing plaintext ofthe shared data. 

• Backward secrecy: Backward secrecy means that, when 

a user’s authorization is expired, or a user’s 

secret key is compromised, he/she should be prevented 

from accessing the plaintext of the subsequently shared data 

that are still encrypted under his/her identity. 

• Forward secrecy: Forward secrecy means that, when a 

user’s authority is expired, or a user’s secret key 

is compromised, he/she should be prevented from accessing 

the plaintext of the shared data that can be 

previously accessed by him/her.  

                  The specific problem addressed in this paper is 

how to construct a fundamental identity-based 
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cryptographical tool to achieve the above security goals. 

We also note that there exist other security issues that are 

equally important for a practical system of data sharing, 

such as the authenticity and availability of the shared data 

[8], [9], [10], [11], [12]. But the research on these issues is 

beyond the scope of this paper. 

 

1.1 Motivation 

It seems that the concept of revocable identity-based 

encryption (RIBE) might be a promising approach that 

fulfills the aforementioned security requirements for data 

sharing. RIBE features a mechanism that enables a sender 

to append the current time period to the cipher text such 

that the receiver can decrypt the cipher text only under the 

condition that he/she is not revoked at that time period. As 

indicated in Figure 1, a RIBE-based data sharing system 

works as follows: Step 1: The data provider (e.g., David) 

first decides the users (e.g., Alice and Bob) who can share 

the data. Then, David encrypts the data under the identities 

Alice and Bob, and uploads the cipher text of the shared 

data to the cloud server.  

Step 2: When either Alice or Bob wants to get the shared 

data, she or he can download and decrypt the corresponding 

cipher text. However, for an unauthorized user and the 

cloud server, the plaintext of the shared data is not 

available.  

Step 3: In some cases, e.g., Alice’s authorization gets 

expired, David can download the cipher text of the shared 

data, and then decrypt-then-re-encrypt the shared data such 

that Alice is prevented from accessing the plaintext of the 

shared data, and then upload the re-encrypted data to the 

cloud server again.  

 
 

Key authority Data provider Storage server Users 

Encrypt and upload data sharing Key management Key 

management Cipher text update Fig. 1. A natural RIBE-

based data sharing system 

               Obviously, such a data sharing system can provide 

confidentiality and backward secrecy. Furthermore, the 

method of decrypting and re-encrypting all the shared data 

can ensure forward secrecy. However, this brings new 

challenges. Note that the process of decrypt-then-re-encrypt 

necessarily involves users’ secret key information, which 

makes the overall data sharing system vulnerable to new 

attacks. In general, the use of secret key should be limited 

to only usual decryption, and it is inadvisable to update the 

cipher text periodically by using secret key.  

         Another challenge comes from efficiency. To update 

the cipher text of the shared data, the data provider has to 

frequently carry out the procedure of download-decrypt-

encrypt- upload. This process brings great communication 

and computation cost, and thus is cumbersome and 

undesirable for cloud users with low capacity of 

computation and storage. One method to avoid this problem 

is to require the cloud server to directly re-encrypt the 

cipher text of the shared data. However, this may introduce 

cipher text extension, namely, the size of the cipher text of 

the shared data is linear in the number of times the shared 

data have been updated. In addition, the technique of proxy 

re-encryption can also be used to conquer the 

aforementioned problem of efficiency. Unfortunately, it 

also requires users to interact with the cloud server in order 

to update the cipher text of the shared data. 

 

1.2 Related work 

1.2.1 Revocable identity-based encryption The concept of 

identity-based encryption was introduced by Shamir [13], 

and conveniently instantiated by Boneh and Franklin [14]. 

IBE eliminates the need for providing a public 

key infrastructure (PKI). Regardless of the setting of IBE or 

PKI, there must be an approach to revoke users from the 

system when necessary, e.g., the authority of some user is 

expired or the secret key of some user is disclosed. In the 

traditional PKI setting, the problem of revocation has been 

well studied [15], [16], [17], [18], [19], and several 

techniques are widely approved, such as certificate 

revocation list or appending validity periods to certificates. 

However, there are only a few studies on revocation in the 

setting of IBE. Boneh and Franklin [14] first proposed a 

natural revocation way for IBE. They appended the current 

time period to 

the ciphertext, and non-revoked users periodically received 

private keys for each time period from the key authority. 

Unfortunately, such a solution is not scalable, since it 

requires the key authority to perform linear work in the 

number of non-revoked users. In addition, a secure channel 

is essential for the key authority and non-revoked users to 

transmit new keys. To conquer this problem, Boldyreva, 

Goyal and Kumar [20] introduced a novel approach to 

achieve efficient revocation. They used a binary tree to 

manage identity such that their RIBE scheme reduces the 

complexity of key revocation to logarithmic (instead of 

linear) in the maximum number of system users. However, 

this scheme only achieves selective security. Subsequently, 
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by using the aforementioned revocation technique, Libert 

and Vergnaud [21] proposed an adaptively secure RIBE 

scheme based on a variant ofWater’s IBE scheme [22], 

Chen et al. [23] constructed a RIBE scheme from lattices. 

Recently, Seo and Emura [24] proposed an efficient RIBE 

scheme resistant to a realistic threat called decryption key 

exposure, whichmeans that the disclosure of decryption key 

for current time period has no effect on the security of 

decryption keys for other time periods. Inspired by the 

above work and [25], Liang et al. [26] introduced a cloud-

based revocable identity-based proxy re-encryption that 

supports user revocation and ciphertext update. To reduce 

the complexity of revocation, they utilized a broadcast 

encryption 

Scheme [27] to encrypt the cipher  text of the update key, 

which is independent of users, such that only non-revoked 

users can decrypt the update key. However, this kind of 

revocation method cannot resist the collusion of revoked 

users and malicious non-revoked users as malicious non 

revoked users can share the update key with those revoked 

users. Furthermore, to update the cipher text, the key 

authority in their scheme needs to maintain a table for each 

user produces the re-encryption key for each time period, 

which significantly increases the key authority’s workload. 

 

1.2.2 Forward-secure cryptosystems 

 

In 1997, Anderson [28] introduced the notion of forward 

security in the setting of signature to limit the damage of 

key exposure. The core idea is dividing the whole lifetime 

of a private key into T discrete time periods, such that the 

compromise of the private key for current time period 

cannot enable an adversary to produce valid signatures for 

previous time periods. Subsequently, Bellare and Miner 

provided formal definitions of forward-secure signature and 

presented practical solutions. Since then, a large number of 

forward-secure signature schemes [29], [30], [31], [32], 

[33] has been proposed.  

              In the context of encryption, Canetti, Halevi and 

Katz [34] proposed the first forward-secure public-key 

encryption scheme. Specifically, they firstly constructed a 

binary tree encryption, and then transformed it into a 

forward-secure encryption with provable security in the 

random oracle model. Based on Canetti et al’s approach, 

Yao et al. [35] proposed a forward-secure hierarchical IBE 

by employing two hierarchical IBE schemes, and Nieto et 

al. [36] designed a forward-secure hierarchical predicate 

encryption.  

                Particularly, by combining Boldyreva et al.’s [20] 

revocation technique and the aforementioned idea of 

forward security1, in CRYPTO 2012 Sahai, Seyalioglu and 

Waters [37] proposed a generic construction of so-called 

revocablestorage attribute-based encryption, which 

supports user 

revocation and ciphertext update simultaneously. In other 

words, their construction provides both forward and 

backward secrecy. What must be pointed out is that the 

process of ciphertext update of this construction only needs 

public information. However, their construction cannot be 

resistant to decryption key exposure, since the decryption is 

a matching result of private key and update key. 

 

1.3 Our contributions 

 

In this paper, we introduce a notion called revocable 

storage identity-based encryption (RS-IBE) for building a 

cost-effective data sharing system that fulfills the three 

security goals. More precisely, the following achievements 

are captured in this paper: We provide formal definitions 

for RS-IBE and its 

corresponding security model; 

• We present a concrete construction of RS-IBE. The 

proposed scheme can provide confidentiality and 

backward/forward2 secrecy simultaneously; 

• We prove the security of the proposed scheme in the 

standard model, under the decisional ℓ-Bilinear 

Diffie-Hellman Exponent (ℓ-BDHE) assumption. In 

addition, the proposed scheme can withstand decryption 

key exposure; 

• The proposed scheme is efficient in the following ways: 

1. They utilized the idea to provide the forward secrecy of 

ciphertext, rather than secret key as in the original case. 

2. As in [37], our scheme achieves forward security under 

the assumption that the encrypted data is stored in the cloud 

and users do not store the encrypted/decrypted data locally.  

        – The procedure of ciphertext update only needs 

public information. Note that no previous identity-based 

encryption schemes in the literature can provide this 

feature;  

        – The additional computation and storage complexity, 

which are brought in by the forward secrecy, is all upper 

bounded by O(log(T )2), where T is the total number of 

time periods.  

             

             Outline. The remainder of this paper is structured 

as follows: In section 2, we introduce the preliminaries 

involved in our construction. Then we present the 

definitions of RSIBE in section 3, and provide the concrete 

construction in section 4, followed with the corresponding 

security analysis, performance discussions, and the 

implementation results of the scheme. Finally, we conclude 

in section 5. 

 

II. PRELIMINARIES 

 

In this section, we first briefly present the basic concepts on 

bilinear pairing and decisional ℓ-BDHE assumption. Then, 

an algorithm used to perform efficient revocation is 

introduced. 
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2.1 Bilinear pairing and complexity assumption 

Definition 1 (Bilinear pairing). Let G1 and G2 be two 

cyclic groups with prime order q, and g be a generator of 

G1. A bilinear pairing is a map e : G1×G1 → G2 with the 

following properties: 

 

• Bilinearity: e(ua, hb) = e(u, h)ab for all u, h ∈ G1, a, b ∈ 

Z∗q . • Non-degeneracy: e(g, g) 6= 1. 

 

• Computability: There exists an efficient algorithm to 

compute e(u, h) for any u, h ∈ G1. 

 

Definition 2 (Decisional ℓ-BDHE Assumption). The 

decisional ℓ-BDHE problem is formalized as follows. 

Choose a group G1 with prime order p according to the 

security parameter λ. Select a generator g of G1 and a, s R 

←− Zp, and let fi = gai Provide the vector f = (g, gs, f1, ..., 

fℓ, fℓ+2, ..., f2ℓ) and an element 

D ∈ G2 to a probabilistic polynomial-time (PPT) algorithm 

C, it outputs 0 to indicate that D = e(gs, gaℓ+1 

), and outputs 1 to indicate that D is a random element 

from G2. The advantage of C solving the decisional ℓ-

BDHE problem in G1 is defined as follows:  

Advℓ−dBDHE C (λ) =___ Pr_C(f ,D = e(gs, gaℓ+1 )) = 0_ 

− Pr_C(f ,D R ←− G2) = 0____  

                We say that the decisional ℓ-BDHE assumption 

holds in G1 provided that no PPT algorithm can solve the 

decisional ℓ-BDHE problem with a non-negligible 

advantage. 

 

2.2 KUNodes algorithm 

 

Our RS-IBE scheme uses the same binary tree structure 

introduced by Boldyreva, Goyal and Kumar [20] to achieve 

efficient revocation. To describe the revocation mechanism, 

we first present several notations. Denote by ε the root node 

of the binary tree BT , and Path(η) the set of nodes on the 

path from ε to the leaf node η (including ε and η). For a 

non-leaf node θ, we let all and θr stand for its left and right 

child, respectively. Given a time period t and revocations 

list RL, which is comprised of the tuples (ηi, ti) indicating 

that the node ηi was revoked at time period ti, the algorithm 

KUNodes(BT ,RL, t) outputs the smallest subset Y of 

nodes of BT such that Y contains an ancestor for each node 

that is not revoked before the time period t.  

 
 

Fig. 2. An instance of the algorithm KUNodes  

 

             Informally, to identify the set Y, the algorithm first 

marks all the ancestors of revoked nodes as revoked, then 

outputs all the non-revoked children of revoked nodes. As 

an example,we present two instances of the algorithm 

KUNodes in Figure 2. The formal description is given 

below. 

Algorithm 1 KUNodes(BT ,RL, t) 

1: X,Y←− ∅ 

2: for all (ηi, ti) ∈ RL do 

3: if ti ≤ t then 

4: Add Path(ηi) to X 

5: end if 

6: end for 

7: for all θ ∈ X do 

8: if θl /∈ X then 

9: Add θl to Y 

10: end if 

11: if θr /∈ X then 

12: Add θr to Y 

13: end if 

14: end for 

15: if Y = ∅ then 

16: Add the root node ε to Y 

17: end if 

18: return Y 

 

III. DEFINITION AND SECURITY MODEL OF RS-

IBE 

In this section, we first provide the formal definition of 

RSIBE, and then give the corresponding security model. 

 

3.1 Syntax of RS-IBE 

 

Definition 3 (Revocable-Storage Identity-Based 

Encryption). 

A revocable-storage identity-based encryption scheme with 

message space M, identity space I and total number of time 
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periods T is comprised of the following seven polynomial 

time algorithms: 

 

• Setup(1λ, T,N): The setup algorithm takes as input the 

security parameter λ, the time bound T and the 

maximum number of system users N, and it outputs the 

public parameter PP and the master secret key 

MSK,associated with the initial revocation list RL = ∅ and 

state st. 

 

• PKGen(PP,MSK, ID): The private key generation 

algorithm takes as input PP, MSK and an identity ID ∈ I, 

and it generates a private key SKID for ID and an updated 

state st. 

 

• KeyUpdate(PP,MSK,RL, t, st): The key update algorithm 

takes as input PP,MSK, the current revocation list RL, the 

key update time t ≤ T and the state st, it outputs the key 

update KUt. 

 

• DKGen(PP, SKID,KUt): The decryption key generation 

algorithm takes as input PP, SKID and KUt, and 

it generates a decryption key DKID,t for ID with time 

period t or a symbol ⊥ to illustrate that ID has been 

previously revoked. 

 

• Encrypt(PP, ID, t,M): The encryption algorithm takes as 

input PP, an identity ID, a time period t ≤ T , 

and a message M ∈ M to be encrypted, and outputs a 

ciphertext CTID,t. 

 

• CTUpdate(PP,CTID,t, t′): The ciphertext update 

algorithm takes as input PP, CTID,t and a new time period 

t′ ≥ t, and it outputs an updated ciphertext CTID,t′ . 

 

• Decrypt(PP,CTID,t,DKID,t′): The decryption algorithm 

takes as input PP, CTID,t, DKID,t′ , and it 

Recovers the encrypted message M or a distinguished 

symbol ⊥ indicating that CTID,t is an invalid ciphertext. 

 

• Revoke(PP, ID,RL, t, st): The revocation algorithm takes 

as input PP, an identity ID ∈ I to be revoked, 

the current revocation list RL, a state st and revocation 

time period t ≤ T , and it updates RL to a new one. 

 

Definition 4 (Correctness of RS-IBE). We say that a RS-

IBE scheme is correct provided that, for any (PP,MSK,RL, 

st) ← 

Setup(1λ, T,N), ID ∈ I, t ≤ T , M ∈ M, all possible states st 

and a revocation lists RL, if ID is not revoked at time 

period t, then for (SKID, sk)← 

PKGen(PP,MSK,ID),KUt←  

 

Key 

Update(PP,MSK,RL,t,sk),DKID,t←DKGen(PP,SKID,KU

t), and CTID,t′ ←Encrypt(PP, ID, t′ ,M), it is required 

that:  

• If t ≥ t′, then Decrypt(PP,CTID,t′ ,DKID,t) = M. 

Otherwise, Decrypt (PP,CTID,t′ ,DKID,t) =⊥ with all but 

negligible probability. 

• For t ≥ t′, it holds that CTUpdate(PP,CTID,t′ , t) ≡ 

Encrypt(PP, ID, t,M) holds.  

Here, ≡ indicates equality in statistical distribution. 

 

3.2 Security model 

Definition 5 (IND-RID-CPA). A RS-IBE scheme is 

INDRID- CPA secure provided that for any PPT adversary 

A, it has negligible advantage in the following security 

game between a challenger C and the adversary A: 

• Setup. C performs Setup(1λ, T,N) → (PP,MSK) and 

sends PP to A;  

• Phase 1. A makes the following queries in an adaptive 

way: 

   a. OSK(ID): C performs PKGen(PP,MSK, ID) → 

(SKID, st) and returns SKID to A; 

        b. OKU(t): C runs KeyUpdate(PP,MSK,RL, t, st) → 

KUt and returns KUt; 

        c. ODK(ID, t): C runs PKGen(PP,MSK, ID) → 

(SKID, st) and DKGen(PP, SKID,KUt) → DKID,t, then 

forwards DKID,t to A; 

       d. ORV (ID, t): C updates the current revocation list 

RL by running Revoke(PP, ID,RL, t, st) → RL and 

returns the updated RL to A; 

 • Challenge. A signals the query is over and sends 

(M0,M1, ID∗, t∗, st) to C subject to the restriction that 

M0,M1 ∈ M and |M0| = |M1|. Then, C chooses a random 

bit β R ←− {0, 1} and returns the challenged ciphertext 

CTID∗,t∗ ← Encrypt(PP, ID∗, t∗,Mb) to A;  

• Phase 2. A begins another query phase as phase 1; • 

Guess. A outputs a bit β′ as a guess of β; The restrictions 

explicitly made on A’s queries in the game are as follows:  

1) OKU(t) and ORV (ID, t) can only be queried in a 

sequential order in time. That is, the time t should be 

greater thanor equal to the time of all previous queries; 

2) ORV (ID, t) cannot be queried if OKU(t) was queried; 

3) If OSK(ID∗) was queried then ORV (ID∗, t) must be 

queried, where t ≤ t∗; 

4) ODK(ID, t) cannot be queried before OKU(t) was 

queried; 

5) ODK(ID∗, t∗) cannot be queried. The adversary A’s 

advantage in the above game is defined as 

    AdvIND-RID-CPA RS-IBE,A (λ, T,N) =___ Pr_β′ = β_ 

− 12___ 

 

Remark 1. In the security game above, we do not provide 

aquery oracle for the ciphertext update algorithm 

CTUpdate sincethe adversary can run it to a ciphertext 

just by using the public parameter PP. 
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IV. RS-IBE RESISTANT TO DECRYPTION KEY 

EXPOSURE 

In this section, we first present a concrete construction of 

RSIBE resistant to decryption key exposure, and then 

discuss  its security and performance. 

 

4.1 Construction 

Our construction involves two binary trees BT and T to 

manage identity and time period, respectively. More 

precisely, for identity revocation, we follow Boldyreva et 

al.’s [20] strategy. That is, given an identity ID, we 

randomly store it in a leaf node η of BT , and generate the 

corresponding secret key SKID = {(θ, SKID,θ)}θ∈Path(η) 

as in previous RIBE schemes [20], [24]. If the user ID is 

not revoked at time period t, there exists a node θ ∈ Path(η) 

∩ KUNodes(BT ,RL, t). Consequently, given the update 

key KUt = {(θ,KUt,θ)}θ∈KUNodes(BT ,RL,t), the user ID 

can obtain the decryption key for time period t by re-

randomizing and combining (θ, SKID,θ) and (θ,KUt,θ). 

However, for a user that is revoked at time period t, there is 

no such node. As a result, the user cannot decrypt the 

ciphertext that is produced under its identity after the time 

period t (including t). Let T = 2ℓ be the total number of 

system time periods. For each 1 ≤ i ≤ T , the time period ti 

∈ {0, 1}ℓ is associated with the i-th leaf node vti of T . 

Here, we arrange all leaf nodes of T in numerical order 

from left to right. Given a node v of T , let bv ∈ {0, 1}≤ℓ be 

the binary sequence corresponding to the path from the root 

node of T to v, where 0 and 1 indicate that the path passes 

through the left and right child of the parent node, 

respectively. Conversely, given a string b ∈ {0, 1}≤ℓ, let vb 

be the node that has a path b from the root node to it. 

Furthermore, denote by bv[j] and ti[j] the j-th bit of bv and 

ti respectively, and |bv| the length of bv. In addition, for 

each leaf node vt of the binary T , we define the following 

set: Tt = {v|Parent(v) ∈ Path(vt), v /∈ Path(vt)} ∪ {vt}, 

where Parent(v) denotes by the parent node of v. As 

presented in [34], such a set features the following property 

 
 

 Property 1. Given two time periods t and t′ such that t < t′, 

for each node v′ ∈ Tt′ , there exists a node v ∈ Tt such that 

bv is a prefix of bv′ . In other words, there exists a string b′ 

∈ {0, 1}l such that bv′ = bv||b′, where l = |bv′ | − |bv|.  

                 As presented subsequently, the above property 

enablesus to update the ciphertext from time periods t to t′. 

For explanatory purpose, we give a binary tree with depth 

3, which means that the total number of time period is 8. As 

shown in Figure 3, the leftmost and rightmost leaf nodes 

vt1 and vt8 correspond to the strings 03 and 13 

respectively. The sets Tt1 = {v1, v01, vt2 , vt1} and Tt5 = 

{v11, vt6 , vt5}. We present the concrete construction 

below. 

 

• Setup(1λ, T,N): Given a security parameter λ, the total 

number of time periods T = 2ℓ, the maximum number of 

users N, this algorithm performs as follows: 

1) Choose bilinear groups (G1,G2) with prime order                      

p > 2λ and the corresponding bilinear map e : G1 × G1 

→G2. 

2) Select group elements g, g2R ←− G1 and an integerα R 

←− Z∗ p, and set g1 = gα. Furthermore, pick two random 

vectors u = (u0, u1, ..., un) ∈ Gn+1 1 and h = (h0, h1, ..., 

hℓ) ∈ Gℓ+1 1 , and for each ID ∈ I = {0, 1}n and t ∈ {0, 

1}ℓ, define the following two functions3:  

 

Fu(ID) =u0 Y i=1 uID[i] i , Fh(t) = h0 ℓ Y j=1 ht[j] j . Here, 

ID[i] is the ith bit of ID. 

 3) Let the master secret key be MSK = gα2 , and 

initializethe state st with a binary tree BT of depth log(N) 

and the revocation list RL = ∅. 

4) Publish the public parameter as PP = {G1,G2, e, g, g1, 

g2, u, h}. 

 

• PKGen(PP,MSK, ID): For an identity ID ∈ I, this 

algorithm generates its secret key according to the 

following way: 

1) Randomly choose and assign a leaf node η of BT to ID. 

2) For each node θ ∈ Path(η), 

a. Recall gθ,0 from BT if it has been defined previously4. 

Otherwise, pick gθ,0 R ←− G1, and store the pair (gθ,0, 

gθ,1 = g2/gθ,0) in the node θ. 

b. Choose rθ,0 R ←− Z∗ p, and compute: SKID,θ = (SKθ,0, 

SKθ,1) = (gα θ,0Fu(ID)rθ,0 , grθ,0). 

3) Update the state as st = BT , and then return the secret 

key SKID = {(θ, SKID,θ)}θ∈Path(η). 

 

• KeyUpdate(PP,MSK,RL, t, sk): For each node θ ∈ 

KUNodes(BT ,RL, t), do the following. 

1) Extract the pre-defined value gθ,1 from BT . 

2) Choose rθ,1 R ←− Z∗ p and set KUt,θ = (KUθ,0,KUθ,1) 

= (gα θ,1 · Fh(t)rθ,1 , grθ,1). 

3) Return KUt = {(θ,KUt,θ)}θ∈KUNodes(BT ,RL,t). 

 

• DKGen(PP, SKID,KUt): If ID was revoked during time 

period t, return ⊥. Otherwise, there exists some node 
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θ ∈ Path(η) ∩ KUNodes(BT ,RL, t). For this node θ, parse 

SKID,θ = (SKθ,0, SKθ,1) and KUt,θ =(KUθ,0,KUθ,1). 

Then, choose r0, r1 R ←− Z∗ p, compute and return 

DKID,t = (DKt,1,DKt,2,DKt,3) = (SKθ,0 · KUθ,0 · 

Fu(ID)r0 · Fh(t)r1 , SKθ,1 · gr0 ,KUθ,1 · gr1). 

 

• Encrypt(PP, ID, t,M): To encrypt M ∈ G2 with IDat time 

period t, choose stR ←− Z∗ p, select sv R ←− Z∗p for each 

node v ∈ Tt. Particularly, let svt = st. Then, set the 

ciphertext as CTID,t = �ID, t,C0,C1,C2, {Cv}v∈Tt_, 

where  

    

C0=M.e(g1,g2)stC1=g−st,C2=Fu(ID)st,Cv=(Cv,0,Cv,|bv|+

1, 

            Cv,|bv|+2, ...,Cv,ℓ)= _�h0 |bv| Y j=1 hbv[j] j _sv , 

hsv |bv|+1, hsv |bv|+2..., hsv ℓ _. 

3. We naturally require that n _ log(N) 

4. As indicated in [20], a pseudo-random function can be 

used to recomputed g_,0 when necessary instead of having 

to store it in the node θ 

 

• CTUpdate(PP,CTID,t, t′): Parse the ciphertext as CTID,t 

= �ID, t,C0,C1,C2, {Cv}v∈Tt_,where Cv = 

(Cv,0,Cv,|bv|+1,Cv,|bv|+2, ...,Cv,ℓ). To update the 

ciphertext from time period t to t′ ≥ t, do the following: 

 

1) For each node v′ ∈ Tt′ , find a node v ∈ Tt such that bv 

,is a prefix of bv′ . 

 

2) Choose st′ R←−Z∗ p, select sv′ R ←− Z∗ p for each 

node v′ ∈ Tt. Particularly, let svt′ = st′ 

 

3) Compute C′0 = C0 · e(g1, g2)st′ , C′1 = C1 · g−st′ ,   C′2 

= C2 · Fu(ID)st′ , Cv′ = (Cv′,0,Cv′,|bv′ |+1,Cv′,|bv′ |+2, 

...,Cv′,ℓ) = _Cv,0 · |bv′ | Y j=|bv|+1 Cv,j · �h0 |bv′ | Y j=1 

hbv′ [j] j _sv′ , Cv,|bv′ |+1 · hsv′ |bv′ |+1, ...,Cv,ℓ · hsv′ ℓ _. 

 

4) Return CTID,t′ = �ID, t′,C′0 ,C′1 ,C′2 , {Cv′}v′∈Tt′ _. 

 

• Decrypt(PP,CTID,t,DKID,t′): If t′ < t return ⊥. 

Otherwise, update the ciphertext CTID,t to get CTID,t′ , 

and parse CTID,t′ = �ID, t′,C′0,C′1,C′2, {Cv′}v′∈Tt′ _ and 

DKID,t′ = (DKt′,1,DKt′,2,DKt′,3). Then, return  

M = C′0 · e(C′1 ,DKt′,1) · e(C′2 ,DKt′,2) · e(Cvt′ 

,0,DKt′,3). 

 

• Revoke(PP, ID,RL, t, st): To revoke ID at time period t, 

update the revocation list by RL ← RL ∪ {(ID, t)} and 

return the updated RL.  

CORRECTNESS. We verify the correctness of our scheme 

as follows: Firstly, given a node θ ∈ KUNodes(BT ,RL, t) 

∩ Path(η), we have that  

 

DKt,θ=(SKθ,0·KUθ,0·Fu(ID)r0·Fh(t)r1 ,  

SKθ,1gr0,KUθ,1·gr1)=(gα2Fu(ID)rθ,0+r0Fh(t)rθ,1+r1 , 

grθ,0+r0 , grθ,1+r1 ).  

   Then, for a ciphertext CTID,t =�ID, t,C0,C1,C2, 

{Cv}v∈Tt_,we note that Cvt,0 = Fh(t)st . Thus, it holds that  

C0·e(C1,DKt,1)·e(C2,DKt,2)· e(Cvt,0,DKt,3)  

= M · e(g1, g2)st · e(g−st , gα 2 · Fu(ID)rθ,0+r0 · 

Fh(t)rθ,1+r1) · e(Fu(ID)st , grθ,0+r0) · e(Fh(t)st , grθ,1+r1) 

= M · e(g1, g2)st · e(g−st , gα 2 )  

= M.  

                    Furthermore, note that the algorithm 

CTUpdate choosesfresh random exponents {sv′}v′∈Tt′ to 

update the original ciphertext CTID,t. Thus, CTID,t′ is not 

only a valid ciphertext under time period t′, but also is 

statistically indistinguishable from the output of 

Encrypt(PP, ID, t′,M). 

 

4.2 Security analysis 

Theorem 1. If there exists a PPT adversary A breaking the 

INDRID- CPA security of the proposed RS-IBE scheme, 

then there exists an algorithm C solving the decisional ℓ-

BDHE problem such that 

 

Advℓ−dBDHE C (λ) ≥ 1 32T q2(n + 1) · AdvIND-RID-

CPA RS-IBE,A (λ, T,N), 

where q is the maximum number5 of secret key queries and 

decryption key queries, and T = 2ℓ is the total number of 

time periods 

 Proof. Given a PPT adversary A breaking the IND-

RIDCPA security of the proposed RS-IBE scheme, we will 

construct an algorithm C to solve the decisional ℓ-BDHE 

problem. More precisely, given a random instance of ℓ- 

BDHE problem in the form of a turple (G1, G2, e, p, f, D) 

where f = (g, gs, f1, ..fℓ, fℓ+2, ..., f2ℓ) and fi = gai ∈ G1 for 

1 ≤ i ≤ 2ℓ, the algorithm C can decide if D = e(fℓ+1, gs) by 

simulating the experiment according to the following steps.  

            Setup. The algorithm C randomly guesses a time 

period the adversary A will choose to be challenged. 

Denote it by t∗. To generate public parameter PP, the 

algorithm C proceeds as follows: 

1) Choose α′ R ←− Z∗p and let g1 = f1gα′ and g2 = fℓ, 

which implicitly sets as α = (a + α′) and the master secret as 

MSK = gα 2 = g(a+α′), an unknown value to C. 

2) Let m = 4q and select an integer ρ R ←− {0, 1, ..., n}. 

Furthermore, choose n+1 random integers x0, x1, ..., xn ∈ 

{0, 1, ...,m − 1} and another n + 1 random integers y0, y1, 

..., yn ∈ Zp. For an identity ID ∈ {0, 1}n, define the 

following two functions:  

 

J(ID) = (p − mρ) + x0 + n X i=1 ID[i]xi,  

 

K(ID) = y0 + n X i=1 ID[i]yi. 
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3) Assign u0 = gx0−mρ 2 gy0 and ui = gxi 2 gyi for each 1 

≤ i ≤ n, and let u = (u0, u1, ..., un). Note that the above 

assignment implies that Fu(ID) = gJ(ID) 2 gK(ID). 

 

4) Choose random integers γ0, γ1, ..., γℓ ∈ Zp and set h0 = 

gγ0 Qℓ j=1 ft∗[j] j and hj = gγjf−1 ℓ−j+1 for 1 ≤ j ≤ ℓ. Let h 

= (h0, h1, ..., hℓ). 

 

5) Publish the public parameter as  

 

PP = {G1,G2, e, g, g1, g2, u, h}.  

               Before starting to answer the adversary A’s 

queries, the algorithm C flips a coin ctype R ←− { 0, 1} to 

guess that A belongs to which type of adversaries, which 

are distinguished as follows: - 

 

 • Type-1 adversaries (i.e., ctype = 0) choose to query 

OSK(ID∗) at some point, but ID∗ is revoked before the 

challenged time period t∗.  

 

• Type-2 adversaries (i.e., ctype = 1) do not query 

OSK(ID∗) at any time.  

            Depending on A’s type (i.e., the bit ctype), the 

algorithm C deals with A’s behaviors by using different 

strategies separately.  

 

• The case ctype = 0. 

            Denote by IDk the input of C’s kth query on 

OSK(·). The algorithm C initially chooses k∗ R ←− {1, ..., 

q} as a guess that A’s k∗th key query happens to be 

OSK(ID∗) (i.e., IDk∗ =  

   

5. For simplicity, we assume that the maximum number of 

secret key queries is equal to the one of decryption key 

queries. =ID∗) with probability 1/q, and randomly selects a 

leaf node η∗ of BT to store ID∗. 

 

Phase1. C responds to A’s queries according to the 

following way:  

• OKU(t): For each node θ ∈ KUNodes(BT ,RL, t), the 

algorithm C does the following: 

 

1) Retrieve Yθ from θ if it was defined. Otherwise, it 

chooses Yθ R ←− G1 and stores it in θ. 

 

2) If t = t∗, it must be that θ /∈ Paht(η∗), since ID∗ is 

revoked before the time period t∗. The algorithm 

C chooses rθ,1 R ←− Zp, and computes  

KUt,θ = (KUθ,0,KUθ,1) = (Y −1 θ Fh(t)rθ,1 , grθ,1 ).  

 

Observe that KUt,θ is correctly formed as its assignment 

implicitly sets gα θ,1 = Y −1 θ . 

 

3) If t 6= t∗, there exists an integer 1 ≤ l ≤ ℓ such that t∗[l] 

6= t[l]. Without loss of generality, assume 

l is the smallest such integer. If θ /∈ Paht(η∗), the algorithm 

C does the same as in the case t = t∗. Otherwise, C 

performs as follows: Choose r′θ ,1 

R ←− Zp and let rθ,1 = al t[l]−t∗[l] + r′θ,1, and set KUt,θ = 

(KUθ,0,KUθ,1) = (Y −1 θ gα 2 Fh(t)rθ,1 , grθ,1 ). 

Observe that KUt, θ is well-defined in this case as its 

assignment implicitly sets gα θ,1 = Y −1 

θ · gα 2 . As shown in Figure 4, KUt,θ is computable for C. 

 

4) Return KUt = {(θ,KUt,θ)}θ∈KUNodes(BT ,RL,t) • 

OSK(IDk): Let IDk be the input of the k-th private key 

query. 

 – For k 6= k∗, if J(IDk) = 0, the algorithm C aborts. 

Otherwise, C randomly chooses a node η from BT and 

stores IDk in η, and then for each θ ∈ Path(η) does the 

following:  

 

1) Recall Yθ if it was defined. Otherwise, 

choose Yθ R ←− G1. 

 

2) If θ ∈ Path(η∗), choose rθ,0 R ←− Zp, and Compute 

SKIDk,θ = (SKθ,0, SKθ,1) = (Yθ · Fu(IDk)rθ,0 , grθ,0).  

Observe that KUt,θ is well-defined in this case as its 

assignment sets gα θ,0 = Yθ 

 

3) If θ /∈ Path(η∗), choose r′θ,0 R ←− Zp and set rθ,0 = −a 

J(IDk) + r′θ,0, and let  

SKIDk,θ = (SKθ,0, SKθ,1)= (Yθ · gα2 · Fu(IDk)rθ,0 , 

grθ,0). Observe that KUt,θ is well-defined in this case as its 

assignment implicitly sets gα θ,0 = Yθ·gα 2.In addition, we 

can see that SKIDk,θ is also computable for C: 

SKθ,0 = Yθ · ga+α′2 · (gJ(IDk)m 2 gK(IDk))rθ,0 

 = Yθ · gα′ 2 · (gJ(IDk) 2 gK(IDk))r′ θ,0 · f −K(IDk) J(IDk) 

1  

 

KUθ,0 = Y −1θ · gα2 · Fh(t)rθ,1 = Y −1θ · gα′2 · 

fℓ+1·�gγ0ℓYj=1ft∗[j]ℓ−j+1ℓYj=1(gγj f−1 

ℓ−j+1)t[j]_rθ,1 

         = Y −1θ · gα′· fℓ+1 · grθ,1(γ0+Pℓj=1 t[j]γj ) ·� 

l−1Yj=1ft∗[j]−t[j]ℓ−j+1 _rθ,1 · (ft∗[l]−t[l] 

ℓ−l+1 )rθ,1 · �ℓYj=l+1ft∗[j]−t[j]ℓ−j+1 _rθ,1 

        = Y −1θ · gα′2 · fℓ+1 · grθ,1(γ0+Pℓj=1 t[j]γj ) · 

f−1ℓ+1 · fr′θ,1(t∗[l]−t[l])ℓ−l+1 �ℓYj=l+1ft∗[j]−t[j] 

ℓ−j+1 _alt[l]−t∗[l] �ℓYj=l+1ft∗[j]−t[j]ℓ−j+1 _r′θ,1 

        = Y −1θ · gα′2 gr′θ,1(γ0+Pℓj=1 t[j]γj ) · f1 

t[l]−t∗[l] (γ0+Pℓj=1 t[j]γj )l · fr′θ,1(t∗[l]−t[l])ℓ−l+1 

· 

ℓYj=l+1(fℓ−j+l+1)t∗[j]−t[j]t[l]−t∗[l] ·ℓY 

j=l+1fr′θ,1(t∗[j]−t[j])ℓ−j+1 . 

KUθ,1 = grθ,1 = gr′θ,1 · (fl)1t[l]−t∗[l] . 

 

Fig. 4. KUt,_ is computable for C. 

 

and SKθ,1 = grθ,0 = gr′θ,0 · f−1J(IDk)1 . 
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 – For k = k∗ (i.e., IDk = ID∗), if J(IDk∗ ) 6= 0, the 

algorithm C aborts. Otherwise, for each θ ∈ 

Path(η∗), the algorithm C proceeds as follows: 

 

1) Retrieve Yθ from BT if it was defined. Otherwise, 

choose Yθ R ←− G1. 

 

2) Select rθ,0 R ←− Zp, and compute 

  

SKID∗,θ=(SKθ,0, SKθ,1)=(Yθ·Fu(ID∗)rθ,0,grθ,0).  

 

Observe that KUt,θ is well-defined in this case as its 

assignment sets gα θ,0 = Yθ.  

• ODK(ID, t): The algorithm C conducts a query OSK(ID), 

and then runs DKGen(PP, SKID,KUt). Now we show that 

by the definitions of OKU(·) and OSK(·), the output of 

ODK(·, ·) is also correctly formed. Given the input (ID, t), 

we distinguish them into the following three sub-cases:  

 

– In case ID = ID∗, it must be that t 6= t∗. By the 

definitions, for each θ ∈ Path(η∗) ∩KUNodes(PP,RL, t), 

we have that  

KUt,θ = (Y −1θ · gα2 · Fh(t)rθ,1 , grθ,1 ), 

 

SKID∗,θ = (Yθ · Fu(ID∗)rθ,0 , grθ,0), 

gαθ,1 = Y −1θ · gα2 , gαθ,0 = Yθ. 

 

This implies that gαθ,0 · gαθ,1 = gα2 . Thus, The 

decryption key DKID∗,t is correctly formed.  

 

– In case ID 6= ID∗ and t = t∗, it must be that  

KU Nodes(PP,RL, t∗) ∩ Path(η∗) = ∅. Thus, for each node 

θ ∈ KU Nodes(PP,RL, t∗) ∩ Path(η), it holds that θ /∈ 

Path(η∗). Furthermore, we have that  

KUt∗,θ = (Y −1θ · Fh(t)rθ,1 , grθ,1), 

SKID∗,θ = (Yθ · gα2 · Fu(ID∗)rθ,0 , grθ,0 ), 

gαθ,1 = Y −1θ , gαθ,0 = Yθ · gα2 . 

This also implies that gαθ,0 · gαθ,1 = gα2 . Thus, the 

decryption key DKID,t∗ is also correctly 

formed.  

– In the case ID 6= ID∗ and t 6= t∗, for each node θ ∈ 

KUNodes(PP,RL, t) ∩ Path(η), if 

θ ∈ Path(η∗) then the case is the same as the case ID = ID∗. 

Otherwise, the case is  the same as the case ID 6= ID∗ and t 

= t∗. Therefore, the decryption key DKID,t is also correctly 

formed in this case. 

Challenge. Given (M0,M1) and (ID∗, t′∗) on which the 

adversary A wishes to be challenged, if either ID∗ 6= 

IDk∗or t∗ 6= t′∗, the algorithm C aborts. Otherwise, it 

randomly flips a coin β ∈ {0, 1}, and generates the 

challenged ciphertextas follows: 

 

1) Compute  

C∗ 0 = MβD · e(gs, fℓ)α′ ,C∗ 1 = (gs)−1,C∗ 2 = 

(gs)K(ID∗); 

2) For the node vt′∗ ∈ Tt′∗ , compute  

C∗ vt′∗ = (C∗ vt′∗ ,0) = ((gs)γ0+Pℓ j=1 t′∗[j]γj ); 

3) For each node v ∈ Tt′∗ \ {vt′∗}, choose sv R ←− Zp, 

and compute 

     Cv = (C∗ v,0,C∗ v,|bv|+1,C∗ v,|bv|+2, ...,C∗  j=1 

 |bv|+1, hsv |bv|+2, ..., hsv ℓ _; 

 

4) Return the challenged ciphertext  

  CTID∗,t′∗ = �C∗0 ,C∗ 1 ,C∗ 2 , {C∗ 

  

        Now, we show that if D = e(gs, fℓ+1) then 

CTID∗ ,t′∗  is correctly formed. To this end, recall that 

Fu(ID∗ ) = gK(ID∗ )and Fh(t′∗ ) = gγ0+Pℓ j=1 t′∗ [j]γj 

, as well as observe that  

D · e(gs, fℓ)α′ = e(gs, fℓ+1) · e(gα′, fℓ)s  

                      = e(ga, fℓ)s · e(gα′ , fℓ)s  

                      = e(ga+α′ , fℓ)s  

                      = e(g1, g2)s. 

           In addition, if D is a random element in G2, then Mβ 

isperfectly hidden from the adversary A’s view. 

 

Phase 2. C proceeds the same as in Phase 1. 

          Guess. Eventually, the adversary A outputs a bit β′ as 

a guess of β. If β = β′, the algorithm C outputs 0, and 1 

otherwise. • The case ctype = 1. Recall that the adversary A 

does not query OSK(ID∗ ) in this case at any time. 

However, A may make several decryption key queries on 

the challenged identity ID∗ . Denote the time of such 

queries by Count∗ . The algorithm C flips an unbiased coin 

to guess if Count∗  = 0 or not. If not, C randomly guesses 

that A’s k∗ th decryption key query happens to be the first 

one on ID∗ .  

⋆  The case Count∗  = 0. 

 

Phase 1. The algorithm C answers A’s queries as follows:  

• OKU(t): For each node θ ∈  KUNodes(BT ,RL, t), 

the algorithm C does the following: 

1) Recall Yθ from BT if it was defined. Otherwise, choose 

Yθ R ←− G1 and store it in the node θ. 

 

2) Select rθ,1 R ←− Zp, and compute  

KUt,θ = (KUθ,0,KUθ,1) = (Y −1 θ · Fh(t)rθ,1 , grθ,1 

). 

3) Return KUt = {(θ,KUt,θ)}θ∈KUNodes(BT ,RL,t). • 

OSK (IDk): If J(IDk) 6= 0, the algorithm C aborts. 

Otherwise, to generate the secret key for the identity IDk, 

the algorithm C proceeds as follows: 

 

1) Randomly choose a leaf node η from BT and store ID in 

η; 

 

2) For each node θ ∈  Path(η), retrieve Yθ from BT if it was 

defined. Otherwise, choose Yθ R ←− G1 and store it in the 

node θ. 
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3) Choose r′θ,0 R ←− Zp and let rθ,0 = − a J(IDk) +r′θ ,0 

for each node θ ∈  Path(η), and set   

SKIDk,θ =(SKθ,0, SKθ,1) = (Yθ · gα 2 · Fu(IDk)rθ,0 , 

grθ,0 ).  

As shown in the case ctype = 0, the value SKID,θ is 

correctly formed, and is computable for the algorithm C. 

 

5) Return SKIDk = {(θ, SKIDk,θ)}θ∈Path(η). 

 • ODK(ID, t): The algorithm C queries OSK(ID) and 

subsequently runs DKGen(PP, SKID,KUt), and returns the 

corresponding output. Similar to the case ctype = 0, we can 

verify that the output of the decryption key query is well 

defined. 

 

Challenge. Given (M0,M1) and (ID∗ , t′∗ ), the algorithm 

C checks if J(ID∗ ) = 0 and t∗  = t′∗ . If not, C 

aborts.Otherwise, C generates the challenged ciphertext 

according to the same way as in the case ctype = 0. 

 

Phase 2. C acts the same as in Phase 1. 

Guess. C acts the same as in the case ctype = 0.  

⋆  The case Count∗  6= 0. 

 

     Phase 1. The algorithm C uses the following strategy to 

answer A’s queries.  

• OKU(t) and OSK(ID): The algorithm proceeds the same 

as in the case Count∗  = 0.  

• ODK(IDk, t): Let (IDk, t) be the input of A’s decryption 

key query.  

– If k < k∗ , the algorithm C proceeds the sameas in the 

case Count∗  = 0; 

 – If k = k∗  (i.e., IDk = ID∗ ), it must be t 6= t∗ . Thus, 

there exists the smallest index 1 ≤ l ≤ ℓ such that t[l] 6= 

t∗ [l]. The algorithm C does the following: 

 

1) Choose r0, r′1 R ←− Zp and implicitly assign  

r1 = al t[l]−t∗ [j] + r′1; 

2) Compute and return m 

DKID∗ ,t = (DKt,1,DKt,2,DKt,3) = (gα 2 

Fu(ID∗ )r0Fh(t)r1 , gr0, gr1).  

We can see that DKID∗ ,t is well-formed. Furthermore, 

as shown in the case ctype = 0, the value DKID∗ ,t is 

also computable for C.  

– If k > k∗ , the way to response the query depends on 

IDk. More precisely, if IDk = ID∗ , the algorithm 

proceeds the same as in the case k = k∗ . Otherwise, C 

proceeds the same as in the case k < k∗ . 

Challenge. C acts the same as in the case ctype = 0. 

Phase 2. C proceeds the same as in Phase 1. 

Guess. C performs the same as in the case ctype = 0. 

Analysis of C. To enable the algorithm C to complete the 

experiment without aborting, the following conditions are 

required to be fulfilled: 

1) E1: t∗  = t′∗ ; 

2) In the case ctype = 0:m 

    • E2,1: For OSK(IDk∗  ), it must be IDk∗  = ID∗ ;  

    • E2,2: For 1 ≤ k 6= k∗  ≤ q, it must be J(IDk) 6= 0;  

   • E2,3: J(ID∗ ) = 0; 

3) In the case (ctype = 1 ∧  Count∗  = 0):  

• E3,1: For 1 ≤ k ≤ q, it must be J(IDk) 6= 0; • E3,2: 

J(ID∗ ) = 0; 

4) In the case (ctype = 1 ∧  Count∗  6= 0): 

 • E4,1: For 1 ≤ k ≤ q, it must be J(IDk) 6= 0;  

• E4,2: For ODK(IDk∗  , t), it must be IDk∗  = ID∗ ;  

• E4,3: J(ID∗ ) = 0.  

Denote by E the event that C does not abort the 

experiment, we can that 

E = �(E1 ∧  E2,1 ∧  E2,2 ∧  E2,3) ∨  (E1 ∧  E3,1 ∧  E3,2) ∨  

(E1 ∧  E3,1 ∧  E3,2 ∧  E3,3)_. 

           Furthermore, by using Waters’s [38] “artificial 

abort” technique, we obtain that 

Pr[E1 ∧  (E2,1 ∧  E2,2 ∧  E2,3)] ≥ 1 2·1T·1 q·1 8q(n + 1) 

 Pr[E1 ∧  (E3,1 ∧  E3,2)] ≥ 1 4 · 1 T · 1 8q(n + 1) Pr[E1 

∧ (E3,1 ∧  E3,2 ∧  E3,3)] ≥ 1 4 ·  T q· 1 8q(n + 1)  

 

 
 

Pr[E] ≥ min nPr_E1 ∧  (E2,1 ∧  E2,2 ∧  E2,3)_,  

Pr_E1 ∧  (E3,1 ∧  E3,2)_, Pr_E1 ∧  (E3,1 ∧  E3,2 ∧  E3,3)_o 

≥ 1 32T q2(   

 

Now, recall that under the condition that C does not abort, 

if D = e(gs, gaℓ+1) then C perfectly simulates the 

experiment, and thus Pr_C(f,D = e(gs, gaℓ+1 )) = 0_ = 

�AdvIND-RID-CPA RS-IBE,A (λ, T,N) + 1 2 _ · Pr[E]. 

 

 However, if D is a random element from G2 then 

encrypted message M∗  β is perfectly hidden from the A’s 

view, and thus  

Pr[C(f,D R ←− G2) = 0] = 1 2 · Pr[E].  

By combining the above equalities, we get that  

 

Advℓ−dBDHE C (λ) =___ Pr_C(f,D = e(gs, gaℓ+1 )) = 0_ 

− Pr_C(f,D R ←− G2) = 0____ m≥ 1 32T q2(n + 1) · 

AdvIND-RID-CPA RS-IBE,A (λ, T,N).  
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This completes the proof. 

 

4.3 Performance discussions 

 

In this section, we discuss the performance of the proposed 

RS-IBE scheme by comparing it with previous works in 

terms of communication and storage cost, time complexity 

and functionalities, which are summarized in Table 1, 

Table 2 and Table 3. 

          From Table 1 we can see that the sizes of private key 

and update key in schemes [22], [24] and our scheme are 

mall upper bounded by O(r logN/r), since these schemes all 

utilize binary data structure to achieve revocation. On the 

other hand, Liang et al.’s [26] scheme involves a broadcast 

encryption scheme to distribute update key such that their 

scheme has constant sizes of private key and update key. 

Furthermore, by delegating the generation of re-encryption 

key to the key authority, the ciphertext size of their scheme 

also achieves constant. However, to this end, the key 

authority has to maintain a data table for each user to store 

the user’s secret key for all time periods, which brings O(T 

)τG1  

 

 

 

 
 

storage cost for the key authority. Conversely, the cipher 

text size of our scheme is just linear in log(T )2. In 

addition, we note that in all listed schemes, the private key 

generator needs to periodically produce an update key, it 

must be online if each time period is rather short, e.g., an 

hour. However, from the perspective of practical 

applications, the frequency of updating users’ decryption 

keys should not be too small. A time period like a week, 

half a month or a moth is more desirable. As a 

consequence, the private key generator just needs to 

produce an update key for the next 
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period when the current time period is over. Thus the PKG 

does not need to be always online. Another limitation of 

these listed schemes is that the generated ciphertext has the 

size linear with the number of receivers. To overcome this 

issue, a natural manner is to construct a similar scheme in 

the setting of broadcast encryption. On the aspect of time 

complexity, as illustrated in 

Table 2, the enumerated schemes all have constant time of 

/. Citation information: DOI decryption6. For two schemes 

supporting ciphertext update, the time complexity of 

ciphertext update in Liang et al.’scheme is linear in N since 

the key authority needs to produce a re-encryption key for 

each user to re-encrypt the ciphertext. However, the time 

complexity of ciphertext update in our scheme is linear in 

log(T )2.  

         As shown inTable 3, the four schemes are all proved 

secure in an adaptive-secure model, and can also provide 

backward secrecy since they all supports identity 

revocation. But the security of our scheme is built upon a 

relatively strong security assumption, decisional ℓ-DBHE 

assumption. The schemes [22], [24] and ours update user’s 

secret keys in a public way, namely, the update key is 

available for all users. However, Liang et al.’s [26] scheme 

involves the method of broad encryption to update user’s 

secret key such that only non-revoked users can obtain the 

update key. Consequently, their scheme cannot resist 

collusion attack of revoked users and non-revoked users. 

Compared with the schemes [22] and [24], Liang et al.’s 

[26] scheme and ours can both provide forward secrecy by 

additionally introducing the functionality of ciphertext 

update. But the procedure of ciphertext update in Liang et 

al.’s [26] scheme is performed in a private and interactive 

way, since it requires  the key authority to periodically 

produce and provide reencryption keys for the cloud server 

to update   ciphertext. However, in our schemes, the cloud 

server itself can update ,ciphertext by just using public 

parameter. 

 

4.4 Implementation 

 

To show the practical applicability of the proposed RSIBE 

scheme, we further implement it using codes from the 

Pairing-Based Cryptography library version 0.5.14 [39]. 

Specifically, we use the symmetric super singular curve y2 

= x3 + x, where the base field size is 512-bit and the 

embedding degree is 2. The implementation is taken on a 

Linux-like system (Win7 + MinGW) with an Intel(R) 

Core(TM) i5 CPU (650@3.20GHz) and 4.00 GB RAM. In 

the implementation, we set the number of users to be N = 8 

and the revoked uses to be R = 4 (the nodes η2, η3, η4, η7 

in Figure 2 are revoked). In Figure 5, Figure 6 and Figure 7, 

we present the running time of the basic algorithms, i.e., 

PKGen, KeyUpdate, DKGen, Encrypt, CTUpdate and 

Decrypt, for different choice of the total number of time 

periods T ∈  {24, 26, 28, 210, 212, 214, 216, 218}. To 

generate the experimental results, we perform as the 

following procedure: generate the private key and encrypt a 

messageat the initial time period, then, periodically update 

the private key and the ciphertext, and decrypt the 

ciphertext. For a small number of time periods: T ∈  {24, 

26, 28}, the running time of each algorithm is obtained by 

computing the average of running the above procedure 100 

times. While, for a large number of time periods: T ∈  {210, 

212, 214, 216, 218}, the running time for each algorithm is 

obtained by running the above procedure only once, and the 

running time for update algorithm is the mean of the first 

512 time periods. We observe that, the time costs of the 

algorithms PKGen, 6. In our scheme, given the decryption 

DKID,t and ciphertext CTID,t′ , if t _ t′ then the cloud 

server would update CTID,t′ to CTID,t. Here, we just 

consider the decryption complexity for an individual 

KeyUpdate, DKGen and Decrypt are independent of the 

total number of time periods, and no more than 40 

milliseconds. 

On the other hand, it takes less than 1 second for the user to 

initially encrypting the message, which would beshare on 

the cloud. Although the time cost of the algorithm 

CTUpdate is apparently greater than other algorithms, it is 

run by a cloud server with powerful capability of 

computation. Thus, our RS-IBE scheme is feasible for 

practical applications. 
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V. CONCLUSIONS 

 

Cloud computing brings great convenience for people. 

Particularly, it perfectly matches the increased need of 

sharing data over the Internet. In this paper, to build a cost-

effective and secure data sharing system in cloud 

computing, we proposed a notion called RS-IBE, which 

supports identity revocation and ciphertext update 

simultaneously such that a revoked user is prevented from 

accessing previously shared data, as well as subsequently 

shared data. Furthermore, a concrete construction of RS-

IBE is presented. The proposed RS-IBE scheme is proved 

adaptive-secure in the standard model, under the decisional 

ℓ-DBHE assumption. The comparison results demonstrate 

that our scheme has advantages in terms of efficiency and 

functionality, and thus is more feasible for practical 

applications. 
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