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Abstract— Due to advancement of new technology in the field of VLSI and Embedded system, there is an increasing demand 

of high speed and low power consumption processor. Speed of processor greatly depends on its multiplier as well as adder 

performance. In spite of complexity involved in floating point arithmetic, its implementation is increasing day by day.  Due to 

which high speed adder architecture become important. Several adder architecture designs have been developed to increase the 

efficiency of the adder. In this paper, we introduce an architecture that performs high speed IEEE 754 floating point multiplier 

using carry select adder (CSA). Here we are introduced two carry select based design. These designs are implementation Xilinx 

Vertex device family.   
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I. INTRODUCTION 

The real numbers represented in binary format are known as 

floating point numbers. Based on IEEE-754 standard, 

floating point formats are classified into binary and decimal 

interchange formats. Floating point multipliers are very 

important in dsp applications. This paper focuses on double 

precision normalized binary interchange format. Figure 1 

shows the IEEE-754 double precision binary format 

representation. Sign (s) is represented with one bit, exponent 

(e) and fraction (m or mantissa) are represented with eleven 

and fifty two bits respectively. For a number is said to be a 

normalized number, it must consist of'one' in the MSB of the 

significand and exponent is greater than zero and smaller 

than 1023. The real number is represented by equations (i) & 

(2). 

 

                           ).1(2)1( )( MZ BiasEs  
         (1)     

).1(2)1( )1023( MantissaValue Exponentsignbit  
    (2) 

Biasing makes the values of exponents within an unsigned 

range suitable for high speed comparison. 

 

 

 

 

 

IEEE 754 Standard Floating Point Multiplication Algorithm 

A brief overview of floating point multiplication has been 

explained below [5-6]. 

 Both sign bits S1, S2 are need to be Xoring together, 

then the result will be sign bit of the final product. 

 Both the exponent bits E1, E2 are added together, 

then subtract bias value from it. So, we get 

exponent field of the final product. 

 Significand bits Sig1 and Sig2 of both the operands 

are multiply including their hidden bits. 

Sign Bit                                           Significand Biased 

Exponent         
1-bit                   8/11-bit                           23/52-bit 

Figure 1: IEEE 754 Single Precision and Double Precision 

Floating Point Format 
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Figure 2: IEEE754 SP FP and DP FP Multiplier Structure, NE: 

Normalized exponent, NS: Normalized Significand 
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 Normalize the product found in step 3 and change 

the exponent accordingly. After normalization, the 

leading “1 “will become the hidden bit. 

 

II. DIFFERENT TYPES OF ADDER 

Parallel Adder:- 

Parallel adder can add all bits in parallel manner i.e. 

simultaneously hence increased the addition speed. In this 

adder multiple full adders are used to add the two 

corresponding bits of two binary numbers and carry bit of 

the previous adder. It produces sum bits and carry bit for the 

next stage adder. In this adder multiple carry produced by 

multiple adders are rippled, i.e. carry bit produced from an 

adder works as one of the input for the adder in its 

succeeding stage. Hence sometimes it is also known as 

Ripple Carry Adder (RCA). Generalized diagram of parallel 

adder is shown in figure 3. 

 

 
Figure 3: Parallel Adder (n=7 for SPFP and n=10 for DPFP) 

 

An n-bit parallel adder has one half adder and n-1full adders 

if the last carry bit required. But in 754 multiplier‟s exponent 

adder, last carry out does not required so we can use XOR 

Gate instead of using the last full adder. It not only reduces 

the area occupied by the circuit but also reduces the delay 

involved in calculation. For SPFP and DPFP multiplier‟s 

exponent adder, here we Simulate 8 bit and 11 bit parallel 

adders respectively as show in figure 4. 

 

 
Figure 4: Modified Parallel Adder (n=7 for SPFP and n=10 for DPFP) 

 

Carry Skip Adder:- 

This adder gives the advantage of less delay over Ripple 

carry adder. It uses the logic of carry skip, i.e. any desired 

carry can skip any number of adder stages. Here carry skip 

logic circuitry uses two gates namely “and gate” and “or 

gate”. Due to this fact that carry need not to ripple through 

each stage. It gives improved delay parameter. It is also 

known as Carry bypass adder. Generalized figure of Carry 

Skip Adder is shown in figure 5. 

 
Figure 5: Carry Skip Adder 

 

III. PROPOSED DESIGN 

Proposed Parallel-Parallel Input and Multi Output(PPI-

MO) 

In this design, we opted for faster operating speed by 

increasing the number of multipliers and registers 

performing the matrix multiplication operation. From 

equation 2 we have derived for parallel computation of 3 × 3 

matrix-matrix multiplication and the structure is shown in 

figure 6. 

For an n×n matrix – matrix multiplication, the operation is 

performed using 
2n number of multipliers, 

2n  number of 

registers and nn 2
 number of adders. The registers are 

used to store the partial product results. Each of the 
2n  

number of multipliers has one input from matrix B and the 

other input is obtained from a particular element of matrix 

A.  
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Figure 1: Proposed PPI – MO Design for n = 3 
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The dataflow for matrix B is in row major order and is fed 

simultaneously to the particular row of multipliers such that 

the 
thi  row of matrix B is simultaneously input to the 

thi  

row of multipliers, where 1 < i < n . The elements of matrix 

are input to the multipliers such that, 
thij ),(  element of 

matrix A is input. 

The 
thji ),( multiplier, where1 < i,j < n. The resultant 

products from each column of multipliers are then added to 

give the elements of output matrix C. In one cycle, n 

elements of matrix C are calculated, so the entire matrix the 

elements of matrix C are obtained in column major order 

with n elements multiplication operation requires n cycles to 

complete. 

Let us consider the example of a 3×3 matrix – matrix 

multiplication operation, for a better analysis of the design 

(as shown in figure 1). The hardware complexities involved 

for this design are 9 multipliers, 9 registers and 6 adders. 

Elements from the first row of matrix B (b11 b12 b13) are 

input simultaneously to the first row of multipliers (M11 M12 

M13) in 3 cycles. Similarly, elements from other two rows of 

matrix B are input to the rest two rows of multipliers. A 

single element from matrix A is input to each of the 

multipliers such that,  
thij ),(  element of matrix A is input 

to the multiplier Mij, where 1 < i,j < 3. The resultant partial 

products from each column of multipliers (M1k M2k M3k 

where 1 < k 3) are added up in the adder to output the 

elements of matrix C. In each cycle, one column of elements 

from matrix C is obtained (C1k C2k C3k where1 < k < 3) and 

so the entire matrix multiplication operation is completed in 

3 cycles. 

 

IV. FLOATING POINT 

 

In IEEE754 standard floating point  representation, 8 bit 

Exponent  field in single precision floating point (SP FP) 

representation and 11 bit in double precision floating point 

(DP FP) representation  are need to add with another 8 bit 

exponent and 11 bit exponent respectively, in order to 

multiply floating point numbers represented in IEEE 754 

standard as explained earlier. Ragini et al. [10] has used 

parallel adder for adding exponent bits in floating point 

multiplication algorithm. We proposed the use of 8-bit 

modified CSA with dual RCA and 8-bit modified CSA with 

RCA and BEC for adding the exponent bits. We have found 

the improved area of 8-bit modified Carry select adder with 

RCA and BEC over the 8-bit modified CSA with dual RCA.  

 

o Sign bit calculation 

To calculate the sign bit of the resultant product for SP FP 

and DP FP multiplier, the same strategy will work. We just 

need to XOR together the sign bits of both the operands. If 

the resultant bit is „1‟, then the final product will be a 

negative number. If the resultant bit is „0‟, then the final 

product will be a positive number. 

 

o Exponent bit calculation 

Add the exponent bits of both the operands together, and 

then the bias value (127 for SPFP and 1023 for DPFP) is 

subtracted from the result of addition. This result may not be 

the exponent bits of the final product. After the significand 

multiplication, normalization has to be done for it. 

According to the normalized value, exponents need to be 

adjusted. The adjusted exponent will be the exponent bits of 

the final product.  

 

o Significand bit calculation 

Significand bits including the one hidden bit are need to be 

multiply, but the problem is the length of the operands. 

Number of bits of the operand will become 24 bits in case of 

SP FP representation and it will be 53 bits in case of DP FP 

representation, which will result the 48 bits and 106 bits 

product value respectively. In this paper we use the 

technique of break up the operands into different groups then 

multiply them. We get many product terms, add them 

together carefully by shifting them according to which part 

of one operand is multiplied by which part of the other 

operand. We have decomposed the significand bits of both 

the operands ain four groups. Multiply each group of one 

operand by each group of second operand. We get 16 

product terms. Then we add all of them together very 

carefully by shifting the term to the left according to which 

groups of the operands are involved in the product term. 

 

Partition Multiplier:- 

Algorithm for partition method 

t1 : in  STD_LOGIC_VECTOR (7 downto 0); 

t2 : in  STD_LOGIC_VECTOR (7 downto 0); 

t3 : out  STD_LOGIC_VECTOR (15 downto 0)); 

h1<=t1(3 downto 0); 

h2<=t1(7 downto 4); 

h3<=t2(3 downto 0); 

h4<=t2(7 downto 4); 

su1<=h1*h3; 

su2<=h1*h4; 

su3<=h2*h3; 

su4<=h2*h4; 

ad1<=("00000000" & su1); 

ad2<=("0000" & su2 & "0000"); 

ad3<=("0000" & su3 & "0000"); 

ad4<=(su4 & "00000000"); 

t3<=ad1 + ad2 + ad3 + ad4; 

 

V. SIMULATION RESULT 

 

All the designing and experiment regarding algorithm that 

we have mentioned in this paper is being developed on 

Xilinx 6.2i updated version. Xilinx 6.2i has couple of the 

striking features such as low memory requirement, fast 

debugging, and low cost. The latest release of ISE
TM 

(Integrated Software Environment) design tool provides the 
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low memory requirement approximate 27 percentage low. 

ISE 6.2i that provides advanced tools like smart compile 

technology with better usage of their computing hardware 

provides faster timing closure and higher quality of results 

for a better time to designing solution. 

 

These designs were compared with IEEE-754 floating point 

multiplier architecture proposed by Ragini et al. [2] to show 

for the improvements obtained.  

 

So Ragini et al. [2] architecture is best in all these 

architectures.   Implementing the Ragini et al. [2], proposed 

architecture IEEE-754 floating point design has been 

captured by VHDL and the functionality is verified by RTL 

and gate level simulation. To estimate the number of slice, 

number of 4-i/p LUTs and maximum combinational path 

delay (MCPD).  

 
Table I: Comparison Result 

 
 

VI. CONCLUSION 

IEEE754 standardize two basic formats for representing 

floating point numbers namely, single precision floating 

point and double precision floating point. Floating point 

arithmetic has vast applications in many areas like robotics 

and DSP. Delay provided and area required by hardware are 

the two key factors which are need to be consider Here we 

present single precision floating point multiplier by using 

two different adders namely modified CSA with dual RCA 

and modified CSA with RCA and BEC.Among all two 

adders, modified CSA with RCA and BEC is the least 

amount of Maximum combinational path delay (MCDP). 

Also, it takes least number of slices i.e. occupy least area 

among all two adders.   
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