

 © 2019, IJCSE All Rights Reserved 1041

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-6, June 2019 E-ISSN: 2347-2693

Design and Analysis of Single and Double Precision Floating Point Matrix

Multiplier using Partition Multiplier Method

Manjusha Kumari
1*

, Vijay Yadav
2

1,2

Dept. of Electronics and Communication, LNCT, Bhopal

DOI: https://doi.org/10.26438/ijcse/v7i6.10411044 | Available online at: www.ijcseonline.org

Accepted: 09/Jun/2019, Published: 30/Jun/2019

Abstract— Due to advancement of new technology in the field of VLSI and Embedded system, there is an increasing demand

of high speed and low power consumption processor. Speed of processor greatly depends on its multiplier as well as adder

performance. In spite of complexity involved in floating point arithmetic, its implementation is increasing day by day. Due to

which high speed adder architecture become important. Several adder architecture designs have been developed to increase the

efficiency of the adder. In this paper, we introduce an architecture that performs high speed IEEE 754 floating point multiplier

using carry select adder (CSA). Here we are introduced two carry select based design. These designs are implementation Xilinx

Vertex device family.

Keywords: - IEEE754, Single Precision Floating Point (SP FP), Double Precision Floating Point (DP FP), Binary to Execess-1

Converter

I. INTRODUCTION

The real numbers represented in binary format are known as

floating point numbers. Based on IEEE-754 standard,

floating point formats are classified into binary and decimal

interchange formats. Floating point multipliers are very

important in dsp applications. This paper focuses on double

precision normalized binary interchange format. Figure 1

shows the IEEE-754 double precision binary format

representation. Sign (s) is represented with one bit, exponent

(e) and fraction (m or mantissa) are represented with eleven

and fifty two bits respectively. For a number is said to be a

normalized number, it must consist of'one' in the MSB of the

significand and exponent is greater than zero and smaller

than 1023. The real number is represented by equations (i) &

(2).

).1(2)1()(MZ BiasEs  
 (1)

).1(2)1()1023(MantissaValue Exponentsignbit  
 (2)

Biasing makes the values of exponents within an unsigned

range suitable for high speed comparison.

IEEE 754 Standard Floating Point Multiplication Algorithm

A brief overview of floating point multiplication has been

explained below [5-6].

 Both sign bits S1, S2 are need to be Xoring together,

then the result will be sign bit of the final product.

 Both the exponent bits E1, E2 are added together,

then subtract bias value from it. So, we get

exponent field of the final product.

 Significand bits Sig1 and Sig2 of both the operands

are multiply including their hidden bits.

Sign Bit Significand Biased

Exponent
1-bit 8/11-bit 23/52-bit

Figure 1: IEEE 754 Single Precision and Double Precision

Floating Point Format

E

2

E

1

 XOR

S1 S2

Sig1 Sig2

- Bias

X3=X1*X2

 S3 Sig3 E3

NE NS

Figure 2: IEEE754 SP FP and DP FP Multiplier Structure, NE:

Normalized exponent, NS: Normalized Significand

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1042

 Normalize the product found in step 3 and change

the exponent accordingly. After normalization, the

leading “1 “will become the hidden bit.

II. DIFFERENT TYPES OF ADDER

Parallel Adder:-

Parallel adder can add all bits in parallel manner i.e.

simultaneously hence increased the addition speed. In this

adder multiple full adders are used to add the two

corresponding bits of two binary numbers and carry bit of

the previous adder. It produces sum bits and carry bit for the

next stage adder. In this adder multiple carry produced by

multiple adders are rippled, i.e. carry bit produced from an

adder works as one of the input for the adder in its

succeeding stage. Hence sometimes it is also known as

Ripple Carry Adder (RCA). Generalized diagram of parallel

adder is shown in figure 3.

Figure 3: Parallel Adder (n=7 for SPFP and n=10 for DPFP)

An n-bit parallel adder has one half adder and n-1full adders

if the last carry bit required. But in 754 multiplier‟s exponent

adder, last carry out does not required so we can use XOR

Gate instead of using the last full adder. It not only reduces

the area occupied by the circuit but also reduces the delay

involved in calculation. For SPFP and DPFP multiplier‟s

exponent adder, here we Simulate 8 bit and 11 bit parallel

adders respectively as show in figure 4.

Figure 4: Modified Parallel Adder (n=7 for SPFP and n=10 for DPFP)

Carry Skip Adder:-

This adder gives the advantage of less delay over Ripple

carry adder. It uses the logic of carry skip, i.e. any desired

carry can skip any number of adder stages. Here carry skip

logic circuitry uses two gates namely “and gate” and “or

gate”. Due to this fact that carry need not to ripple through

each stage. It gives improved delay parameter. It is also

known as Carry bypass adder. Generalized figure of Carry

Skip Adder is shown in figure 5.

Figure 5: Carry Skip Adder

III. PROPOSED DESIGN

Proposed Parallel-Parallel Input and Multi Output(PPI-

MO)

In this design, we opted for faster operating speed by

increasing the number of multipliers and registers

performing the matrix multiplication operation. From

equation 2 we have derived for parallel computation of 3 × 3

matrix-matrix multiplication and the structure is shown in

figure 6.

For an n×n matrix – matrix multiplication, the operation is

performed using
2n number of multipliers,

2n number of

registers and nn 2
 number of adders. The registers are

used to store the partial product results. Each of the
2n

number of multipliers has one input from matrix B and the

other input is obtained from a particular element of matrix

A.

b31

b32

b33

b21

b22

b23

b11

b12

b13

a11 a21 a31

a12 a22 a32

a13 a23 a33

c33 c32 c31 c23 c22 c21 c13 c12 c11

Adder Adder Adder

Figure 1: Proposed PPI – MO Design for n = 3

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1043

The dataflow for matrix B is in row major order and is fed

simultaneously to the particular row of multipliers such that

the
thi row of matrix B is simultaneously input to the

thi

row of multipliers, where 1 < i < n . The elements of matrix

are input to the multipliers such that,
thij),(element of

matrix A is input.

The
thji),(multiplier, where1 < i,j < n. The resultant

products from each column of multipliers are then added to

give the elements of output matrix C. In one cycle, n

elements of matrix C are calculated, so the entire matrix the

elements of matrix C are obtained in column major order

with n elements multiplication operation requires n cycles to

complete.

Let us consider the example of a 3×3 matrix – matrix

multiplication operation, for a better analysis of the design

(as shown in figure 1). The hardware complexities involved

for this design are 9 multipliers, 9 registers and 6 adders.

Elements from the first row of matrix B (b11 b12 b13) are

input simultaneously to the first row of multipliers (M11 M12

M13) in 3 cycles. Similarly, elements from other two rows of

matrix B are input to the rest two rows of multipliers. A

single element from matrix A is input to each of the

multipliers such that,
thij),(element of matrix A is input

to the multiplier Mij, where 1 < i,j < 3. The resultant partial

products from each column of multipliers (M1k M2k M3k

where 1 < k 3) are added up in the adder to output the

elements of matrix C. In each cycle, one column of elements

from matrix C is obtained (C1k C2k C3k where1 < k < 3) and

so the entire matrix multiplication operation is completed in

3 cycles.

IV. FLOATING POINT

In IEEE754 standard floating point representation, 8 bit

Exponent field in single precision floating point (SP FP)

representation and 11 bit in double precision floating point

(DP FP) representation are need to add with another 8 bit

exponent and 11 bit exponent respectively, in order to

multiply floating point numbers represented in IEEE 754

standard as explained earlier. Ragini et al. [10] has used

parallel adder for adding exponent bits in floating point

multiplication algorithm. We proposed the use of 8-bit

modified CSA with dual RCA and 8-bit modified CSA with

RCA and BEC for adding the exponent bits. We have found

the improved area of 8-bit modified Carry select adder with

RCA and BEC over the 8-bit modified CSA with dual RCA.

o Sign bit calculation

To calculate the sign bit of the resultant product for SP FP

and DP FP multiplier, the same strategy will work. We just

need to XOR together the sign bits of both the operands. If

the resultant bit is „1‟, then the final product will be a

negative number. If the resultant bit is „0‟, then the final

product will be a positive number.

o Exponent bit calculation

Add the exponent bits of both the operands together, and

then the bias value (127 for SPFP and 1023 for DPFP) is

subtracted from the result of addition. This result may not be

the exponent bits of the final product. After the significand

multiplication, normalization has to be done for it.

According to the normalized value, exponents need to be

adjusted. The adjusted exponent will be the exponent bits of

the final product.

o Significand bit calculation

Significand bits including the one hidden bit are need to be

multiply, but the problem is the length of the operands.

Number of bits of the operand will become 24 bits in case of

SP FP representation and it will be 53 bits in case of DP FP

representation, which will result the 48 bits and 106 bits

product value respectively. In this paper we use the

technique of break up the operands into different groups then

multiply them. We get many product terms, add them

together carefully by shifting them according to which part

of one operand is multiplied by which part of the other

operand. We have decomposed the significand bits of both

the operands ain four groups. Multiply each group of one

operand by each group of second operand. We get 16

product terms. Then we add all of them together very

carefully by shifting the term to the left according to which

groups of the operands are involved in the product term.

Partition Multiplier:-

Algorithm for partition method

t1 : in STD_LOGIC_VECTOR (7 downto 0);

t2 : in STD_LOGIC_VECTOR (7 downto 0);

t3 : out STD_LOGIC_VECTOR (15 downto 0));

h1<=t1(3 downto 0);

h2<=t1(7 downto 4);

h3<=t2(3 downto 0);

h4<=t2(7 downto 4);

su1<=h1*h3;

su2<=h1*h4;

su3<=h2*h3;

su4<=h2*h4;

ad1<=("00000000" & su1);

ad2<=("0000" & su2 & "0000");

ad3<=("0000" & su3 & "0000");

ad4<=(su4 & "00000000");

t3<=ad1 + ad2 + ad3 + ad4;

V. SIMULATION RESULT

All the designing and experiment regarding algorithm that

we have mentioned in this paper is being developed on

Xilinx 6.2i updated version. Xilinx 6.2i has couple of the

striking features such as low memory requirement, fast

debugging, and low cost. The latest release of ISE
TM

(Integrated Software Environment) design tool provides the

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 1044

low memory requirement approximate 27 percentage low.

ISE 6.2i that provides advanced tools like smart compile

technology with better usage of their computing hardware

provides faster timing closure and higher quality of results

for a better time to designing solution.

These designs were compared with IEEE-754 floating point

multiplier architecture proposed by Ragini et al. [2] to show

for the improvements obtained.

So Ragini et al. [2] architecture is best in all these

architectures. Implementing the Ragini et al. [2], proposed

architecture IEEE-754 floating point design has been

captured by VHDL and the functionality is verified by RTL

and gate level simulation. To estimate the number of slice,

number of 4-i/p LUTs and maximum combinational path

delay (MCPD).

Table I: Comparison Result

VI. CONCLUSION

IEEE754 standardize two basic formats for representing

floating point numbers namely, single precision floating

point and double precision floating point. Floating point

arithmetic has vast applications in many areas like robotics

and DSP. Delay provided and area required by hardware are

the two key factors which are need to be consider Here we

present single precision floating point multiplier by using

two different adders namely modified CSA with dual RCA

and modified CSA with RCA and BEC.Among all two

adders, modified CSA with RCA and BEC is the least

amount of Maximum combinational path delay (MCDP).

Also, it takes least number of slices i.e. occupy least area

among all two adders.

REFERENCE

[1] Lakshmi kiran Mukkara and K.Venkata Ramanaiah, “A Simple

Novel Floating Point Matrix Multiplier VLSI Architecture for

Digital Image Compression Applications”, 2nd International

Conference on Inventive Communication and Computational

Technologies (ICICCT 2018) IEEE.

[2] Soumya Havaldar, K S Gurumurthy, “Design of Vedic IEEE 754

Floating Point Multiplier”, IEEE International Conference On

Recent Trends In Electronics Information Communication

Technology, May 20-21, 2016, India.

[3] Ragini Parte and Jitendra Jain, “Analysis of Effects of using

Exponent Adders in IEEE- 754 Multiplier by VHDL”, 2015

International Conference on Circuit, Power and Computing

Technologies [ICCPCT] 978-1-4799-7074-2/15/$31.00 ©2015

IEEE.

[4] Ross Thompson and James E. Stine, “An IEEE 754 Double-

Precision Floating-Point Multiplier for Denormalized and

Normalized Floating-Point Numbers”, International conference on

IEEE 2015.

[5] M. K. Jaiswal and R. C. C. Cheung, “High Performance FPGA

Implementation of Double Precision Floating Point

Adder/Subtractor”, in International Journal of Hybrid Information

Technology, vol. 4, no. 4, (2011) October.

[6] B. Fagin and C. Renard, "Field Programmable Gate Arrays and

Floating Point Arithmetic," IEEE Transactions on VLS1, vol. 2,

no. 3, pp. 365-367, 1994.

[7] N. Shirazi, A. Walters, and P. Athanas, "Quantitative Analysis of

Floating Point Arithmetic on FPGA Based Custom Computing

Machines," Proceedings of the IEEE Symposium on FPGAs for

Custom Computing Machines (FCCM"95), pp.155-162, 1995.

[8] Malik and S. -B. Ko, “A Study on the Floating-Point Adder in

FPGAs”, in Canadian Conference on Electrical and Computer

Engineering (CCECE-06), (2006) May, pp. 86–89.

[9] D. Sangwan and M. K. Yadav, “Design and Implementation of

Adder/Subtractor and Multiplication Units for Floating-Point

Arithmetic”, in International Journal of Electronics Engineering,

(2010), pp. 197-203.

[10] L. Louca, T. A. Cook and W. H. Johnson, “Implementation of

IEEE Single Precision Floating Point Addition and Multiplication

on FPGAs”, Proceedings of 83rd IEEE Symposium on FPGAs for

Custom Computing Machines (FCCM‟96), (1996), pp. 107–116.

[11] Jaenicke and W. Luk, "Parameterized Floating-Point Arithmetic

on FPGAs", Proc. of IEEE ICASSP, vol. 2, (2001), pp. 897-900.

[12] Lee and N. Burgess, “Parameterisable Floating-point Operations

on FPGA”, Conference Record of the Thirty-Sixth Asilomar

Conference on Signals, Systems, and Computers, (2002).

[13] M. Al-Ashrafy, A. Salem, W. Anis, “An Efficient Implementation

of Floating Point Multiplier”, Saudi International Electronics,

Communications and Photonics Conference (SIECPC), (2011)

April 24-26, pp. 1-5.

