
 © 2018, IJCSE All Rights Reserved 1041

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-7, July 2018 E-ISSN: 2347-2693

A.C.P. (ARTIFICIAL CHESS PLAYER), June 2017

Shalabh Agarwal
1*,

Tapadeep Chakraborty
2
, Nikita Dutta

3
, Shenelle Alphonso

4

1,2,3,4
Department of Computer

Science, St. Xavier’s College (Autonomous), Kolkata, India

*Corresponding Author: Shalabh Agarwal.

Available online at: www.ijcseonline.org

Accepted: 13/Jul/2018, Published: 31/Jul/2018

Abstract – Artificial Chess Player is a chess engine which runs on a Java platform. A ‘chess engine’ refers to a machine which

has the ability to play the game of chess against a human subject or another chess engine. The basic functionalities of a chess

engine constitute - accepting a move from its opponent, computing the most optimal move within a reasonable degree of

approximation and communicate the output back to the opponent and repeat the process with the ultimate goal of winning the

game. Out of these, the most significant and also the most challenging part in the construction of a chess engine is enabling it

to compute approximately the “best” move to play from a given position of the game and that will be the topic of this paper.

The main objective of this paper is to understand the algorithmic rules which help to guide the engine to victory in a limited

resource system and also to implement the rules using a high-level language (in this case, Java). The paper will also go through

the useful techniques used to implement a chess engine like minimax, alpha beta pruning, board evaluation and understand how

to implement them in coding language. Although, chess engine is not a new word in the field of computer science and artificial

intelligence, but it is still a field of active research even to this day when machine can beat man at his own game.

Prerequisites – A thorough understanding of the rules of chess, basic understanding of game trees, Java semantics

Keywords – chess engine, move set, minimax, Alpha-Beta pruning, board evaluating functions, zero-sum game, move ordering,

horizon effect, Stockfish.

I. INTRODUCTION

A chess engine maybe formally defined in the following

way – a machine/program that takes as input a valid board

and outputs one among the possible set of legal moves. It

may therefore be viewed as a black box mapping a board

to a move.

F(B) → M

This almost oversimplified way of looking at a chess

engine is actually vital as it enables us to give a

mathematical form to the complicated problem. A perfect

chess engine is actually infeasible because of the really big

branching factor (30, on average) of a chess game tree.

Knowing that an average game lasts for 80 ply, we can

compute the number of boards to be generated at 30
80

which is about 10
120

 [1]. In comparison, the number of

atoms in the observable universe is about 10
80

. Hence we

would need to limit the game tree depth to a finitely small

number and search all possible configurations within that

limit.

 For the program to work, therefore, it must be able to

generate all possible set of moves from a given board

configuration (and choose one of them). Degree(s) of

freedom of movement of the different pieces are defined

by the following set of rules:

Table 1: Degree of freedom of each piece

Piece Domain of movement

King (x±i,y±j) where i,j=1,0,-1 and not both i,j=0

Pawn Black : (x+1,y)

White : (x-1,y)

Bishop (x-i,y-i)

(x-i,y+i)

(x+i,y-i)

 (x+i,y+i) where 1≤i≤8

Rook (x+i,y)

(x-i,y)

(x,y+i)

 (x,y-i) where 1≤i≤8

Knight (x±i,y±j) where i,j=1,2 and i≠j

Queen Domain(Rook) U Domain(Bishop)

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1042

All of the above moves must additionally satisfy:

 Boundary condition of the 8x8 board

 Except for knight, no other piece is allowed to

skip pieces

 King must not be put to check

 Apart from these, there are special moves which are

allowed in a game of chess which include – pawn capture,

double pawn move, pawn promotion, en-passant, castling

which must also be considered with suitable condition

subject to constraints. Function move_set() generates all

possible moves from a given configuration.

Figure 1: Black Box representation of the working of move_set

function

Hence we are able to generate all possible set of moves

from a given board setup. All of these “child-boards”

maybe similarly expanded using the same rules, and

repeating this process a number of times for each board up

to a specific depth generates the game tree. This process

can be done using a function called progress():

This game tree must be stored in a specific data structure

and investigated for an output. To help us to implement the

idea we shall create a class called Board with all

information pertaining to a board and a class called Tree

which will have a tree rooted at a node and each node in

the tree will be an object of the board class.

Rest of the paper is organized as follows, Section I

contains introduction of a chess engine and representing

the game’s essential components in the form of logical

models which can be worked upon using high level

programming languages, Section II contains the essential

data structures required to store the data in order to operate

on the Game Tree, Section III contains various techniques

and functions used to evaluate a board’s relative winning

position, Section IV contains various algorithmic

techniques used to evaluate the Game Tree and generate an

output, Section V articulates the various results obtained

with the final prototype of the chess engine and discusses

its efficiency, Section VI concludes the paper by

discussing its efficiency and the future improvements.

II. Data Structures to store the Game Tree

Each object of the Board class is itself a node of the game

tree. The Board class must be equipped with the following

member variables:

 turn – equal to 1 indicates white to make a move and

-1 indicates black to make a move

 depth – indicates the depth of the board in the current

game tree

 kings_rooks_moved – one requires prior knowledge

of whether the four rooks and the two kings have

been moved, to realize a castling move. One may use

separate variables or an array to store the Boolean

values.

 enpassant_condition –information must be stored

with respect to en-passant as it can be availed for just

one ply

 Board left and right – to store links to left (child) and

right(sibling) boards in the game tree

 2D board array – to store the board configuration

with specific number/symbols indicating specific

pieces

 board_value – stores a double real number indicating

who is leading the game and by what margin

Pieces in the 2D array storing the game tree maybe

represented using distinct numbers, while piece color

maybe identified using signed representation of the same

number. In the project in hand, the following have been

chosen as values of various pieces:

|Rook|=2, |Knight|=3, |Bishop|=4, |Queen|=6, |King|=5,

|Pawn|=1

So a typical starting board will look like:

 public void progress()

 {

 move_set(root);//depth 1 of game tree

 Board re=root.left;

 while(re!=null)//increase depth as per required

 {

 move_set(re);

 Board rez=re.left;

 while(rez!=null)

 {

 move_set(rez);

 /*Board rez1=rez.left;

 while(rez1!=null)

 {

 move_set(rez1);

 rez1=rez1.right;

 }*/

 rez=rez.right;

 }

 re=re.right;

 } }

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1043

-2 -3 -4 -6 -5 -4 -3

-2

-1 -1 -1 -1 -1 -1 -1

-1

0 0 0 0 0 0 0

0

0 0 0 0 0 0 0

0

0 0 0 0 0 0 0

0

0 0 0 0 0 0 0

0

1 1 1 1 1 1 1

1

2 3 4 6 5 4 3

2

With Black pieces occupying rows 0 and 1 and White

pieces occupying rows 6 and 7.

In order to properly implement the game tree one must

have a reliable data structure which can be traversed

efficiently and saves memory. Although we may use a

simple tree structure we choose not to do so. This is

primary tree structure cannot be used because the

branching factor of a game tree is not constant (it may

range from 0 to more than 100). Hence we would need to

implement a data structure which may work for any

number of child nodes.

Figure 2: The Data Structure

The Game tree rooted at A to the left maybe represented

physically in the memory as the tree to the right. To

implement this tree we require two distinct kinds of links –

left (L) and right(R). If a node X in the tree is L-reachable

from Y then X is the child of Y, i.e. to reach node X from

Y, we need to pass through one left link. Two left links

indicate grandparent-grandchild node relation and so on.

Whereas nodes that are reachable using R links and no L

links are at same level and sibling nodes. In the above

diagram nodes E, F and G are all the possible board

configurations possible from node B. Few advantages of

designing the tree in the above fashion are:

 Can work for variable branching factors

 A simple preorder search achieves dfs (depth first

search) searching of the entire tree

The tree rooted at the present game position maybe

expanded to a desired depth depending on memory

constraints. The entire tree may have thousands of nodes

depending on the depth to which the tree is limited.

However the following simple recursive code will display

the entire tree:

 public void explore_tree(Board rx)//displays the tree in dfs fashion

 {

 if(rx==null)

 return;

 rx.display_board();

 System.out.println("\n");

 explore_tree(rx.left);

 explore_tree(rx.right); }

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1044

III. Board Evaluating Functions

Before discussing board evaluating functions, one is

required to understand what is meant by end-game

situations. A certain valid board configuration is in end-

game if any one of the following hold true:

 It is white to move and white has no legal moves

available and white king is in check

 It is black to move and black has no legal moves

available and black king is in check

 It is white to move and white has no legal moves

available and white king is not in check

 It is black to move and black has no legal moves

available and black king is not in check

The first and second condition is checkmate with black and

white winning respectively and the last two indicate the

condition for stalemate. We can say that the first condition

is the worst configuration for black and hence we may

assign the value -∞ (worst for white) to it and for similar

reasoning assign ∞ to any board which satisfies the second

condition. For first stalemate, we assign a very low value

for white (but not as low as being check-mated) and also

penalize black for not being able to checkmate and losing

mobility and vice-versa for the forth condition.

Now when we expand the tree to a certain depth (say k),

we are required to search for the best move available to us

within the given scope of visibility but we make an

obvious observation that not all leaf nodes of the game tree

till depth k, necessarily satisfy any of the end-game

conditions. Hence it is essential to devise some kind of

metric to measure who (black or white) is leading (which

chess players do intuitively). Since chess is a two player

zero-sum game, one party leading necessarily implies that

the other party is trailing. We therefore use the following

metric system to compute how likely a board condition is

favorable towards the white player:

The function takes as input a board and outputs a real

number. In other words, the function maps a board to the

set of real numbers. A positive value would indicate white

leading the game and negative would indicate black

leading (or, white trailing). The formula is a linear

combination of feature(s) with weights. It is essential to

realize that the weights may depend on several factors and

in all conditions may not be static. For instance, a rook

which is forked/blocked by neighboring pieces is not as

valuable as a bishop which has more mobility. However a

standard maybe adopted as a reference, the weights which

were used by A.C.P. were:

Table 2: Weight multiplier standards

Piece Weight multiplier

White Queen-Black Queen 900.00

White Rook-Black Rook 500.00

White Bishop-Black Bishop 400.00

White Knight-Black Knight 350.00

White Pawn-Black Pawn 100.00

[Note: The above values are not absolute and were chosen

after experimentation, under specific conditions the values

maybe altered for better evaluation]. These weights must

be multiplied with the number of piece difference. For

example, if white has two rooks and black has none we

add 2*500 to the board score of f(B). Using the above form

of evaluating function will make a sound but weak chess

engine because likelihood of victory doesn’t depend

merely on the number of pieces one player is ahead at, but

also depends on several other dynamic factors including

mobility, safety of the king and so on. These ideas are

required to be materialized and incorporated in the chess

engine as bonus factor or penalizing factor. Some of the

heuristics which may be used include:

 Tapered Evaluation – This heuristic basically suggests

the use of different weights in different game situations

of opening game, mid-game, closing game.

 Bishop Pair Bonus –Having the bishops side by side

allows the player to control a lot of boxes enabling

better control of the game. So we may give a small

bonus if such a configuration is ever achieved.

 King Safety – The king must always be protected and

must not be prone to being checked easily as it

drastically reduces move choices and hence mobility.

The king must also not be surrounded by too many

same colored pieces as it might block potential escape

routes. Having an early castling have been observed to

be an advantage in terms of safety.

 Pawn Development – This is perhaps the most essential

factor in the game of chess. An underdeveloped pawn

structure is a sign of vulnerability as it indicates that the

player is controlling less number of blocks and also

pawns must be developed as it may be promoted to

major pieces on reaching the final row. Thus a pawn

maybe systematically given a higher weightage maybe

given to pawns which are ahead than pawns which are

relatively backwards. The weight scales for white

pawns which were used in A.C.P. were 110, 120, 130,

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1045

200, 400 for each row the pawns progress. Pawns in the

penultimate row maybe considered as valuable as a

bishop because it is just one step away from being

promoted. Hence, a pawn in the penultimate row is a

potential queen

 Pawn Clusters – When pawns are side by side they can

support each other and but when pawns are isolated or

doubled (one before another), they end up blocking the

progress. Hence some amount of negative (with respect

to white) must be given to penalize such

configurations.

 Mobility – Mobility is also a very important aspect

which essentially says that having more options open at

each step ensures an added advantage. So the more

legal moves a player has in his possession, the better.

Mobility scores may also be calculated for specific high

priority pieces like the queen.

On top of all the above mentioned factors, many more

maybe introduced for better performance of the chess

engine.

[Note: Only leaf nodes in the tree has to be evaluated for

the computation]

IV. Algorithmic Techniques to evaluate the Game

Tree

MINIMAX

After successful generation of the game tree, one has to

implement algorithms to find the best move in the game

based on the limited scope of visibility (depending on the

depth of the tree). One of the most obvious approaches

would be implement some form of backtracking. The

algorithm which uses this is termed minimax. Minimax

assumes that the opponent is at least as intelligent as the

chess engine. Since we assign the board values relative to

white, so black tries to attain a score as low as possible

whereas white tries to attain a score as high as possible. In

other words, white acts as a maximizer and black acts a

minimizer. Starting from the bottom level, the algorithm

chooses the minimum or the maximum of the possible

choice of values, depending on the parent node being

maximizer or minimizer, and repeats the same process in a

bottom-up fashion. The process has been demonstrated in

the following illustration using a simple binary tree and

arbitrary node values:

Figure 3: MINIMAX algorithm

In the above example, the best move for the player at root

would be to go left but one may be initially persuaded to

move right because the highest value lies to the right sub-

tree of the root but as we can see that he might also end up

getting a value of 4, if he were to move right.

ALPHA-BETA PRUNING

Alpha-beta pruning is not a new algorithm but an

improvement on the existing minimax. This technique

increases the efficiency of minimax significantly. It stops

completely evaluating a move when at least one possibility

has been found that proves the move to be worse than a

previously examined move. Such moves need not be

evaluated further. When applied to a standard minimax

tree, it returns the same move as minimax would, but

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1046

prunes away branches that cannot possibly influence the

final decision. The algorithm maintains two values, alpha

and beta, which represents the minimum score that the

maximizing player is guaranteed and the maximum score

that the minimizing player, is guaranteed respectively.

Initially alpha is negative infinity and beta is positive

infinity, i.e. both players start with their worst possible

score. Whenever the maximum score that the minimizing

player is assured of becomes less than the minimum score

that the maximizing player is assured of (i.e. beta ≤ alpha),

the maximizing player need not consider the descendants

of this node as they will never be reached in actual play.

The illustration below shows alpha-beta pruning in action:

Figure 4: Alpha-Beta Pruning

Unlike minimax which makes a decision based on its

immediate parent, alpha-beta pruning makes its decision

based on the grandparent node. In the above example,

when the minimizer A gets a value of 7 from its left sub-

tree and observes a value of 8 (greater than 7) in left sub-

tree of C, it decides not to investigate C’s right sub-tree D

(which maybe substantially long). This is because with

respect to A, 7 is the best value he can get, irrespective of

the value obtained by node D. Minimax works best when

the nodes are sorted in descending order of their board

values, this is called move ordering.

The code which can be used to implement minimax with

alpha beta pruning using the modified tree is shown below:

 public double minimax(Board r)

 {

 if(r.left==null)

 return r.board_value;

 Board p=r.left;

 double f=minimax(p);

 p=p.right;

 while(p!=null)

 {

 double q=minimax(p);

 if(p.turn==1)//minimizer

 {

 if(q<r.board_value)

 {

 r.board_value=q;

 return q;

 }

 if(f>q)

 f=q;

 }

 else

 {

 if(q>r.board_value)

 {

 r.board_value=q;

 return q;

 }

 if(f<q)//maximizer

 f=q;

 }

 p=p.right;

 }

 r.board_value=f;

 if(r.right!=null && r.right.left!=null)

 r.right.board_value=r.board_value;

 return f;

 }

With minimax and alpha beta pruning in place, the entire

algorithm maybe graphically represented using a control

flow flowchart. The flowchart incorporates all the major

operations and in which order they need to be repeated in

order to obtain a working model of a chess engine which

can keep playing a game of chess until an end-game

position is reached. The flowchart is illustrated below:

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1047

Figure 5: Flow chart of A.C.P.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1048

Certain features like Autoplay was introduced in the final

project where the algorithm can basically keep making

moves being the white and the black player alternatively.

This feature maybe used to test the strength of various

evaluating functions where white uses a certain set of

functions and black uses a different set. Other useful

features like Retrieve Move was introduced to give players

additional flexibility to retrace a move if they want to

change the move they had previously played – this can be

achieved using a linked list storing the various board

configurations in the course of the game. Finally there

must be validation checks to ensure the moves given by

the user are legal moves abiding by the rules of chess.

V. RESULTS AND DISCUSSIONS

Few of the results of the final prototype are discussed

below. The developed chess engine was tested using

lichess chess simulator and was also tested against the

most popular and one of the most powerful chess engines

namely Stockfish.

In the first phase of testing of the project the obvious errors

and vulnerabilities were detected and removed. These tests

included ensuring proper castling conditions are

maintained, valid pawn promotions are implemented and

ensuring en-passant move is played with correct

constraints in place and so on. Any bugs that were found

were rectified and a fully functional chess engine was

developed. These tests are not mentioned in here with the

assumption that the reader is fully aware of the rules of the

game.

 The next phase of testing included testing strategic

weaknesses which the chess engine might suffer from and

which from a developer’s perspective should be removed.

In the graphics provided below, the right side of the

illustration shows the actual moves being inputted to the

machine in Command Prompt window and left side shows

a simulation of the actual chess board using lichess. Few of

the cases are discussed below:

 Checkmate: Although checkmate opportunity can be

easily spotted by a human subject and put to effect

immediately, a machine maybe fooled and never

actually play the final move but always be in

contention to checkmate the opponent. The following

example illustrates the problem and shows a graphic of

how it should behave after the problem is solved

Figure 6: AC.P. checkmates the user

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1049

 In this game, the computer is playing black. This is an

essentially an end game situation as there is no way for

white to stop checkmate. However we observe that

there are various ways to checkmate white from the

initial position, the engine treats all checkmates equally

so a checkmate after two moves is good as a checkmate

in the immediate next move. This problem means that

the chess engine can repeatedly inspect the game tree

and keep being in a dominated position and never

actually make the checkmate move. To eliminate this

problem, the board_value is multiplied by a factor of

1/depth which means a checkmate in the node of lesser

depth is preferred to a checkmate further down the

game tree.

 Queen Threat: Queen is an essential major piece in the

game. It is perhaps the most important piece after king.

Running a queen down in a game of chess is considered

a fatal position. Hence the queen must be steered to safe

positions and steered out of difficult positions. The

slides below show exactly how the engine responds

when the queen is put to threat. The computer is playing

black in the illustration below. In this game, the black

queen in coordinate d7 is in danger as the white rook in

coordinate d5 will capture the queen in the next turn. If

the queen captures the rook in its move, the white pawn

in coordinate e4 guarding the rook will capture the

queen in turn. The engine, in order to save its queen,

moves the queen from coordinate d7 to coordinate a4.

Hence, the algorithm successfully withstands a queen

threat and steers the queen to the safest spot, in turn

putting the knight in harm’s way.

Figure 7: A.C.P. saves the queen

 Fork: Forking is a very common technique used in chess

to capture a piece and/or to limit the opponent player’s

options. Forking happens when two pieces are challenged

simultaneously by a single opponent’s piece, forcing the

player to sacrifice one for the other. Usually forking is the

strongest challenge when the king is put to check and

another major piece is also under attack, usually this

means that the player has to move the king and sacrifice

the other major piece. A forking example is shown below,

where computer is playing white and black has a forking

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1050

option next move and it is white to move. The black

knight at a4 can fork the white king and the white queen

by moving to c5 meaning that white will have to

exchange a queen for a knight. The chess engine is also

given an immediate option to capture the black rook at c8

with white bishop at e6 as a bait to see if it takes up the

immediate bait for foresees the incoming fork. The chess

engine indeed realizes the threat and moves its queen

from d3 to d6.



Figure 8: A.C.P. overcomes forking

VI. CONCLUSION

Using alpha-beta pruning along with minimax with strong

board evaluating functions, one can design a chess-engine

which is reasonably fast and reasonably efficient. Because

of the backtracking problem, minimax has a runtime

complexity of O(b
d
), where b is the branching factor of the

game tree and d is the depth of the game tree. With the

introduction of alpha-beta pruning the efficiency increases

to O(b
d/2

) at best case with perfect move ordering [2]. The

fact that makes such a complicated game is because it

belongs to EXP-class of problems. There exist more games

of chess than there are atoms in the observable universe.

Due to these reasons chess has always been a challenge for

both man and machine. The only theoretical problem this

chess engine suffers from is the horizon effect, where the

chess engine simply overlooks certain obvious game traits

because the game tree is shallow and the problem cannot

be removed simply by increasing the depth of the game

tree, because the horizon may be present anywhere.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1051

ACKNOWLEDGEMENT

Artificial Chess Player was guided by Prof. Shalabh

Agarwal without whose unconditional guidance and

constant support this project would not be a success. His

patience, motivation and immense knowledge were

essential for the completion of this project. The professors

of the Department of Computer Science of St. Xavier’s

College are also to be credited for this thesis especially Dr.

Anal Acharya for providing his valuable time and

expertise. Last but not the least, Dean of Science, Principal

and Vice Principal of St. Xavier’s College, Kolkata earns

gratitude for allowing us to do this.

REFERENCES

[1] Claude E. Shannon, “Programming a Computer for

Playing Chess”, Philosophical Magazine, Ser.7, Vol. 41,

No. 314 - March 1950

[2] D. Klyushin, K. Kruchinin, “Advanced Search Using

Alpha-Beta Pruning, Matematychni Studii. V.25, No.1

Author’s Profile

Shalabh Agarwal is an Associate Professor

in the Department of Computer Science, St.

Xavier’s College, Kolkata. He is also the

Director, Computer Centre & Central

Computing Facilities and Head of the

Department of Computer Science at the

College. His research Interests are Green Computing,

Pervasive Computing, Software Engineering, IOT and

Internet security.

Tapadeep Chakraborty graduated with

Bachelor in Computer Science from St.

Xavier’s College (Autonomous), Kolkata.

He is presently pursuing M.Sc. in the field

of Scientific Computing from Savitribai

Phule Pune University and his interests

include complexity theory, machine

learning and other aspects of theoretical Computer

Science.

Nikita Dutta is graduated with Bachelor in

Computer Science from St. Xavier’s

College (Autonomous), Kolkata. She is

currently doing her M.C.A. from Vellore

Institute of Technology. She is interested

in android app development, mobile

computing, cloud computing and study of

various programming languages.

Shenelle Alphonso graduated with Bachelor

in Computer Science from St. Xavier’s

College (Autonomous), Kolkata. She is

presently working with Ernst & Young as a

professional in Cyber Security. Her interests

include cyber security, soft computing and

business analytics.

