

 © 2017, IJCSE All Rights Reserved 112

International Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-5, Issue-6 E-ISSN: 2347-2693

An Efficient Approach to Optimize the Performance of Massive Small

Files in Hadoop MapReduce Framework

Guru Prasad M S
1*

, Nagesh H R
2
, Swathi Prabhu

3

1
Computer Science & Engineering, SDMIT, VTU-Belagavi, Ujire, India

2
 Computer Science & Engineering, MITE, VTU-Belagavi, Moodbidri, India
3
Computer Science & Engineering, SMVITM, VTU-Belagavi, Udupi, India

*Corresponding Author: guru0927@gmail.com, Tel.: +91-96869-30845

Available online at: www.ijcseonline.org

Received: 25/May/2017, Revised: 02/Jun/2017, Accepted: 20/Jun/2017, Published: 30/Jun/2017

Abstract— The most popular open source distributed computing framework called Hadoop was designed by Doug Cutting and

his team, which involves thousands of nodes to process and analyze huge amounts of data called Big Data. The major core

components of Hadoop are HDFS (Hadoop Distributed File System) and MapReduce. This framework is the most popular and

powerful for store, manage and process Big Data applications. But drawback with this tool related to stability and performance

issues for small file applications in storage, manage and processing the data. Existing approaches deals with small files

problem are Hadoop archives and SequenceFile. However, existing approaches doesn’t give an optimized performance to solve

small files problems on Hadoop. In order to improve the performance in storing, managing and processing small files on

Hadoop, we proposed an approach for Hadoop MapReduce framework to handle the small files applications. Experimental

result shows that proposed framework optimizes the performance of Hadoop in handling of massive small files as compared to

existing approaches.

Keywords-Hadoop, Hadoop Distributed File System (HDFS), MapReduce, Hadoop Archives, Sequence File, Small Files.

I. INTRODUCTION

Big Data is a new phrase used to describe a massive

volume of structured, unstructured and semi-structured data.

In the year 2012, 2,72,000 Exabyte’s of digital data were

stored in the world. Today digital world data is exploded to

10,00,000 Exabyte’s, International Digital Corporation (IDC)

is estimated that digital world data will reach 35,00,000

Exabyte’s by 2020 [1]. Traditional computing technologies

are becoming inadequate to store, manage and process

massive data sets [4]. Highly need of distributed computing

framework to handle massive data sets. Today Hadoop is the

most promising popular and powerful distributed computing

framework. It is an Apache foundation framework based on

implementation of MapReduce parallel programming model

[2]. This model is an increasingly popular technology to

process and analyze large massive data sets. It provides a

reliable, scalable and robust computing framework. The

major core components of Hadoop are HDFS and

MapReduce. HDFS read large files as an input data, later

divides the large file into data blocks (128 MB default) and

stores the data blocks in the computing nodes. MapReduce is

a programming model for application which processes data

blocks in parallel [1-22].

The design of Hadoop is such that it provides a high

performance to store and process large file applications. But

Hadoop is not bound for large file applications because many

applications generates small files few example are, weather

sensors producing files which of size normally start from a

few kilobytes to tens of megabytes [11]. In on-line education

tutorials most file stored are power point and pdf whose

average file size in between 5-10 megabytes. Social network

servers like Facebook, Whatsapp, Instagram, etc., contains

billions of images, each image size is less than 5 MB. Most

videos size stored in You Tube are less than 50 MB. A small

file is a file whose size is less than 50% of the HDFS block

size which of size 128MB. But major issue here is Hadoop

does not provide optimal performance for small file

applications. Hadoop NameNode was designed to store

metadata and data blocks information, each meta data

occupies 150 bytes of memory [12-22]. When there are

millions of small files, storing metadata and block

information will impact on the allocated memory for

 International Journal of Computer Sciences and Engineering Vol.5(6), June 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 113

NameNode in RAM. HDFS stores the data blocks in

computing nodes, too many small files will overhead the

network traffic and consumes more time to store.

MapReduce program was designed to process data blocks

reside in computing nodes, large number of small files will

create an overhead between MapReduce tasks and consumes

more time to process. Some approaches such as Hadoop

Archives [9], SequenceFile [10], were proposed on Hadoop

to handle small files, but they did not give optimal

performance to store, manage and process small file

applications.

In this paper, we propose an optimized Hadoop

MapReduce framework that will solve small files problems

on Hadoop. It consists of two techniques they are File

Manager and MapCombineReduce (MCR). File Manager

provides four functions such as File Integrator, File Read,

File Modify, File Delete. It solves memory pressure of

NameNode and overhead of network traffic. MCR is a data

processing technique proposed to process data blocks. It

solves overhead between MapReduce tasks and improves the

performance of data processing.

The rest of the paper is organized as follows. Section II is

an illustration of related works about the proposed topic. Section

III discuss the problem statements and existing approaches.

Section IV proposes the proposed architecture. Section V

presents comprehensive experiment results. Section VI

concludes the paper.

II. RELATED WORK AND MOTIVATION

Fang Zhou, et al [3] described that Hadoop can easily store

and analyze large files. However, it cannot provide good

performance for small files on storage and process levels. To

solve these problems authors proposed an SFMapReduce

framework for small files. Authors presents two techniques,

small file layout and customized MapReduce. The First

technique solved the NameNode memory problem and

second technique efficiently process data with SFlayout.

Experimental results depict that SFMapReduce performance

is 14.5 times better, compared to the original Hadoop and

20.8 times better compared to the HAR layout. In this paper

authors solved the NameNode memory problem to a good

level, but they didn't concentrate on network traffic between

the computing nodes. The Authors haven’t compared their

work with the SequenceFile layout.

Xiaoyong Zhao, et al [4] illustrates that distributed

storage required to store trillion GB of data. Hadoop is the

robust framework to store and process large massive data.

However, it is not suitable for handling massive small files.

Authors presents a novel metadata-aware storage architecture

on Hadoop for handling massive small files. This

architecture includes merge module, first index module and

metadata manage module. The proposed architecture on

Hadoop decrease memory pressure on NameNode. In this

paper authors concentrated only on metadata management on

NameNode and they haven't concentrate to solve the small

file processing issue. Experimental results didn't compare

with any traditional approach and considered only MP3 files.

Kun Gao, et al [5] says that GIS technology generates

massive small files, traditional technology cannot meet the

demand of storage and processing of massive files. Today

Hadoop is a leader to handle large massive files. But some

factors impact on Hadoop to store and process massive small

files. To improve Hadoop performance authors proposed

Hilbert space filling curve to convert two dimensional data to

one dimensional data. Authors concludes that the proposed

method improves the efficiency of data retrieval. In this

paper authors not compared their work with traditional

methods. The proposed method solved only indexing

problems on Hadoop, but the data processing problem

remains unchanged.

Parth Gohil, et al [6] describes that Hadoop is a rising

distributed computing framework to deal Big Data. Authors

mentioned about massive small files problems i.e. Massive

small files occupy more NameNode memory and

MapReduce consumes more time to complete jobs. To solve

performance issues, they proposed an approach. The

proposed approach, merged all small files into a single large

file. Experimental results illustrate that, proposed method

reduces the memory pressure on NameNode and improves

the MapReduce performance compared to traditional

methods. In this paper author not mentioned or identified

other parameter effect the Hadoop performance.

III. PROBLEM STATEMENT AND EXISTING

APPROACHES

A. Problem Statement

Hadoop does not provide optimal performance for small files

processing. Massive small files will impact on the following

factors.

1. Impact on NameNode memory

HDFS divides a large file into data blocks. By default, it is

128 MB and stores the data blocks in the computing nodes. It

consists of NameNode, which is the master node and Data

Node, which is the computing nodes. NameNode was

 International Journal of Computer Sciences and Engineering Vol.5(6), June 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 114

designed to store each data block’s metadata information.

Metadata is an information of the data block like data block

name, data block id, creator, created, permission, timestamp,

etc. It occupies 150 bytes of the NameNode in RAM

memory. If a file size less than the HDFS block size, even

then HDFS treats it as one block. In this way as the number

of small files stored in HDFS increases lots of metadata

related to this blocks will be in NameNode RAM memory.

For example, assume that 1,000,000 small files stored in

HDFS then 143 MB of metadata is stored in NameNode

memory. Massive small files will significantly impact on

NameNode memory

2. Impact on MapReduce performance

HDFS will consider each small file as one block. For each

block one Map task will be created. For massive small files

large number of Map tasks will be created. It is an overhead

for processing. This will bottleneck the overall MapReduce

performance compared to large file processing.

B. Existing approaches

Existing approaches to handle small files in Hadoop are as

follows:

1. Hadoop Archives

Hadoop Archives (HAR) [5] is an approach to alleviate the

small files problem on Hadoop. It archives massive small

files into HDFS blocks. The Hadoop Archive data format

shown in figure 1. It has three layouts: a master index that

stores hashes and offsets of the index which stores files

information, a data that stores the actual data. The

advantages of HAR are: It reduces the memory pressure on

the NameNode and allows parallel access to archive files.

The disadvantages of HAR are: HAR files are immutable,

once an HAR file created not possible to add or remove file

and HAR file used as input to MapReduce, but it difficult to

read HAR files as compared to HDFS file.

 Fig 1. Hadoop Achieve Data Format

2. SequenceFile

SequenceFile [5]is an approach to solve the small files

problems. It combines massive small files into a flat file. The

SequenceFile data format shown in figure 2. It has key/value

pairs, key is file name and value is file contents. It has three

different formats: uncompressed key/value pairs, record

compressed key/value pairs and block compressed key/value

pairs. The advantages of SequenceFile are: It reduces

memory pressure on the NameNode and overhead between

MapReduce jobs. The disadvantages of SequenceFile are: If

you have 1000 small files, then SequenceFile could contains

1000 keys, one key per file and if SequenceFile is

compressed, MapReduce jobs consumes more time to

process.

Fig 2. SequenceFile Data Format

IV. PROPOSED ARCHITECTURE

This section presents the techniques related to proposed

architecture and implementation details. The proposed

architecture is as shown in figure 3 which expands the

baseline Hadoop MapReduce framework. It states that small

files problem can be handled more effectively using two

techniques.

 File Manager.

 MapCombineReduce

Fig

3. Proposed Architecture

A. File Manager

The proposed File Manger technique focuses effectively

on managing metadata in NameNode. This technique is to

solve memory pressure on NameNode, to optimize HDFS

time to distribute files to computing nodes and to provide

mutable property to HDFS files. File Manager provide four

functions; they are as follows:

 File Integrator.

 File Read.

 File Modify.

 File Delete.

1. File Integrator

 International Journal of Computer Sciences and Engineering Vol.5(6), June 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 115

File Integrator is the first and most important function of File

Manager. It is an innovative file layout designed to combine

small files, whose size more than 80% of HDFS block size.

The File Integrator data format shown in figure 5. It has two

layouts an index and a data. Index includes information of

file such as file id, file name, file size, offset and creation

time. Data stores actual data of size 100MB. It efficiently

manages metadata on NameNode, solves memory pressure

of NameNode and optimize HDFS time to distribute files to

computing nodes. Algorithm of File Integrator and flow

chart (figure 4) is as follows:

Algorithm: File Integration

Step 1: Start the File Integration process

Step 2: Create a new file k++, where k=1.

Step 3: Read the contents of small file i, where i=1 to n

(where n indicates total number of small files).

Step 4: if i value less than or equal to n then

 goto step 5

 else

 goto step 8

Step 5: if (file size of i + file size of k) less than 100 MB then

 goto step 6

 else goto step 2

Step 6: Write file i content to file k, increment i value.

Step 7: if file size of k greater than or equal to 100 MB then

 goto step 2

 else goto step 3

Step 7: End of File Integration process

Fig 4. File Integrator Flow Chart

Fig 5. File Integration Data Format

2. File Read

File Read is the second function of the File Manager.

Sometimes user need to read some files from HDFS, user

have to run read program in the command line. Here, the

user has to enter the file name in command line. File Read

program will read file name and search it in File Integration

data format. If file found, it will map file name with HDFS

block id. Next, it will find the file content inside HDFS block

and display the file content. Algorithm of File Read and flow

chart (figure 6) is as follows:

File Read algorithm is as follows:

Step 1: Start the File Read process.

Step 2: Enter the file name to read.

Step 3: Search that file name in File Integration data format

 If found goto step 4

 Else goto step 7.

Step 4: Map file name with HDFS block id

Step 5: Find the file content inside the HDFS block.

Step 6: Display the file content.

Step 7: Display File name not found

Step 8: End of the File Read process.

Fig 6. File Read Flow Chart

 International Journal of Computer Sciences and Engineering Vol.5(6), June 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 116

3 File Modify

File Modify is the third function of the File Manager. If

user wishes to modify some files in HDFS, user have to run

modify program in the command line. Here, the user has to

enter the file name in command line. File Modify program

will read file name and search it in File Integration data

format. If file found, it will map file name with HDFS block

id. Next, it will find the file content inside HDFS block and

display the file content. Now, user can easily modify the file

content and save the file back in HDFS. Algorithm of File

Modify and flow chart (figure 7) is as follows:

Algorithm: File Modify

Step 1: Start the File Modify process.

Step 2: Enter the file name to modify.

Step 3: Search that file name in File Integration data format

 If found goto step 4

 Else

 goto step 8.

Step 4: Map file name with HDFS block id

Step 5: Find the file content inside the HDFS block.

Step 6: Display the file content.

Step 7: User can modify and save the file.

Step 8: Display File name not found.

Step 9: End of the File Read process.

Fig 7. File Modify Flow Chart

4 File Delete

File Read is the fourth function of the File Manager.

Sometimes user wants to delete some corrupt files in HDFS,

user have to run delete program in the command line. Here,

the user has to enter the file name in command line. File

Delete program will read file name and search it in File

Integration data format. If file found, it will map file name

with HDFS block id. Next, it will find the file content inside

HDFS block and display the file content. Now, user can

easily delete the file. Algorithm of File Delete and flow chart

(figure 8) is as follows:

Algorithm: File Delete

Step 1: Start the File Delete process.

Step 2: Enter the file name to delete.

Step 3: Search that file name in File Integration data format

 If found goto step 4

 Else goto step 8.

Step 4: Map file name with HDFS block id

Step 5: Find the file content inside the HDFS block.

Step 6: Display the file content.

Step 7: User can delete the file.

Step 8: Display File name not found.

Step 9: End of the File Read process.

Fig 8. File Delete Flow Chart

 International Journal of Computer Sciences and Engineering Vol.5(6), June 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 117

V. RESULT AND DISCUSSION

The Performance of the Hadoop MapReduce framework

with respect to the time taken to load data from local file

system to the Hadoop Distributed File System, memory

consumption of the NameNode and the data process time

was initially benchmarked with the original Hadoop, Hadoop

Archives (HAR), SequenceFile and then compared with

results obtained using the Proposed Approach (Optimize

Hadoop).

A. Experimental Environment

For the performance analysis, the test platform contains a

Hadoop five node cluster with homogeneous hardware

property, i.e. Each node in the cluster has a 3.8 GB RAM,

Intel® Core i5 3470 CPU @3.20GHz * 4 processor. We

setup cluster on Ubuntu 16.03 with Hadoop 1.7.2 stable

release used the oracle jdk 1.8 and ssh configuration to

manage Hadoop daemons. Our cluster setup is having 1

NameNode and 5 DataNodes for the purpose of an

experiment. Configuration files such as mapred-site.xml,

core-site.xml, hdfs-site.xml and yarn-site.xml are setup by

default values with replication factor 2 and data block size

128 MB.

B. Workload Overview

The workload for the experiment contains a total of 3,900

files. The size of these files, range from ≥ 100 KB to ≥ 10

MB. The collective size of all files is 10GB which comprises

image, document, pdf, video and presentation files. The

distribution of file sizes is shown in figure 9.

Fig 9. Distribution of File Sizes in Workload

C. Performance Measurement Parameter

The performance of the Hadoop cluster was measured on the

following parameter.

a. Time taken to load data from local file system to HDFS.

b. Amount of memory consumed by the NameNode for

storing metadata.

c. Time taken to process the data.

d. Overall Performance.

D. Data Loading.

To process small files, user need to load data from local disk

to HDFS. HAR, SequenceFile and Proposed Approach

converts small files to large file and load the data to HDFS.

The formula to calculate data loading time is as follows:

TDL=TCF + TMF ------------------------(1)

Where,

TDL= Total time taken for data loading.

TCF = Time taken convert small files to large file.

TMF = Time taken to move file to HDFS

Experiments are conducted to test the data loading time

in the proposed approach, which is compared with the

original Hadoop, SequenceFile and HAR. Table I shows the

time taken by the original Hadoop, SequenceFile, HAR and

Proposed Approach. Figure 10 depicts the chart of the time

taken by the original Hadoop, SequenceFile, HAR and

Proposed Approach.

The performance of data loading of the Proposed

Approach is optimized than original Hadoop by 31.75%,

SequenceFile by 46.63% and HAR by 38.99%. The obtained

result clearly indicates that the data loading takes place faster

in the Proposed Approach than original Hadoop,

SequenceFile and HAR.

Table I. Time taken to load data from local disk to the HDFS

Technique File Size in

GB

Time Taken in

seconds

Original Hadoop 10 463

SequenceFile 10 592

HAR 10 518

Proposed pproach 10 316

Fig 10. Time taken to load data from local disk to HDFS

 International Journal of Computer Sciences and Engineering Vol.5(6), June 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 118

E. Memory Measurement

The experiments are conducted to compare the NameNode

memory consumption of the Proposed Approach with

original Hadoop, SequenceFile and HAR. The computational

formula to measure NameNode memory consumption is as

follows:

MNN = NDB * MMD+MIF ----------------------(2)

Where,

 MNN = Memory consumption of NameNode.

NDB = Total Number of Data Blocks.

MMD = Size of metadata information.

MIF = Size of index file

 A total of 3,900 small files was placed. In the original

Hadoop each small file is represented as data block. The

NameNode memory consume is 585,000 bytes of memory to

store meta data information of 3,900 data blocks. HAR

archives 3,900 small files into HDFS blocks. The NameNode

memory consume is 355,000 bytes of memory to store meta

data information of HAR file. The proposed approach

consists of File Integrator; it integrates small files into a large

file of 100 MB size. The proposed approach integrates 3,900

small files into 100 large files. The required NameNode

memory is 15,000 bytes to store meta data information of

100 data blocks. Table II shows the NameNode memory

consumed by the original Hadoop, SequenceFile, HAR and

Proposed Approach. Figure 11 depicts the chart of the

NameNode memory used by the original Hadoop,

SequenceFile, HAR and Proposed Approach.

The NameNode memory consumption is minimized in

Proposed Approach than original Hadoop by 80.35%,

SequenceFile by 75.74 is % and HAR by 67.60%. The result

obtained clearly indicates that the NameNode memory

consumption of the Proposed Approach is lesser than

original Hadoop, SequenceFile and HAR.

Table II. Memory usage of the NameNode

Technique Memory usage in bytes

Original Hadoop 585,000

SequenceFile 474,000

HAR 355,000

Proposed Approach 115,000

Fig 11. Memory consumption of the NameNode

F. Time taken to process files.

The experiments are conducted to compare

the file processing time in the proposed approach with the

original Hadoop, SequenceFile and HAR. Table

III shows the time taken by the original Hadoop,

SequenceFile, HAR and Proposed Approach. Figure 12

depicts the chart of the time taken by original Hadoop,

SequenceFile, HAR and Proposed Approach.

The time required to processing data in Proposed Approach

is optimized than original Hadoop by 79.36%, Sequence File

by 68.93% and HAR by 45.39%. The result obtained clearly

indicates that the performance with the proposed approach is

better than original Hadoop, Sequence File and HAR
Table III. Time taken to process files

Fig 12. Time taken to process files

Technique Time in Seconds

Original Hadoop 2,529

Sequence File 1680

HAR 956

Proposed Approach 522

 International Journal of Computer Sciences and Engineering Vol.5(6), June 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 119

G. Overall Performance

The experiments are conducted to compare the total time

taken to complete the job by the Proposed Approach with the

original Hadoop, SequenceFile and HAR. The formula to

calculate Overall Performance is as follows:

 TCJ=TDL+TPF ----------------------------- (3)

Where,

TCJ= Total time to complete job.

TDL=Time taken for data loading.

TPF= Time taken to process files.

Table IV shows the time taken by the original Hadoop,

SequenceFile, HAR and Proposed Approach. Figure 13

depicts the chart of the time taken by original Hadoop,

SequenceFile, HAR and Proposed Approach. The Overall

Performance of the proposed approach is optimized than

original Hadoop by 71.20%, SequenceFile by 63.11% and

HAR by 43.14%. The result obtained clearly indicates that

Overall Performance of the proposed approach is better than

original Hadoop, SequenceFile and HAR.

Table IV. Overall Performance

Technique Time in Seconds

Original Hadoop 2992

SequenceFile 2272

HAR 1474

Proposed Approach 838

Fig 13. Overall Performance

VI CONCLUSION

Hadoop is a most popular, powerful and widely used

open source distributed computing framework to handle

large files. But drawback with this tool, it does not provide

optimal performance for massive small files in storage,

manage and processing levels. Existing approaches to solve

small files problems on Hadoop are Hadoop Archives and

SequenceFile. However, the performance of existing

approaches is not optimal to solve small files issues on

Hadoop. In order to achieve optimal performance, we

proposed an optimized Hadoop MapReduce framework. In

our Hadoop MapReduce framework, we propose two

techniques, FileManager and MCR, which help to provide

better storage, manage and processing services. Experimental

result shows that the NameNode memory consumption of the

Proposed Approach is smaller than original Hadoop by

79.36%, Sequence File by 68.93% and HAR by 45.39%. The

Overall Performance of the proposed approach with respect

to original Hadoop is increased by 71.20%, SequenceFile by

63.11% and HAR by 43.14%.

ACKNOWLEDGMENT

We would like to thank every member of the faculty at

SDMIT, MITE and SMVITM for their guidance and support,

which has helped us, complete this research project

successfully

REFERENCES

[1] Sagiroglu S, Sinanc, D, “Big Data: A Review”, IEEE,2013, pp. 42-

47.

[2] Mukhtaj Khan , Yong Jin, Maozhen Li, Yang Xiang, and Changjun

Jiang “Hadoop Performance Modeling for Job Estimation and

Resource Provisioning” IEEE transactions on parallel and

distributed systems, vol. 27, no. 2, february 2016, pp 441-454

 [3] Fang Zhou, Hai Pham , Jianhui Yue, Hao Zou ,Weikuan Yu.

"SFMapReduce: An Optimized MapReduce Framework for Small

Files." IEEE ,2015, pp. 23-32.

[4] Xiaoyong Zhao, Yang Yang, Li-li Sun, Han Huang. "Metadata-

Aware Small Files Storage Architecture on Hadoop." Springer

,2012, pp. 136–143.

[5] KunGao, Xuemin Mao. "Research on Massive Tile Data

Management based on Hadoop." IEEE ,2016, pp. 01-05.

[6] Parth Gohil, Bakul Panchal,1. S. Dhobi. "A Novel Approach to

Improve the Performance of Hadoop in Handling of Small Files."

IEEE ,2015, pp. 1-5.

[7] Tanvi Gupta, SS Handa. "An Extended HDFS with an AVATAR

NODE to handle both small files and to eliminate single point of

failure." 2015 International Conference on Soft Computing

Techniques and Implementations- (ICSCTI). Faridabad: IEEE,

2015. pp. 67-71.

 [8] Aishwarya K, Arvind Ram A, Sreevatson M C, Chitra Babu, and

Prabavathy B. "Efficient Prefetching Technique for Storage of

Heterogeneous small files in Hadoop Distributed File System

Federation." Fifth International Conference on Advanced

Computing (ICoAC). IEEE, 2013. 523-530.

[9] Yanfei Guo et al “ iShuffle: Improving Hadoop Performance with

Shuffle-on-Write” IEEE Transactions on Parallel and Distributed

Systems, 2016, pp 1-12

[10] Guru Prasad M S, Nagesh H R and Swathi Prabhu “High

Performance Computation of Big Data: Performance Optimization

Approach towards a Parallel Frequent Item Set Mining Algorithm

for Transaction Data based on Hadoop MapReduce Framework”,

International Journal of Intelligent Systems and

Applications,2017, pp75-84

[11] Guru Prasad M S, Raju K and Nagesh H R “Novel Approaches for

Performance Optimization of Hadoop Multi Node Cluster

Architecture”, Elsevier Publications, 2014, pp 391-399

 International Journal of Computer Sciences and Engineering Vol.5(6), June 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 120

[12] Katayoun Neshatpour, Maria Malik, Mohammad Ali Ghodrat,

Avesta Sasan, and Houman Homayoun “ Energy-Efficient

Acceleration of Big Data Analytics Applications Using FPGAs” ,

IEEE International Conference on Big Data, 2015,pp115-123

[13] Ran Zheng, Qing Liu, Hai Jin. "Memory Data Management

System for Rendering Applications." Second International

Conference on Mathematics and Computers in Sciences and in

Industry. IEEE, 2015. 302-308.

[14] Yang Zhang, Dan Liu. "Improving the Efficiency of Storing for

Small Files in HDFS." International Conference on Computer

Science and Service System. IEEE, 2012. 2239-2242.

[15] Yizhi Zhang, Heng Chen, Zhengdong Zhu, Xiaoshe Dong,

Honglin Cui. "Small Files Storing and Computing Optimization."

11th International Conference on Natural Computation (ICNC).

IEEE, 2015. 1269-1274.

[16] Bo Dong, Jie Qiu, Qinghua Zheng, Xiao Zhong, Jingwei Li, Ying

Li. "A Novel Approach to Improving the Efficiency of Storing and

Accessing Small Files on Hadoop: a Case Study by PowerPoint

Files." 2010 IEEE International Conference on Services

Computing. IEEE, 2010. 65-72.

[17] Chandrasekar S, Dakshinamurthy R, Seshakumar P G,

Prabavathy B, Chitra Babu. "A Novel Indexing Scheme for

Efficient Handling of Small Files in Hadoop Distributed File

System." International Conference on Computer Communication

and Informatics (ICCCI -2013). Coimbatore, INDIA: IEEE, 2013.

01-08.

[18] ChatupornVorapongkitipun, Natawut Nupairoj. "Improving

Performance of Small-File Accessing in Hadoop." 11th

International Joint Conference on Computer Science and Software

Engineering (JCSSE). IEEE, 2014. 200-205.

[19] Neethu Mohandas, Sabu M. Thampi. "Improving Hadoop

Performance in Handling Small Files." Springer (2011): 187-194.

[20] Grant Mackey, Saba Sehrish, Jun Wang. "Improving Metadata

Management for Small Files in." IEEE, ,2009,pp.01- 04.

[21] J. W. Jiangling Yin, D. H. Jian Zhou, Tyler Lukasiewicz, and J.

Zhang, “Opass: Analysis and optimization of parallel data access

on distributed file systems,” in IEEE International Parallel &

Distributed Processing Symposium (IPDPS), IEEE,2015.

[22] R. Din, Prabadevi B.,” Data Analyzing using Big Data (Hadoop)

in Billing System ”, International Journal of Computer Sciences

and Engineering, volume-5,Issue-5,2017,pp 84-88.

Authors’ Profiles

 Dr. Nagesh H.R , Dean(Academic),

Professor & Head, Department of

Information Science & Engineering, A J

Institute of Engineering & Technology,

Mangalore, has got his M.Tech and

Ph.D(Computer Engineering) from NITK

Surathkal. He has published more than 50

research papers in National and

International Conferences and journals.

He has delivered more than 20 invited

talks in topics like 'Component Based Software Development',

'Internet Security', 'Web Security', 'Web Engineering', 'Information

Security' ,'Network Management', 'Promoting Global Cyber

Security' ,'Security issues in Distributed Systems', 'Digital library

and Information Search', 'Information Security Management'

,'Recent Trends in Information Technology' and 'Security issues in

Cloud Computing'. He has also chaired many sessions in

International and National level technical paper presentations. He

has also published one chapter titled 'Proactive models for

Mitigating Internet DoS/DDoS Attacks', in 'Selected Topics in

Communication Networks and Distributed Systems', World

Scientific, London, April 2010. He had also worked as Visiting

faculty to NITK Surathkal and NITK-Science and Technology

Entrepreneurs Park, Karnataka, Surathkal. Published two books

titled 'Fundamentals of CMOS VLSI Design' for V Semester

Electronics & Communication Engineering students of VTU:

Pearson Education & 'VLSI Design' for V Semester Electronics &

Communication Engineering students of JNTU: Pearson Education.

Member of BOS for PG studies in Computer Science at Mangalore

University and Manipal Institute of Technology for PG studies in

Computer Science & Engineering. Worked as member of BOE and

Exam coordinator in VTU Belgaum. Member of BOS in Computer

Science & Engineering of VTU Belgaum for year 2013 to 2016.

Mr. Guru Prasad MS, Asst .professor,

Dept of Computer Science & Engineering.

Shri Dharmasthala Manjunatheshwara

Institute of Technology, Ujire, Dakshinna

Kannada. He got his M.Tech (Computer

Engineering) from NMAMIT Nitte. He has

published 7 research papers in International

Conferences and Journals. He has delivered

10 invited talks on “Big Data Analytics”.

His interested area is BigData Analysis

using Hadoop, Distributed computing and

Cloud computing.

Ms. Swathi Prabhu, Asst. Professor , Dept.

of Computer Science & Engineering, Shri

Madhwa Vadiraja Institute of Technology

& Management, Bantakal, Udupi. She got

her M.Tech (Computer Engineering) from

NMAMIT Nitte. She has published 4

research papers in National and

International Conferences and journals. Her

interested area is BigData Analysis using

Hadoop, Distributed computing, parallel

computing.

