

 © 2019, IJCSE All Rights Reserved 964

 International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-2, Feb 2019 E-ISSN: 2347-2693

Investigating Policies for Performance of Multi-core Processors

Surendra Kumar Shukla

1*
, P.K. Chande

2

1
School of Computer Science & IT, DAVV, Indore, India

2
SVKM's ,NMIMS, Deemed to be UNIVERSITY, Indore, India

*Corresponding Author: surendrakshukla21@gmail.com Tel.: +7987748990

DOI: https://doi.org/10.26438/ijcse/v7i2.964980 | Available online at: www.ijcseonline.org

Accepted: 15/Feb/2019, Published: 28/Feb/2019

Abstract— Performance is a critical concern of multi-core systems. There are some issues which affect the performance of

multicore systems especially shared resource contention and application to core mapping. To address the performance issues

various software and hardware-based policies are proposed in different works of literature. These policies address the particular

performance issue through some specific approach in isolation. However, having many performance issues and the

corresponding number of policies to solve the issues; it is not clear which policy would be beneficial for a particular situation

for application execution. There is a need of investigation & classification of existing policies through various aspects like the

approach used to address the performance issues, tools used for profiling the application and metrics used to find the source of

performance degradation. The classification of policies could help make static and runtime decisions for addressing different

performance issues which arise owing to resource allocation and contention. In this paper, we reviewed various policies

employed for performance improvement of multicore systems. Policies like the application to core scheduling, memory

allocation, bandwidth allocation, parameter tuning & self-awareness are investigated on various angles and resulted in an in-

depth classification which is conferred from the tables. Further, classification could be used to design a holistic policy

scheduler which could schedule a policy considering the application workload characteristics in totality. Also, the scheduler

could help on performance improvement through scheduling/switching the appropriate policies at run time for application

execution while considering the system status.

Keywords—Investigation, Multi-core, Parameter, Policy, Performance.

I. INTRODUCTION

Multi-core architecture is a growing trend today as the

single-core processors rapidly reach the physical limits of

the performance [1][2]. Now Multi-core processors are

being used in various areas such as Virtualization, High

Performing Computing, Database, and Cloud and also in

many gadgets nowadays[3]. There are a diverse set of

applications which run on these systems. Each application

runs on the multi-core system has different characteristics

and different criteria for their execution, but all have a

common goal; high performance. A time-critical application

wants to meet the deadline; memory sensitive application

demands the higher memory bandwidth & CPU oriented

applications would have CPU the priority. At runtime there,

execution criteria contradict each other & lead to various

performance issues related to the thread & core mapping,

resource allocation, etc. [4][5][6][7].

To address various performance issues, most of the research

focuses on conventional software or hardware

approaches[8][9]. Hardware-based approaches have the

advantage of speed whereas software-based approaches are

comparatively slow [10]. Hardware-based approaches use

FPGA based reconfigurable architectures. Reconfigurable

architectures use core fusion approach [11]to transform the

homogeneous cores to superscalar[12] dynamically. This

approach accelerates the execution pace of non-parallel part

of the application. However, such reconfigurable policies

have chip design issues like the form factor. It would also

make energy consumption & power dissipation critical.

On the other hand, software-based approaches tie-up with

the OS, and invariably use profilers & observing run time

behavior of task to address performance issues[13][14]. OS

uses schedulers, memory mapping schemes for application

execution. OS developers focus to regular applications and

cannot customize it for a diverse set of applications which

would run on multi-core systems. The software-based

approaches may be available to handle slow, but complexity

is avoiding the use of extra hardware on the chip.

In the same line, resource availability is also a critical factor

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 965

for performance. Earlier researchers had attempted resource

allocations issues through static allocation approaches.

However, static methods are not sufficient as applications

have different resource requirements at different phases in

the execution[15]. Considering application phase change in

concern with resource requirements at runtime require

analyzing application thread behavior at run time. Dynamic

approaches need a sampling of threads after some intervals,

creating sampling overhead & switching core at the run-time

lead to switching cost [16][17]. To address the sampling

overhead, some mapping policies rely on on-line monitoring

of CPI stack metrics termed as “bias”. The application is

mapped to the “bias” which fulfills resource requirements in

run time[18]. One step ahead, CPU utilization based

mapping approaches calculate the CPU utilization of a

thread in each core and further compares with all the

cores[19]. A thread which has highest CPU utilization is

mapped to the fast core and vice-versa.

Conventionally, research addressed resource allocation

strategies to address shared resource bottleneck for raised

performance. Resources should be allocated to applications

having in-depth knowledge of their characteristics &

available resources competency. Most of the performance

problems like contention occur due to improper thread-to-

core-mapping, unbalanced shared resources’ allocation, and

utilization like cache & main memory [20]. Improper

allocation creates the problem of synchronization & locking

and would severely affect the performance.

In brief, the issues related to performance are correlated with

each other. Hardware & software solution to one issue

would force to trade-off the performance due to another

parameter. For example, a performance issue like data

locality to reduce the latency could affect the shared cache

contention [21].In the following section, we present a

contemporary study on various proposed research.

Rest of the paper is organized as follows; Section II contains

a general overview of contemporary approaches employed

for performance improvement. Section III contains the

application to core mapping policies, Section IV contain

memory allocation schemes and its effect on shared

resources contention, Section V contains the cache

optimization policies, section VI explores the bandwidth

allocation issues and related policies, Section VII addresses

the parameter tuning issues for performance enhancement,

Section VIII contains the importance of self-awareness &

related policies, Section IX summarize the policies, and

Section X concludes research work with future directions.

II. CONTEMPORARY RESEARCH

The new ways of application execution have promised

improvement in performance. However, the execution of an

application is still conventional owing to its design. The

application designers, do not keep the system architecture in

perspective. So, the application could run on any system,

and the performance would depend on the system itself,

which means the application runs without having any system

input so far as performance is concerned. It seems to be a

gap which can help improve performance if appropriately

addressed. We can imagine some feedback mechanism from

the system to the application and vice-versa which can

provide an advantage for performance tuning[22].

Looking forward, for application to core mapping, some

researchers have used state-of-the-art Hardware

performance monitoring counters[HPC] for measuring &

monitoring essential events like LLC miss penalty, memory

capacity utilization & stall cycles waiting for the memory

[23]. The HPC is the latest trend for performance monitoring

& malware detection in ARM architectures. However,

studies reported that HPC has accuracy issues; if

performance related events are not appropriately measured.

Some research on reservation based memory bandwidth

allocation has been carried out for fair distribution of

memory bandwidth to the applications. Hardware-based

controller, named “memory guard”, has been proposed

which ensures minimum bandwidth to all applications, and

in turn helps on application execution in isolation. [24]

Unpredictable runtime interferences of applications also

affect the performance. In such cases, researchers have

proposed a parameter tuning based policy named “code

instrumentation & auto-tuning”. The proposed policy works

by putting tuning instructions in between the hot spot(part of

the code in application taking much time for execution) &

with the help of the feedback reduces the execution time

[25]. However, the applications need to know the tuning

parameters.

On the same lines, for improving the performance design-

time parameter tuning policy is proposed [26]. The policy

could suggest the appropriate parameter values to individual

applications which might be run in the embedded system.

Some authors have emphasized that the application

communication is a critical factor for performance

improvement as it creates shared resources contention

issues. To reduce the application communication pattern

policies based on reuse distance and pipeline are

proposed[27][28]. In the reuse distance approach, an

application memory access pattern is analyzed to find out

the possibility of applications intercommunication in the

future. In the pipeline approach, at first applications is

portioned into coarse-grained regions and these regions are

cascaded in the form of pipeline. Pipeline approach reduces

the communication overhead compared to fine grain

parallelism. Also, the Pipeline based tuning approach is

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 966

fruitful for state-of-the-art Java applications, however, are

not beneficial to legacy applications (procedure oriented).

For reducing the interference between the applications

which causes many performance issues, a concept of the

logical cluster[29] for NUMA multi-core systems is

proposed. Hence, the logical cluster is created among the

cores separated through the interconnect & the application

threads are scheduled among the logical cores, in place of

physical cores. It mitigates the contention for the memory

controller but increases the latency to access the data.

To handle the performance issues in some different manner,

few conceptual models were proposed by the researchers-

like “partner core”. Partner core is a small, personal

assistant, tightly coupled to the CPU, comes with the general

core; responsible for handling general issues related to

performance & free the central core to concentrate on the

application.[30]

To solve the performance issues related to data & task

assignment in multi-core systems, some researchers

proposed ‘on-chip’ main memory named “Scratch-pad

memory (SPM)”[31]. As data transfer between off-chip

main memory & SPM done through the software; it would

be beneficial to handle the performance issues related to

cache at programmer end, contrary to the on-chip cache

memory hardware controlled. The scratch-pad memory has

benefits to mitigate the cache contention effect [32], meeting

the deadline for real-time applications; also useful for

embedded systems. However, it is not used in mainstream

desktop processors.

On the same lines of performance optimization of multi-core

systems, an effort is made on improving the performance

through cache optimization. Policies used for cache

optimization are based on cache affinity & parameter

tuning[33]. Affinity reduces the warm-up time of cache

however have not shown much improvement on LLC[34].

On the other hand, tuning based policies adjust the value of

system parameters which are responsible for application

execution delay; few researchers attempted it through

hardware tuners. However, cache tuning parameters exhibit

the circular tuning dependencies [35]; which means tuning

the cache for an application & respective core, affects the

behavior of caches of other cores.

Moreover, to address the circular tuning dependency

approaches based on heuristics, like application

classification(using cache misses obtained at runtime) &

profiling is proposed [36]. However, these approaches have

not a much significant impact on the performance of state-

of-the-art multi-core architectures.

To optimize the cache for the performance improvement of

multi-core systems some research done on Shared cache

partitioning[37]. Shared cache has two portions, one for

private data of threads & another for shared data. The

benefit of this scheme is that it separates the cache evictions

of a different category of data in shared cache & reduces the

miss rate.

For performance improvement & saving the energy,

scheduling LLC and DRAM are essential factors; few

traditional & contemporary research addressed this issue.

One state-of-the-art approach named “orchestration” for

scheduling the LLC and DRAM is also proposed [38]. In

LLC miss scenario it is required to fetch the data from the

DRAM, however improper scheduling of LLC miss to

DRAM row buffer wastes lots of energy. Orchestrated

scheduler & unified memory controller help on identifying

the correct row buffer in the DRAM bank to charge & save

energy. Having separate controllers for LLC cache & for the

DRAM created the visibility issue of data traffic caused by

the LLC miss, establishes the scope for the unified

controller.

To save the energy in multi-core systems, cognitive

computing based scheduling approach is proposed[39].

Hence the task is categorized into three categories- Big,

medium & low energy tasks. Also, the processor cores are

classified as the big, small, medium as per the frequency on

which they operate. Mapping of task-to-core is done on one

to one basis; the big task is mapped to the big core. The

advantage of the proposed approach is saving energy. This

approach is suitable for energy savings. However, the

researchers have not discussed much on performance issues.

Researchers have proposed an approach to solving the

performance problems autonomically by matching the

problem with the fault scenario[40]present(maintained with

the system). This autonomic feature of fault handling is

saved by carefully tracking the execution path of the

application & noting the events related to the performance

problem. If the same scenario repeats then match the

situations with saved solutions. However, this approach is

not using application characteristics to handle the faults; it is

just a static approach to match the unsolved problems with

the model had encountered, the same kind of problem in the

past. To address the performance issues, machine learning

based policies are also employed for resource allocation &

auto-tuning. To speed up the execution of scientific

applications which uses stencil codes machine learning

policies have shown improvement[41]. Also, the issue of

dynamic requirement of the resources and availing the

resources at runtime on-line reinforcement learning based

approach is proposed which addresses resource mapping

issues dynamically[42].

To enhance the performance & optimize resource

management attempt has been made using architecture level

modeling languages[43] to knowing resource requirements

& their influence on the performance in advance, runtime

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 967

approaches like on-line prediction may be useful. However,

to implement prediction based approach successfully some

challenges like, how to predict at what stage of application

will change its behavior for the resources, what will be the

effect on the system performance after the changes & what

may be the set of solutions to tackle the changes. For

addressing the challenges mentioned above, model-based

approaches may be beneficial[44][45]. The model-based

approach requires to describe the resources needed,

performance requirements using the modeling languages.

To improve the performance researchers are also moving

towards autonomic computing based policies. Autonomic

systems could have a list of self* properties like- self-

adapting, self-diagnosis, self-governing, self-organized, self-

recovering. However, in an existing scenario, neither the

operating system nor the system elements like main memory

have such autonomy. Some researchers have attempted for

performance and security issues through self aware

policies[46][47][48][49][50][51][52].

To improve multi-core system performance, Self-awareness,

nature-inspired & state-of-the-art energy savey policies

could be beneficial [52][53][54]. In conventional systems,

an application executes through some predefined policies

available with OS. Also, application & system does not have

much interaction in the course of execution. There is a need

of investigation, that If the application could also participate

in the performance improvement process, start providing

their input to the system related to the performance issues;

whether we could improve the system performance.

Fig.1. Conventional vs Self-aware approach for application

execution

The figure-1 contain a conceptual model, here ASCM

(Application self-control manager) is a hypothetical

interface which could help on implementing the self-

awareness policies. With the review cited above, we could

have a classification of performance improvement policies

depicted in figure-1.

Fig. 2. Multi-core system performance improvement

policies

III. APPLICATION AND CORE MAPPING

POLICIES: SCOPE FOR PERFORMANCE

IMPROVEMENT

In the literature review cited above, we have seen that there

are various factors which affect the system performance and

different types of policies are proposed by the authors to

address them. It is found that application to thread mapping

policies had shown vital importance on system performance.

In this section, we will discuss policies related to the

application-to-thread mapping and its impact on

performance.

Application to core mapping issue does not affect much to

the homogeneous multi-core architectures. The OS

scheduler manages the scheduling activity efficiently as all

the cores are symmetric. However, in the case of

heterogeneous multi-core architecture, applications have

different options for cores. OS scheduler must have to be

more attentive and careful to map applications to appropriate

core in terms CPU bound applications could be assigned to

fast core and I/O bound applications to slow cores.

Application to core mapping can be made through off-line

profiling, online profiling and on-line monitoring of the

system parameters like cache miss, miss penalty, etc.

Application to core mapping approaches falls in two broad

categories which work in a static & dynamic way. Static

policies depend on off-line profiling and do not consider the

application phase change during the run time [15]. Further,

static methods are free from thread migration at run time and

reduce the overhead of sampling. On the other hand,

dynamic approaches consider phase change characteristics

of application & does the thread migration by calculating

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 968

IPC of applications on different cores, finds the appropriate

cores at the run time. However, frequent thread migration

could cause performance degradation. Further, for the thread

to core scheduling heuristic based dynamic scheduling

algorithms shown significant promises. Almost all

scheduling algorithms whether it is working statically or

dynamically, performing on-line or off-line profiling are

relying on the “application characteristics” a primary source

to influence the scheduler for mapping the thread to

appropriate cores.

III.I Thread to core mapping issues & approaches
To map the application-to-core, cache miss penalty based

policies have shown improvement in performance[4]. It

means an application assigned to a core whose cache miss

penalty is relatively less. To measure the miss penalty

parameter the hardware performance counters used.

Hardware performance counters provide the miss penalty

data to the scheduler in relatively less delay. However,

selecting the appropriate performance counter among

several ones available in modern CPUs requires expertise

and detailed analysis.

Moreover, for application to core mapping, application

architectural characteristics and their behavior could play an

important role in mapping[19][16][17]. Further, an

application is profiled to know the architectural

characteristics through a profiler, and IPC is calculated.

Then applications are mapped to the cores as per the high or

low value of IPC it has to fast or slow cores respectively.

In the same line, some authors termed the run time matching

of “application behavior to appropriate core” as bias[19].

Since Application "Bias” changes at run time, the scheduler

can use this information to migrate the application to the

appropriate core dynamically. The benefit of biased based

mapping policy compare to sampling is that bias bases

policy abolish the run time sampling overhead incur for

monitoring CPI stack of the threads. The Biased based

approach is a prominent and novel one, however, effective

to heterogeneous workload only. It means, it is incompetent

to the similar type of workload and requires accuracy in

performance counters. In another work, thread mapping

schemes use the CPU utilization of threads; primary criteria

to schedule the threads to the core [18]. It means threads

which spent most of its time on CPU is assumed to be

eligible to be mapped to the fast CPU and threads which

involve on I/O activity need to map on Slow cores. Proposed

thread mapping schemes are helping to save energy. For

applications performance improvement, memory latency is

also a critical factor. Memory latency parameter depends on

the distance between the application and its data. To reduce

the distance, application and its data could be mapped close

to each other, i.e., in the same cache. However, some

applications interfere with shared resources like LLC and

interconnect. Further, to address the interference issue

among applications for a shared-resource; applications could

be schedules to the septate clusters[29]. Also, applications

which are network intensive could be mapped close to the

memory controller. Besides, the performance, energy is also

a prime concern for portable multi-core devices. Schedulers

could map the threads to core concerning energy a criteria

[18][39]. Another alternate of energy saving could be

varying the frequency of the core as per application need for

performance[5].

III.II Thread to core mapping evaluation methods
In this section, we have done the investigation of policies

from some key points related to the evaluation method used

by the policies. Table 2 detailed the policies by describing

the tools; briefly, benchmarks used & the result obtained

through the experiment. Most of the policies are using the

IPC (Instruction per cycle) parameter for the scheduling

decisions. It is also observed that speedup is the prime

metrics used for measuring performance. The policies are

summarized in TABLE-1 & 2.

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 969

Table-1 Investigating thread to core mapping policies as per criteria used. Reference

 Core to thread mapping Approach Criteria for Scheduling Benefits Limitation

S. Hao [4]

Performance counters used to observe the

behavior of LLC Miss penalty,

LLC miss penalty is used to

know the program behavior for

scheduling decision.

Fast to capture the Latency.

Support load balancing.

More hardware support

needed to prevent the

performance loss

Koufaty D. [19]

First, find the application metric then map
application to a core which satisfies the

application resource requirements.

An application could migrate across cores
as per “bias” at run time

Application Bias Online
monitoring of application

metrics

“bias” for scheduling it to a
suitable core at the run time

(Dynamic scheduling policy)

Dynamic approach Work
through online application

performance monitoring.

It Does not require offline
profiling or sampling of

application.

on Suitable for
heterogeneous bias and

not much impact on the

similar type of loads.
Need special care during

migration as it might
cause latency issues.

R.

Teodoresc u
and J.

Torrellas[5]

Core frequency variation as per

application performance requirement.

Frequency variation is done through the
proposed algorithm

Core frequency
power consumption

Core frequency variation

control is given to the
application.

Saves energy

Useful for the power

constraint applications

only. Not tested for
parallel applications.

D.

Shelepov et
al[15]

Profiling offline provides an application

signature.
Avoids dynamic profiling

further avoids load imbalance

LLC Miss rate criteria is used

to schedule the application to
the proper core(Static

scheduling policy)

 Scalable Simple Static Support for short

live thread.Does not
monitor the thread for

their lifetime in

execution

Bechhi et al.

[16]]

Periodically sample the threads for core
switching at run time calculate the IPC

ratio.

IPC-driven (Dynamic

scheduling policy)

Observing runtime behavior

of the threads could help on
thread migration if

performance degrades.

Sampling
overhead. Poor

scalability If

only a few cores
are fast in CMP

it could cause

contention for
fast cores. load

balancing
issues.

Kumar et

al.[17]

Weighted speedup (IPC of thread sole/
IPC of all threads)

IPC-driven heuristic

based(Dynamic scheduling
policy)

Fair policy

Sampling
overhead,
Poor Scalability,

For sampling: thread
needs to migrate from

one core to another

which adversely affects
the performance.

Anuradha P et

al[39]

Used the concept of cognitive

computing for the task to core mapping.

Energy requirement of threads

Cognitive-based

approach energy savvy.

Supports only to

ARM
architecture

Das et al. [29]

For application to core mapping:-
Make the distance among applications

interfere with each other.
For other applications: reduce the

distance between application and
memory controller.

Application
characteristics and

there effect on
interconnect topology

Interconnection

network traffic reduced.
Memory latency reduced for

network intensive

applications.

Ranking of applications

as per the sensitivity for

the network may result
in unfairness.

Applications which are

most sensitive for the
network could suffer

low
down.

T. M.
Birhanu

[18]

Fastest thread fastest core approach

CPU utilization

(High CPU utilization thread

mapped to the fast core and
Low to slow.

The proposed approach does
not consider prime concern

"frequency" for achieving

heterogeneity

Starvation. All the

application may demand

fast CPU.

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 970

Table-2 Investigating thread to core mapping policies as per system configuration

Reference Parameters used Metric used Tool & Benchmark Used Result Obtained

S. Hao [4]

LLC miss penalty, miss

rate

Speedup

Godson-3 RTL simulator and
SPEC2000 Benchmark

32% & 18.4 %

performance improvement
compared with existing

scheduling algorithms.

Koufaty D., [19]
Instruction window size,

Request per kilo
instructions

CPI Stack

Supermicro, X8DTN board

with Intel Xeon processors.

Average 9% speedup compared

with the stock scheduler.

R.
Teodorescu and J.

Torrellas[5]

IPC, Frequency

Average power, & frequency of the

core, throughput

SESC Simulator & SPECint,

SPECfp benchmarks

Increased average throughput

12-17%

D. Shelepov et al[15]

IPC, reuse distance,
cache miss rate, memory

access latency

Relative completion time of

applications, execution time, stall

time

Real machines, PIN, MICA,

DVFS, SPEC

CPU2000 suite.

13% speedup compared with

Solaris static scheduling

approach

Bechhi et al. [16]]

IPC, Switch duration,

switch loss

Speedup is calculated with Global

instruction count/ Execution time

Two configurations EV5, EV6

is built for M5 Simulator.

SPEC2000 Benchmark
used.

Mapping policy benefitted by

20% to 40% compared to its

counterpart random one.

Kumar et al. [17]

system queue length, Job

arrival rate

Weighted Speedup, Average

response time of applications

SPEC2000 benchmark used.

SMTSIM simulator used. A

simpoint tool is used for fast
forwarding.

Mapping Policy gets 31%

improvement over random
scheduler.

Anuradha P et al[39] Process time Total energy consumed, CPU time SPEC 2010 Benchmark &

ARM7 architecture.

The accuracy of scheduling

algorithm. 98%.

Das et al. [29]
The degree of application

interference teach other,
L2 Cache MPKI

Stall time per miss (STPM),
Memory access per kilo

instructions (MPKI)

Cycle level CMP Simulator

Improves system throughput by

16.7%, Reduces system
unfairness by 22.4 %.

T. M. Birhanu [18]

Cache Size, frequency,
issue width

Power consumption, throughput

PARSEC benchmarks &
ESESC Simulator used.

Compared with CFS Scheduler

the results:- speedup 52.62%,
Save

Power 2.22 %

Iv. Memory Allocation & Contention Issues & Policies

for Performance Improvement

In the previous section, we have seen that the allocation of

application to appropriate core affects the performance of

the multi-core systems. However, allocation of a suitable

core for the application alone could not accelerate the

performance of the system. In addition to this, thread to core

mapping policies must have to consider the structure of

memory and issues related to allocation, especially in

NUMA multi-core architecture [21]. Overlooking the

memory structure will adversely affect the system

performance concerning latency and finally would affect the

system performance.

IV.I Data locality factor for memory allocation
An important factor which affects the multi-core system

performance is the time spent on availing the data to the

application. The required data for the application during

execution must be provided incurring without delay. In

general, data could exist either in main memory or in the

cache memory. An important parameter related to the

availability of data is termed as data locality. Data locality

refers to the memory of the memory hierarchy on which

level the data is located when asked by the processor.

Ideally, the required data should be available in the cache to

avoid latency to access at a deeper level in the memory

hierarchy. Data locality parameter affects the access time of

the data in the different level of memories. By memory

distribution, there are two types of architectures named

UMA and NUMA. Memory latency parameter affects both

the architectures. In UMA architecture main memory is

shared by all the cores and accessing the data in memory

incurs same time for all the cores. However, in the case of

NUMA, memory is divided into parts; and distributed to

cores. Time to access the data is determined through the

distance of the data from a particular core. It is found that

UMA architecture has scalability issues for the bandwidth. It

means, UMA architectures supports quality bandwidth to

some limited number of cores, further increase of core

creates the bandwidth issues.

To address the scalability and quality issues, NUMA

architecture uses memory controllers to support a large

number of cores in the multi-core chip. With the help of the

memory controller, each core is assigned some part of the

main memory. In UMA architecture all the data present in

the shared memory is local for all the cores and takes equal

time to access it. NUMA architecture has a drawback that if

the data of the thread is not available in the local memory, it

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 971

should be brought remotely and it will increase the latency

time and finally will impact the performance. The remote

memory can be accessed through the interconnect available

on-chip. However, it would cost an additional delay.

IV.II Data locality trade-off with shared resource

contentions
It is noted that data locality significantly affects the

performance of NUMA architectures. To address the data

locality issue some approaches like memory profiles are

proposed [13]. Memory profilers help on understanding the

thread memory interaction pattern for NUMA architectures.

Profiler creates the temporal flow graph between the threads

and memory objects like LLC, L1 cache or main memory.

Profiler based approaches could be helpful to the

programmers for writing memory latency aware code.

However, profiler based policies are not much accurate.

Profiler assumes each thread to memory interaction a

“thread-memory allocation” relation; which is not true for

every function calls. Although, data locality aspect reduces

the latency to access the data, however, there are some side-

effects found in works of literature. First, as per data locality

principle, all the applications would try for putting data close

to the CPU ideally in the L1 cache, if not at least on LLC.

However, availing data of each application in the cache will

create the pressure on the cache and further create the cache

contention issue. Second, cache contention will force the

applications to move towards the main memory to access the

data, and it will create excessive pressure on the memory

bandwidth also.

IV.III Contention Issues in virtual machines
The contention issues discussed in IV.II is related to the

physical NUMA multi-core architectures. However, the

contention for the shared resources become more

complicated in virtualized multi-core systems. Multi-core

systems could have employed the virtual cores in a physical

core with the help of the operating system. Two virtual cores

may compete for the resources of a physical core. To address

the contention issues in the virtualized multi-core system,

the researches have focused on characterizing the contention

issue through contention sensitivity and contention intensity

parameters[6]. Also, contention interference analysis

suggests that working set size (total memory availed to an

application for its proper working) and memory access

pattern is also critical parameters which affect the contention

issue severely. Memory allocation policies are summarized

in TABLE-3

Table-3 Investigating memory allocation & contention resolution policies

Approach
Criteria for memory

allocation
Parameters/Metric used

Workload/Experiment

done
Benefits Limitation

Z. Majoand

T.Gross[21]

-Data locality is the

primary criteria for

memory allocation. Data
locality should also

consider the contention

issues during memory
allocation

Put the application data

close to the memory
hierarchy level.

Parameters used: - Cache

pressure due to applications,
penalty on accessing remote

data.

Local references vs MPKI.
Metric used:-Cache miss rate

per thousand instructions

executed (MPKI).

- Performance vs. data

locality.
Tool/workload used:-

2. NUMA arch. Contain

Intel Lehman processors.
& each node has 4 cores

which share the LLC.

SPEC
Benchmark used

The policy is doing

best to solve the Cache
contention issue causes

due to improper

scheduling.

The scope is

there to explore
applications

interference

effect on
interconnect.

Lachaize, R et al.

[13]

Remote memory access
delay.

-Tracing the source code

for getting pattern how
thread accesses the

memory
-Memory profiler used for
knowing thread to memory

access pattern.

Parameter considered:- Total

no. of remote memory access

. Experiment:-
Two NUMA machine used

with given config. (16, 24,

28) cores.
AMD Opteron, 2.5 GHz,4

core in each(total 16

cores),
32 GB RAM. 4

Applications tested: -

FaceRec etc.in Linux
platform.

The approach uses
profiler for detecting

how threads change the

pattern of accessing the
memory during their

execution helps on

proper memory
allocation.

To diagnosis the

thread to

memory
interaction

patterns, manual

effort.
Profiler is only

useful for

memory bound
applications

Y. Cheng et al [6]

First, identify the factors

which affect the

contention. Use the
identified factors as an

input to the performance

prediction model.
Use machine learning to

predict performance.

Parameters: - Working set

size. contention sensitivity,

contention intensity Metrics:-
Performance degradation

Experiments: - Done on a
real machine, Used 2

processors, and Intel Xeon

series. Benchmark:- NPB,
SPEC2006

Shared resource

contention features and

performance
degradation tradeoffs

are analyzed which is

prominent for
performance

improvement.

NUMA multi-
core system is

not considered

which could be a
gap.

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 972

V. CACHE ALLOCATION AND TUNING POLICIES

Cache plays a vital role in performance improvement of

multi-core processors. Also, All the cores have a different

level of caches like L1, L2 & L3. To minimize the latency

of accessing the data from main memory large size LLC

cache is employed in multi-core processors. Among all the

caches incorporated On-chip, LLC impacts the

performance severely. There are various approaches to

allocate the cache to applications like cache affinity [34].

Cache affinity allows an application to repeatedly get

allocated to a static core. The advantage of cache affinity is

that it saves the application context which helps on

addressing the cache warm-up issue. However, cache

affinity causes the load balancing, starvation and fairness

issues. To harness the impact of cache in multi-core

systems various parameters needed to considered in

isolation as well as in totality to get some promising

optimal parameter settings [33]. Moreover, an optimal

cache parameter setting could work fine for one

architecture; however, it may show different behaviors for

another ISA [33]. Cache behavior is affected due to its

own internal parameters like cache size, associatively and

line size and also due to external parameters like core

frequency, bandwidth and interconnect.

Table- 4 Investigating cache tuning policies as per simulation and criteria used

Reference

Approach

/Innovation used

for Performance

Improvement

Parameters

considered

Tools/other instrument

used

Benefits

Limitations

Results

V.

Kazem pour et.al.
[34]

Hypothesis used-

Cache affinity

improves the
performance.

Saving the

context of the
cache during

application
execution avoids

further reloading

it.

size of L1

Cache, Clock

frequency

The experiment is done on

Sun Microsystems

UltraSPARC T2000
“Niagara”

With eight cores and a

shared L2 cache. Intel
Quad-core Xeon E5320

Overhead of Cache

warm-up time of L1 &

L2 cache is eliminated
resulting in

performance

improvement.

Cache affinity

Could cause
starvation for a

particular core.

Could create a load
balancing issue.

Upper bound

performance
improvement: L2

cache- 11%

(Avg.) 27%
(Max)

L1-Cache-Nill

N.
Ramas ubram

anian et al [33]

Analysis of

multi-core

performance
through cache

parameters

variation.
Calculated &

Compared the

cache access time
obtained in

ALPHA & X86

ISA

cache access

time, miss rate

& miss penalty

M5Sim, SPLASH-2

Benchmark

Different ISA is
simulated & almost all

cache parameters

tested through M5
simulator.

Simulations results

are not promising.
Scope for

comparative

analysis of
simulated and

actual results.

Processor core

frequency variation
does not affect much

execution timeof

benchmarks.

VI.I Bandwidth allocation policies
In previous sections, we have seen that policies related to

application-to-thread mapping & memory allocation have

shown the improvement in the performance. Moreover,

thread and memory allocation strategies attempt to put

applications data near to the CPU during execution.

However, neither scheduling strategies nor memory

allocation policies could make avail complete working-set

data of all thread in the cache due to limited space on the

chip. Also, for availing the data which is not in the cache

would require to access the main memory through the

bandwidth. Since the number of cores which compete for the

bandwidth is more; makes the bandwidth allocation a critical

issue for performance. To address the bandwidth allocation

issues considering fair and starvation free aspects,

researchers attempted through hardware-based policies;

memory guard & effective bandwidth utilization

respectively[23][24]. All the bandwidth allocation policies

broadly fall into two categories- fair and guaranteed

allocation. We will discuss these policies in subsequent

sections.

VI.II Effective bandwidth utilization: a source for

knowing performance bottleneck
To measure the multi-core system performance, memory and

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 973

bandwidth related events should be recorded. Performance

counters could help to track and save these activities. In

general, it is assumed that high memory and bandwidth

utilization is an indication of performance degradation.

However, high memory utilization recorded by performance

counters could be due to prefetching or out of order

instruction execution: another way to improve performance

[23]. Thus, high bandwidth utilization could be due to the

out-of-order instruction executions. For the above-said

scenario, it would be appropriate to calculate the actual

usage of bandwidth. Actual usage could be estimated

through running some benchmarks in a system which put

sufficient load on bandwidth. Actual utilization of

bandwidth is also termed bandwidth threshold value.

Threshold value indicates the maximum effective utilization

of bandwidth. It means bandwidth utilization is tested for the

actual data transfer initiated through the CPU bound

instructions. The actual bandwidth would be used as metrics

to know whether system performance is increasing or

decreasing. Measuring Effective bandwidth utilization

through performance counters would indicate us actual

utilization of the bandwidth and would be assumed a sign of

good performance. However, in another scenario, it may be

that a particular core is utilizing most of the bandwidth and

some other core is trying to get the bandwidth and

repeatedly fails resulted in starvation. Starvation would

cause some time-critical applications delayed for the

execution would affect the system in another way. To solve

issues related to the starvation and fairness a novel approach

is discussed in section VI.III.

VI.III Memory guard: guaranteed bandwidth allocation

in isolation
To provide the minimum bandwidth to all the cores in the

multi-core CPU a fair policy named memory guard is

proposed [24]. A memory guard is a hardware-based

approach which allocates guaranteed bandwidth to all the

cores for an interval and predicts the requirement of

bandwidth for the next interval. Further, cores have the

opportunity to claim the bandwidth from contender cores

which were not utilized the bandwidth in the previous

interval. Further, as per the predictor estimate for the

bandwidth, some core put updated demand for the

bandwidth and some core release their bandwidth for the

next interval. Also, predictor accuracy on estimating the

bandwidth requirement for the subsequent interval is a

critical factor for the success of the policy. However, if

predictor wrongly evaluates the bandwidth budget, some

core may falsy return the bandwidth and will suffer. The

proposed approach works fine for soft real-time applications;

however, it lacks supporting hard real-time applications. We

have summarized, the discussed bandwidth allocation

policies in TABLE-5.

Table-5 Investigating bandwidth allocation policies as per situation and criteria.

Reference

Approach Used for

Performance

Improvement

Metric Used

Tools/other instrument

used

Experiment

Benefits

Limitations

D.
Molka et al.

[23]

1.With the help of the

HPC knowing Onchip

the utilization of the
resources like memory

& finding which

memory is causing the
performance degradation

2.

Differentiating memory
access is natural as CPU

instructions are asking

for it or due to some
other

reasons (dependency)

percentage of

cycles waited for

the memory
hierarchy

components,

Memory
bandwidth

Bull SAS bulkx R421E4

system.Hardware

Performance Counters

Benchmark-x86-

membench.

PAPI API used to get the
performance events in the

processors

Useful to know

the resources
responsible for

bandwidth

underutilization.

Manual efforts to
identify the events

in performance

counters related to
a finding the

memory issue.

Heechul et

al. [24]

Guaranteed memory
bandwidth for the

applications. Divides

bandwidth into two
parts- Guaranteed, Best

effort

Normalized IPC,
Memory

Bandwidth

Usages

Per core regulator &
reclaim manager

SPEC2006

Benchmark used. The
approach applied in Linux

kernel & tested in

multicore systems

To utilize the

guaranteed
bandwidth

reclaiming

approach saves
the wastage of

bandwidth

Work best for

soft-realtime
systems. Does not

support hard real-

time systems

VII. Parameter tuning issues & policies
In previous sections, we have witnessed that researchers

have emphasized the individual system components like

memory, cache, bandwidth for the performance

improvement in isolation. However, due to the diverse set of

applications which run in a multi-core system considering

the optimization through a particular policy type would not

be beneficial. Also, the application changes its phase during

execution makes it hard to predict behavior and resource

requirement. Application during execution affects all the

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 974

components like main memory, bandwidth, cache.

VII.I Need for parameter tuning
Parameter setting for an application to one platform not

works in another platform as the multi-core platform have

wide diversity[25].

The behavior of an application in execution is dynamic, and

we cannot accurately predict in prior; how the application

will behave in a particular execution environment.[27]

Applications may have parameters that are dependent on

each other.

Application parameters may have an extensive range of

values that it may take, so it will be difficult to explore a

large search space.[26]

Parameter values selected for an application will change if

the same application executes with other applications. [25]

VII.II Parameter tuning policies
In general, each application contains a portion which

consumes most of the application execution time is termed

as “Hot-spot”.To address the hot-spot issues software-based

approach like auto-tuner could be beneficial [25]. Auto-

tuner instruments some tuning code in between the hot spot

and through variation in parameter values find the suitable

number of threads which could speed up the execution

through the feedback mechanism. Auto-tuner reduces

application execution time.

However, auto-tuner requires tuning parameters as input for

the tuning process. Tuning parameters should be exposed by

the programmer in the application.

Finding hot-spot is a tedious task; it requires to profile the

application and some time profiler fails to find hot-spot.

Hence, if parameters and its range could be estimated at

design time for each application which would execute in the

system may address the issue of on-line tuning. However,

for design time parameter tuning large design space need to

be considered. Some heuristic based methods have

attempted to explore some limited design space and

provided the result close to the full design space search [26].

To address the overhead of architecture specific profiling &

parameter tuning it could be beneficial if we find the

application specific parameters like reuse distance and inter-

thread communication once & reuse it for all the

architectures where an application will run in future [27]. It

is noticeable that the interaction among the threads is an

essential factor that affects the multi-core system

performance. To mitigate the effect of communication

pipeline based policies could be beneficial[28]. In the

pipeline approach, the application is partitioned in some

parallel regions(coarse-grain) and executed in the cores.

Further, the result of the regions is feed to the pipeline. The

advantage of pipeline approach is that- it reduces the

communication as we are considering the parallelism at

coarse-grain level; also pipelining avoids using the memory

resources to store the intermediate result would indirectly

benefit on reducing shared resources contention.

In TABLE-6 we could observe the following aspects- all the

strategies are focusing on application characteristics for the

tuning process. Tuning is required to mitigate the

interference effect of the applications for the shared

resources.

Table-6 Investigating parameter tuning based policies as per situation and criteria used.
SNO Reference Approach Used Innovation Benefits Limitations

1

Karcher,T. &

Pankratius, V.

[25]

Auto-tuner-Reduces applications
interferences with auto-tuning the

parameter values.

The proposed algorithm uses
Simplex heuristics for parameter

tuning.

A specific portion of the

application(Hot Spot) that

executes repeatedly is tuned
with a feedback approach.

No User involvement in the

parameter tuning process. Capable of

tune non- numerical applications. The
tuner does the tuning at user level

space at application.

Tuning parameters
need to be exposed

in an application for

code
instrumentation.

Algorithm work for

integer values only.

2

M.

Kulkarni et

al[27]

The reuse distance used to analyze

the application communication

behavior.

Tuning approach:-
Application characteristics

like data reuse and thread

interaction are used.

The application need not have to

profiled for each architecture for

performance tuning.

Tuning process is

explored with a

limited number of
parameters;

3

P.

Kansaka r and
A. Munir[2 6]

Provides Application specific design
parameters for tuning.

For large design space; a

proposed policy finds the

design parameters in
limited search space.

Provides the tunable design
parameter range to each

application.

Need not to explore large search
space for application specific design

parameter tuning.

The approach

considers the design
parameters only;

could not tune
parameters online.

4

Y. Wang and K.
B. Kent [28]

Data flow analysis to obtain pipeline

parallelism in Java applications.
Stream-graph used to detect the

communication pattern.

Converting legacy

application into their

parallel representation.

Pipelining could reduce the
communication overhead of threads

and improve the performance.

Involvement of

programmer to
partition the

program. Useful

only for the object-
oriented paradigm.

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 975

In TABLE-7 we have summarized the policies from the

evaluation methodology used. Some policies use the

simulation method for the evaluation, others using the actual

machine. Also, PIN tool[46] is required in the tuning process

for code instrumentation in the application to get the critical

insights required during the tuning process. It is observed

that if tuning would be performed considering the system

parameters, it would be dependent on a particular platform

and finally require to repeat the tuning process for each

architecture. Instead, for tuning process parameters should

be selected from the application characteristics. It is

noticeable that all the policies cited and enlisted in the table

considered application parameters like the number of

threads, block size, file size, and reuse distance.

Table-7 Investigating parameter tuning policies through evaluation methodology used for experiments.

SNO Reference
Parameters

considered
Metric Used

Tools/Workload

used
Experiment Results

1

Karcher, T.

&Pankratius,
V.[25]

No. of threads,

block size

CPU time, Wall clock

time(Total Time user

wait in front of a
desktop)

Intel Core 2 Quad

Q6600 processor,

Online tuner.

the tuner is integrated
with the Linux

kernel.Bzip2

application tested in
proposed tuner.

bzip2 and parallel

video processing

application tuning.
The result is

promising.

2

M. Kulkarni

et al[27]

Reuse distance,

Cache size, inter-

thread
communication.

Miss rate

PIN tool,

SIMICS,NAS,

SpecOMP,SPEC
benchmarks

Statical Sampling is

used to detect the

communication pattern
of threads.

Sampling analysis

for reuse distance is

fast 177 times than
full analysis.

3

P. Kansakar and

A. Munir[26]

No of cores,
Frequency of

processor core,

CacheSize(L1,
L2,L3).

Execution time, Power

consumption

ESESC
Simulator.

PARSEC and

SPLASH-2
Benchmark used.

PARSEC &
SPLASH-2

Benchmarks are tested

on small and large
search space.

Design quality

improved 1.35-
3.69 percent of the

result

obtained from a
fully exhaustive

search

4

Y. Wang and K.

B. Kent [28]

numbers of

records, size of
files.

Total time is taken for

application execution.

Ubuntu 12.04 OS,

Quad-core processor.

BDS
Simulator.Annotation

classes.

JVMTI tracing agent

and Annotation classes

are used to detect the
parallel regions.

Performance
improvement:-

Time is taken to

executee
application

improves-10-

48% approx.

VIII. Self-Aware based policies for performance

improvement
Parameter tuning policies are useful for the performance

improvement of legacy and state-of-the-art applications.

However continuous monitoring is required for performance

improvement. Also, in future multi-core systems are going

to get the highly dynamic load, multiple applications running

in a concurrent way, applications changing their I/O

Characteristics and not predictable system resources

requirements. Managing such type of systems would be

tedious. To utilize such systems in terms of high throughput,

applications should show autonomic behavior [48].

VIII.I Need of Self-awareness for Performance

Improvement
The policies enlisted above for the performance

improvement are dependent on the sub-system performance

like main memory, cache, bandwidth, etc. The applications

running in the system follow the policies of the traditional

OS for performance improvement. Applications are a prime

entity in the system, besides to focus on system parameters

and system internal attention should be given to the

applications also[22].

Applications running in the system must have to show

adaptive behavior. A form of behavior is called adaptive if it

maintains the essential parameters within the psychological

limit. Adaptive behavior of the application means

applications change in such a way in changing the

environment that the system performance should be in the

limit. We can say that our system is adaptive when

applications running in the system makes the system stable.

Autonomic computing is the oldest method for making the

system auto control.

Autonomic computing uses sensor channels to sense the

changes caused by internal & external factors[48]. Internal

factors such as excessive CPU utilization, external factors

such as load in other cores affects the internal connection

network which further affects the system performance.

VIII.II Proposed Self-aware policies
Self-aware policies used for the performance improvement

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 976

of multi-core systems are enlisted in the TABLE- 8. In

another situation, it is noted that to provide security in the

multi-core systems self-aware based approach could be

beneficial. In this approach multi-core resource could be

portioned; one partition set could be used as an observer for

the other portion for the security concerns[51]. The approach

would well be suited for the many-core architectures,

however, would be not much fruitful for multi-cores as it

already suffers from the resources shortage. Self-aware

based policies are also used to find the best configuration to

execute the stencil codes[41]. To accelerate the process of

finding the appropriate parameter value in considerable

search space machine learning based approaches shown the

improvement. However, machine learning based approaches

need to be modified to realize the actual self-aware behavior.

To incorporate the self-aware environment the system

components like main memory could be adaptive. Further,

whole memory could be portioned into independent, self-

aware parts & each part has its own memory

allocation/deallocation mechanism[52]. Since the self-aware

memory is flexible, decentralized it could address the

consistency issues like synchronization. However, for

implementing effectively required to explore new policies &

updations in the systems. Applications run in the system are

not known how they behave during run time. Taking

appropriate actions on performance degradation is necessary.

Self-healing based policies could search for the appropriate

action; needed to take for performance improvement[40].

Table-8 Investigating Self-aware policies as per situation and criteria used
Investigating Self Aware & Machine Learning based policies

S.No

Reference
Approach Used for Performance

Improvement

Parameters

Considered

Tools/other

instrument used

Benefits

Limitation

1

D.

Dasgupta et
al. [51]

A self-aware approach. Resource
partitioning is done for addressing

security issues in multicores

systems.
Cores are partitioned: one set is for

general work & another for the
security of the firstone.

Partition
overhead

Theoretical Model

Providing security
features in existing multi-

core systems with little

modification on
hardware & software.

Not discussing the

performance while

addressing security issues.
Could be useful for the

many-core systems; using to

the multicore system would
be costly to dedicate

for security.

2

A.

Ganapath i

[41]

Machine learning Used the

Machine learning on multicore

architectures for parameter auto-

tuning

Thread count,

cycles per thread

statistical machine

learning

Helpful for executing

scientific applications

where a lot of

computation involved.

Novel approach:- used

machine learning for
parameter autotuning.

Useful for scientific

applications computing, not

much use for commodity

processors

3

Hariri et
al[48]

Autonomic features like self-

configuration, self- healing, self-
optimization are proposed.

Local & global

sensors

Paradigm

Autonomic features like

self- optimization could

tune system performance
autonomically.

Overhead of Converting

traditional application into

Autonomic One

4

O.

Mattes and

W. Karl [52]

Decentralized self- optimization,

Flexible memory architecture

Migration cost

SystemC based

simulation

Isolation of memory,
flexible memory

architecture, putting

memory close to the
processor.

Implementation of the

proposed concept could

create issues like-
Interfacing, synchronization,

application phase change and

memory requirements.

5.

E. Lau, et al.

[30]

Special core for running self-aware

algorithms & energy saving.

Two cores. Small core focus on

energy and the main core focus of

the application

performance

Memory latency

Graphite simulator

used to execute

EM3D

benchmark and its

helper

threads.

The programmer need

not have to worry about

the performance &

power, it is managed by

the special core.

Complexity on interfacing

the extra core.

IX. Policy Summary

After the review cited above, we have summarized below:

It is noted that system performance severely affected due to

the application characteristics interference for the shared

resources like last level cache, main memory & bandwidth.

There is a gap to mitigate the application interference effect

to improve the performance by interference parameter

tuning. It is also observed that researchers have proposed

hardware or software-based approaches to tackle the

performance issues, but less attention is drawn on the

middle-ware & firmware based approaches that could be

beneficial for the performance improvements.

Another important fact is that the researchers used

architecture independent characteristics of the applications

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 977

to tackle the performance issues seem to be very useful for a

diverse set of hardware platforms and further it could avoid

the application parameter tuning overheads.

In another scenario, resource management through static &

dynamic approaches; like profiling & sampling respectively,

are less effective until we have some dedicated online

monitoring module in the system which could track

resources utilization for applications individually and

collectively.

It is also noted that the application and execution

environment works in isolation; which means the

applications do not get the system's input in runtime &

system does not bother about the application inherent goals

like speed for the execution, rate at which application wants

to transfer the data, leading to wastage of valuable resources

like energy.

For monitoring & analysis of the system performance &

resource utilization, many of the approaches rely on

hardware performance counters(HPC). HPC is useful but, its

use requires in-depth study & manual effort for reasoning on

which HPC will be the best, for which event, and thus calls

for the need of runtime autonomic mechanism for mapping

of HPC to application threads at runtime to reduce the

mapping overhead.

It is noted that tactics like code instrumentation(inserting

instructions in the application hot-spot to observe the time

taken for execution); creating logical clusters of cores; &

memory guard are some of the substantial steps towards the

performance improvements but are effective on limited

performance issues.

Hardware-based approaches such as partner core; scratch

pad memory; hardware tuners to address performance issues

are lacking due to their on-chip integration & heat

dissipation challenges.

Heuristic-based approaches like orchester schedulers,

cognitive computing based scheduling, & on-line

reinforcement learning to handle resources management &

energy issues are prominent and shown a significant impact

to solve the performance issues. However, it requires

expertise to map the performance problems to the heuristic

based solutions to harness their utility.

It is also noted that modeling based software approaches for

resource management are useful for high-level infrastructure

like data centers. However, due to the high calculation

required for the prediction of resource usability in advance,

are not successful for small multi-core devices.

It is also observed that proposed solutions for the

performance of the systems are related to the application

characteristics. The solution for data locality issue also had

found the solution in the application itself; which means get

the memory access pattern of the application in the source

code & create the thread to the memory object graph &

finally keep track about the creation and destruction of the

memory to solve the issue.

It is noted that to address the conflicting goals of

applications, tuning of performance parameters & allocation

of resources to the applications in the dynamic execution

environment; the existing centralized policies in the multi-

core system are not sufficient.

In the multi-core system, global rules used for resource

allocation & addressing performance issues, like contention

are not effective & fair. There is a need for simple local rules

which applications should follow in a cooperative manner;

in the same way as adopted by the well-established

computing paradigm used in implementing swarm

intelligence for autonomic systems.

In other work, it is shown that it could be advantageous to

shift from conventional multi-core architectures like

reconfigurable, Bahurupi, etc. to new Autonomic multi-core

architectures.

It may be noted that the solution for the performance

enhancement of the multi-core system proposed does stand

in isolation; like cache tuning, scratch-pad memory which is

a gap as solutions lack on the totality.

It is also noted that Shared resources and thread to core

mapping strategies are closely related to each other, so both

have to perform by considering their trade-off.

Looking to the efforts cited above, till less attention is drawn

to the well-established computing paradigms like self-aware

& autonomic computing for improving multi-core system

performance smartly & efficiently. Which means It will be

beneficial if applications participate in solving the

performance issues of an existing multi-core system; through

cooperation & adapt itself in run time for resources shortage.

In the context to enhance the performance and utilization of

multi-core (CPU) systems concerning throughput & reduced

application's execution time, applications running in the

system should have to show a self-aware & adaptive

behavior.

It is also found that hardware performance counters have

emerged as a vital instrument to capture the system

parameters. Most of the policies are getting the system

insights like cache latency, bandwidth utilization and cache

miss rate through performance counters.

It is investigated that, Last level cache (LLC) has prime

importance on system performance. Since applications

execution delays due to high pressure on LLC to access the

shared data.

CONCLUSION
It is worth mentioning that enormous work has been done

for decades and diverse set of policies were proposed for

performance improvement. However, selecting an

appropriate policy for a distinct workload requires in-depth

analysis of application characteristics and the policies

effectiveness. We had done a detailed study of approaches

employed for the multi-core system performance

improvement. For contemporary applications and state-of-

the-art multi-core architecture, attempts for performance

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 978

improvement through traditional approaches which focus on

improvements of memory policies seems ineffective.

Besides, complexity and power dissipation issues of the

traditional single processors, it is not possible to overlook it

completely. Another fact observed is that cache contention

& data locality are two important factors which degrade the

performance by 20% due to the parameter tradeoff. Data

locality causes severe performance problems for the shared

cache. It is found that the policies are interrelated to each

other. One policy which commands on handling an issue

may help in another way to tackle the other performance

issues indirectly; for example, mapping a thread to a

processor core which is far away from its local memory

could be a policy of thread to core mapping, may solve the

issue of contention of the memory controller. Scheduling &

memory allocation activities should be done by looking at

the aspects of overlapping and trade-offs of each other. In

the classification, we had found that application to core

mapping issues degrades the system performance by

approximately 30% and the appropriate scheduling

algorithm increases the speedup up to 20 to 40%.

It is also observed that all the policies discussed in the

survey had shown improvement in system performance in

varied situations. Also, these policies are beneficial for a

particular application type and system configuration.

However, to address the system performance issues, in

totality which policy is best suited, what should be the order

of policies if one has more than one options, how a policy

could dominate the other policy during parameter tuning,

how a policy is effective compared to other policies in a

particular workload type is not considered in totality, could

be considered for future work. In the future, we may perform

a comparative analysis of how the above-mentioned policies

if dynamically assigned in the system are fruitful.

Finally, in the future, we have to deal with very complex

situations to improve multi-core system performance. We

have a diverse set of applications, a list of performance

issues due to heterogeneity on system resources and have the

number of policies to address the performance issues; and all

have a common goal- Performance. This situation could be

handled through self-aware, autonomic, intelligent &

dynamic software or hardware based interface exist between

application and OS, which could consider complex scenarios

and address them dynamically. In future two contributions

could be helpful to improve the multi-core system

performance. First, a software-based “multi-criteria aware

holistic policy scheduler” which could pick an application

and assign the best policy from a set of policies by

considering the system performance dynamically. Second, a

hardware or software based interface between applications

and OS which could incorporate self-aware and autonomic

properties in legacy as well as state-of-the-art applications

also in system components.

REFERENCES

[1] D. Geer, "Chip makers turn to multi-core processors", Computer,

vol. 38, no. 5, pp. 11-13,2005.

[2] A. Roy, J. Xu, and M. Chowdhury, "Multi-core processors: A new

wayforward and challenges", International Conference on

Microelectronics, Sharjaha,UAE, pp.454-457, 2008.

[3] G. Blake, R. Dreslinski and T. Mudge, "A survey of multi-core

processors", IEEE Signal Processing Magazine, vol. 26, no. 6, pp.

26-37,2009.

[4] S. Hao, Q. Liu, L. Zhang, and J. Wang, "Processes Scheduling on

Heterogeneous Multi-core Architecture with Hardware Support",

in International Conference on Networking, Architecture, and

Storage, China, , pp. 236-241, 2011.

[5] R. Teodorescu and J. Torrellas, "Variation-Aware Application

Scheduling and Power Management for Chip Multiprocessors",66

in International Symposium on Computer Architecture, Beijing,

China, pp.363-374, 2008.

[6] Y. Cheng, W. Chen, Z. Wang, and Y. Xiang, “Precise contention-

aware performance prediction on virtualized multicore system,”

Journal of system architecture, vol. 72, pp. 42-50, 2017.

[7] A. Asaduzzaman "Performance modeling of multicore and

manycore networked systems," in International Journal of

Computer Networks and communications (IJCNC), vol.4, No.2,

pp. 53-67, 2012.

[8] S. Prasad, "Program Execution on Reconfigurable Multicore

Architectures", Electronic Proceedings in Theoretical Computer

Science, vol. 211, pp. 83-91, 2016.

[9] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo and L. Sha, "Memory

Bandwidth Management for Efficient Performance Isolation in

Multi-Core Platforms", IEEE Transactions on Computers, vol. 65,

no. 2, pp. 562-576,2016.

[10] S. Ren, L. Tan, C. Li, Z. Xiao and W. Song, "Leveraging

Hardware-Assisted Virtualization for Deterministic Replay on

Commodity Multi-Core Processors", IEEE Transactions on

Computers, vol. 67, no. 1, pp. 45-58,2018.

[11] M. Pricopi and T. Mitra, "Bahurupi", ACM Transactions on

Architecture and Code Optimization, vol. 8, no. 4, pp. 1-21, 2012.

[12] James E. Bennett, Michael J. Flynn, Performance Factors for

Superscalar Processors, Stanford University, Stanford, CA,1995

[13] Lachaize, R., Lepers, B. and Quéma, V., “MemProf: a memory

profiler for NUMA multicore systems”, In: USENIX ATC'12

Proceedings of the 2012 USENIX conference on Annual

Technical Conference. Boston: ACM, pp.5-5, 2012.

[14] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn, "Using OS

Observations to Improve Performance in Multicore Systems",

IEEE Micro, vol. 28, no. 3, pp. 54-66, 2008.

[15] D. Shelepov and et al., "HASS: A Scheduler for Heterogeneous

Multicore Systems", in ACM SIGOPS Operating Systems

Review, New York, pp. 66-75, 2009

[16] Becchi M, Crowley P, “Dynamic thread assignment on

heterogeneous multiprocessor architectures”, In Proceedings of

the 3rd conference on computing frontiers, New York, 2006, pp.

29-40, 2006

[17] Kumar R et al. “Single-ISA heterogeneous multi-core

architectures for multithreaded workload performance”, In

Proceedings of the 31st annual international symposium on

computer architecture, Washington, pp., 64-75, 2004

[18] T.M.Birhanu, Z. Li, H. Sekiya, N. Komuro, Y.-J. Choi, "Efficient

thread mapping for heterogeneous multicore iot systems", Mobile

Information Systems, vol. 1565, pp. 8, 2017

[19] D. Koufaty, D. Reddy, and S. Hahn, "Bias scheduling in

heterogeneous multi-core architectures," in Proc. of the 5th

European Conference on Computer Systems, France pp. 125-138,

2010

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 979

[20] S. Zhuravlev, S. Blagodarov, and A. Fedorova, “Addressing

shared resource contention in multicore processors via

scheduling,” in ACM SIGARCH Computer Architecture News,

vol. 38, pp. 129–142, 2010.

[21] Z. Majo and T. Gross, "Memory management in NUMA

multicore systems: trapped between cache contention and

interconnect overhead", in ACM SIGPLAN Notices - ISMM '11,

pp.11-20 2011.

[22] Agarwal A, Miller J, Eastep J, Wentziaff D, Kasture H Self-aware

computing. Technical report, MIT, 2009.

[23] D. Molka, R. Schöne, D. Hackenberg and W. Nagel, "Detecting

memory-boundedness with hardware performance counters",

Proceedings of the 8th ACM/SPEC International Conference on

Performance Engineering, Italy, pp. 27-38, 2017.

[24] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, L. Sha, "MemGuard:

Memory bandwidth reservation system for efficient performance

isolation in multi-core platforms", Proc. Real-Time Embedded

Technol. Appl. Symp., USA, pp. 55-64, 2013.

[25] Karcher, T., Pankratius, V.: Auto-Tuning Multicore Applications

at Run-Time with a Cooperative Tuner. Technical Report, 2011-4,

Karlsruhe Institute of Technology, Germany (2011)

[26] P. Kansakar and A. Munir, “A Design space exploration

methodology for parameter optimization in multicore processors,”

IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 1, pp. 2–15,2018.

[27] M. Kulkarni, V. Pai, and D. Schuff, “Towards architecture

independent metrics for multicore performance analysis,” ACM

SIGMETRICS Perform. Eval. Rev., vol. 38, pp. 10-14, 2011.

[28] Y. Wang and K. B. Kent, “A Region-Based Approach to Pipeline

Parallelism in Java Programs on Multicores,” Proc. - 2017 25th

Euromicro Int. Conf. Parallel, Distrib. Network-Based Process.

PDP 2017, Russia, pp. 124–131, 2017.

[29] R. Das et al., "Application-to-core Mapping Policies to Reduce

Memory System Interference in Multi-core Systems", HPCA

2013.

[30] Eric Lau , Jason E. Miller , Inseok Choi , Donald Yeung , Saman

Amarasinghe,Anant Agarwal, “Multicore performance

optimization using partner cores”, Proceedings of the 3rd

USENIX conference on Hot topic in parallelism, Berkeley,

pp.11-11, 2011,

[31] Da-WeiChang,Ing-ChaoLin,Yu-ShiangChien,Chn-

LunLin,A.Su,andChung PingYoung,"CASA:Contention-Aware

Scratchpad Memory Allocation for Online Hybrid On-Chip

Memory Management", IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 33, no. 12, pp.

1806-1817, 2014.

[32] S. Gu, Q. Zhuge, J. Yi, J. Hu, E. H.-M. Sha, "Optimizing task and

data assignment on multi-core systems with multi-port SPMs",

IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 9, pp. 2549-2560,

2015.
[33] N. Ramasubramanian, V. V. Srnivas, and N. Ammasai Gounden,

“Performance of Cache Memory Subsystems for Multicore

Architectures,” Int. J. Comput. Sci. Eng. Appl., vol. 1, no. 5, pp.

59–71,2011.

[34] V. Kazempour, A. Fedorova, and P. Alagheband, “Performance

implications of cache affinity on multicore processors,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), vol. 5168, pp. 151–161, 2008.

[35] M. Rawlins, A. Gordon-Ross, "A cache tuning heuristic for multi-

core architecture", IEEE transaction on computers, vol. 62, no. 8,

pp. 1570-1583, 2013.

[36] M. Rawlins and A. Gordon-Ross, "An application classification

guided cache tuning heuristic for multi-core architectures", 17th

Asia and South Pacific Design Automation Conference,2012.

[37] K. Huang, K. Wang, D. Zheng, X. Zhang and X. Yan, "Access

Adaptive and Thread-Aware Cache Partitioning in Multicore

Systems", Electronics, vol. 7, no. 9, pp. 172, 2018.

[38] Y. Song, O. Alavoine, and B. Lin, “Row-buffer hit harvesting in

orchestrated last-level cache and DRAM scheduling for

heterogeneous multicore systems,” in Proceedings of the 2018

Design, Automation and Test in Europe Conference and

Exhibition, Janua, pp. 779–784, 2018

[39] P. Anuradha, H. Rallapalli, and G. Narsimha, “Energy efficient

scheduling algorithm for the multicore heterogeneous embedded

architectures,” Des. Autom. Embed. Syst., vol. 22, no. 1–2, 2018

[40] Fuad, M., Deb, D. and Baek, J., “Self-Healing by Means of

Runtime Execution Profiling”, Proceedings of 14th International

Conference on Computer and Information Technology, Dhaka,

pp., 202-207, 2011.

[41] A. Ganapathi, K. Datta, A. Fox, and D. A. Patterson, “A case for

machine learning to optimize multicore performance,” in

Proceedings of the First USENIX conference on Hot topics in

parallelism, 2009.

[42] Jain, R., Panda, P. and Subramoney, S. “Cooperative Multi-Agent

Reinforcement Learning-Based Co-optimization of Cores,

Caches, and On- chip Network”, ACM Transactions on

Architecture and Code Optimization, vol. 14, issue-4, pp.1-25,

2017.
[43] N. Huber, F. Brosig, S. Spinner, S. Kounev and M. Bahr, "Model-

Based Self- Aware Performance and Resource Management

Using the Descartes Modeling Language", IEEE Transactions on

Software Engineering, vol. 43, no. 5, pp. 432-452, 2017.

[44] K.Hasan,J.Antonio, and S.Radhakrishnan," A model-driven

approach for predicting and analysing the execution efficiency of

multi-core processing", International Journal of Computational

Science and Engineering, vol. 14, no. 2, pp. 105-125, 2017.

[45] Khondker S. Hasan, John K. Antonio, and Sridhar Radhakrishnan,

"A New Multi-core CPU Resource Availability Prediction Model

for Concurrent Processes," Lecture Notes in Engineering and

Computer Science: Proceedings of The International

MultiConference of Engineers and Computer Scientists, Hong

Kong, pp. 130-135, 2017.

[46] K. Moazzemi, A. Kanduri, D. Juh´asz, A. Miele, A. M. Rahmani,

P. Liljeberg, A. Jantsch, N. Dutt, “Trends in on-chip dynamic

resource management”, in21st Euromicro Conference on Digital

System Design (DSD), Prague, pp. 62–69, 2018.

[47] Yan-fei Zhu and Xiong-min Tang, "Overview of swarm

intelligence”,International Conference on Computer Application

and System Modeling, China, pp. 400-403, 2010.

[48] Hariri, B. Khargharia, H. Chen, J. Yang, Y. Zhang, M. Parashar,

and H. Liu, "The Autonomic Computing Paradigm", Cluster

Computing, vol. 9, no. 1, pp. 5-17, 2006.

[49] Lewis, P.R., Self-aware computing systems: from psychology to

engineering. In: Design, Automation and Test in Europe

Conference and Exhibition, Switzerland,pp.,1044–1049, 2017.

[50] N. Dutt, A. Jantsch, and S. Sarma, "Toward Smart Embedded

Systems", ACM Transactions on Embedded Computing Systems,

vol. 15, no. 2, pp. 1-27, 2016.

[51] D. Dasgupta, H. Bedi, and D. Garrett, “A conceptual model of

self-monitoring multi-core systems,” Proc. Sixth Annu. Work.

Cyber Secur. Inf. Intell. Res. - CSIIRW ’10, pp. 83 1,2010.

[52] O. Mattes and W. Karl, “Evaluating the Self-Optimization Process

of the Adaptive Memory Management Architecture Self-aware

Memory,” in Proceedings of the 1st Workshop on Resource

Awareness and Adaptivity in Multi-Core, Germany pp.16–21,

2014.
[53] G.P. Sunitha, B.P. Vijay Kumar, S.M. Dilip Kumar, "A Nature

Inspired Optimal Path Finding Algorithm to Mitigate Congestion

in WSNs", International Journal of Scientific Research in

Network Security and Communication, Vol.6, Issue.3, pp.50-57,

2018

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 980

[54] Chingrace Guite, Kamaljeet Kaur Mangat, "A Study on Energy

Efficient VM Allocation in Green Cloud Computing", International

Journal of Scientific Research in Computer Science and

Engineering, Vol.6, Issue.4, pp.37-40, 2018

Authors Profile

Mr. Surendra K Shukla Pursuing Ph.D. in

Computer Science & Engineering from

School of Computer Science & IT, DAVV

University, Indore, M.P., India. He has

received his B.E degree in Computer

Engineering from, SGSITS College

Indore, M.P., India in 2004 and M.E in Computer

Engineering from IET, DAVV University, Indore, M.P.

India in 2011. His research area is multicore architectures,

Parallel Computing.

Dr. P.K. Chande is working as a Director,

at SVKMs, NMIMS, Deemed to

University, Indore,M.P.India. He was Ex.

Director MANIT Bhopal, SGSITS Indore,

Visiting prof. Japan & Director MB&T

MPSEDC. He has 2 co-authored books

and have published more than 80 research

papers in international/national journals.

He has Pursued Research in areas like: Fault Tolerant

Systems, Real Time Knowledge Systems, Intelligent

Automation, Smart Vehicular Systems etc. He has Guided 9

Ph. D. scholars.

