
 © 2019, IJCSE All Rights Reserved 93

International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol.-7, Issue-12, Dec 2019 E-ISSN: 2347-2693

Secure Protocols for Developed Cloud Computing

Thade Lakshmidevi

Computer Science and Engineering, Mewar University, Gangrar, Chittorgarh, Rajastan, India

*Author: manu.venni5@gmail.com, Tel.: +91-99165 89846, 99864 98800

DOI: https://doi.org/10.26438/ijcse/v7i12.9398 | Available online at: www.ijcseonline.org

Accepted: 18/Dec/2019, Published: 31/Dec/2019

Abstract- Cloud Computing is a term used to describe both a platform and type of application. Cloud Computing differs from

traditional computing paradigms as it is scalable, can be encapsulated as an abstract entity which provides different level of

services to the clients, driven by economies of scale and the services are dynamically configurable. Data stored in third party

storage systems like the cloud might not be secure since confidentiality and integrity of data are not guaranteed. Though cloud

computing provides cost-effective storage services. Hence, many organizations and users may not be willing to use the cloud

services to store their data in the cloud until certain security guarantees are made. In this paper, a solution to the problem of

securely storing the client’s data by maintaining the confidentiality and integrity of the data within the cloud is developed. The

proposed protocols are developed which ensure that the client’s data is stored only on trusted storage servers, replicated only

on trusted storage servers, and guarantee that the data owners and other privileged users of that data access the data securely.

Keywords- Cloud Computing Trusted Storage and Security.

I. INTRODUCTION

As a platform it supplies, configures and reconfigures

servers, while the servers can be physical machines or

virtual machines. On the other hand, Cloud Computing

describes applications that are extended to be accessible

through the internet and for this purpose large data centers

and powerful servers are used to host the web applications

and web services. Unencrypted data of the client cannot be

stored in the cloud because the cloud provider will have

access to the data and hence the confidentiality of the data

will be lost. The encryption and decryption of files is

transparent to the user and the application. The encrypted

key is decrypted with the user’s private key. This is because

the encryption keys used to encrypt data are stored in the

disk and even when the encryption keys are encrypted, they

are encrypted using the public key of the user of that storage

node. The user of the storage node in his cloud is the system

administrator who has the maximum privileges on that

storage server. Thus, he could easily get hold of the

encryption/decryption keys of the encrypted file system

stored in the disk and thereby decrypt the client’s data and

can even modify it. Hence the confidentiality and integrity

of the client’s data might be lost. Loss of data confidentiality

and integrity is undesirable for a client. They are the two

main security issues for a client who is using the cloud

services to store his data. To enable a client to establish trust

in the cloud provider’s ability to securely store his data

within the cloud, we need a solution to achieve

confidentiality and integrity of client’s data within the cloud

[1] and [3] and [4]. In this paper, a solution to the problem of

securely storing the client’s data by maintaining the

confidentiality and integrity of the data within the cloud is

developed. The proposed system is called ‘A Trusted

Storage System for Cloud’.

II. BACKGROUND

Cloud Architecture-

The user interacts with the front-end interface from which he

selects a service, for example, to store his files, to access a

document, or to run an application. The user’s request is

transferred to the System Management which finds the

appropriate resources to be assigned, and calls upon the

Provisioning Services mechanism to provision the resources

to the user. The Provisioning Services mechanism contacts

the cloud servers and processes the user’s request. After

processing the user’s request, the cloud system monitor

tracks the usage of resources by the user and records it in his

profile. Thus, the cloud provider charges the user according

to his cloud usage. All of these management tasks are

automated in the cloud computing system [2].

Figure1: Architecture of a Cloud Computing System

 International Journal of Computer Sciences and Engineering Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 94

Cloud Storage-

The user’s data is stored in multiple servers of the cloud

rather than on a dedicated server like in the traditional data

center storage. To the user, it appears as if his data is stored

in a particular location but in fact, the data might move from

one location to another in time.

The cloud consists of several storage servers and a front-end

server/node manager which manages the storage servers

within the cloud. A client communicates with the cloud

through the front-end server and vice-versa. The client uses

a web-based interface to communicate with the front-end

server of the cloud. The client sends his data/files via the

internet to the cloud for storage. The front-end server after

receiving the client’s files chooses a storage server within

the cloud and sends the client’s files to it. The Client’s data

is replicated within the cloud storage servers for reliability.

A storage server sends copies of its data to other storage

servers of the cloud [1] and [3].

Related Works-

He and Xu propose a scheme to protect data on a personal

computer platform. They use the trusted computing platform

developed by the trusted computing group (TCG) to develop

a secure and reliable model for user authentication and data

encryption. Their model uses a storage protocol to encrypt

data and uses Trusted Platform Module (TPM) to

authenticate different users of the PC. The host computer has

the trusted computing platform installed within itself, i.e., it

has TPM installed in it. First, a trusted connection is

established between the host computer and the storage

device, i.e., the host and the storage device authenticate each

other before any data storage takes place within the storage

device and before data is accessed from the storage device

by the host. Then, security control is provided by storing

access control policies within the storage device. The access

control policies apply to users, devices and applications.

Message control between the host and the storage device is

provided by implementing session-oriented secure data

transmission [4-6].

Sailor, Doorn and Ward described a trusted computing

platform which extends the hardware-rooted trust guarantees

of TCG (Trusted Computing Group) technologies to the

operating system and all its applications and allows remote

parties to check the trust guarantees. The TCG defines

standards for measuring and reporting integrity metrics at

the system boot time. However, the TCG does not provide

information on the trustworthiness of the runtime of the

operating system. Sailor et al. provide a solution to this

problem. They give a procedure that explains how a

challenging party can attest to the software stack of an

untrusted machine. Trust is established between two parties

after mutual attestation takes place. The kernel of the

attested system (system that needs to be attested) is

instrumented to generate measurements of postboot events

which affect the run-time of the system. The components of

the software stack that have semantic value are measured.

The measured components are kernel modules, executables

and shared libraries, configuration files and other important

input files that affect trust into the run-time software stack.

The measurements are done as soon as executable content is

loaded into the system and before it is executed. The attested

system creates and stores a measurement list which is a list

of hashes of the software stack components. This list is also

stored in the TPM (Trusted Platform Module) for achieving

integrity. The measured list and the list stored in the TPM

are sent to the challenging party. The challenging party

compares the two of them and trusts the measurement list of

the attested system if both turn out to be the same. After that,

the challenging party compares the received measurement

list with its stored expected list of measurements. If the two

turn out to be the same, the challenging party attests to the

system and hence the challenging party is assured that the

system is running the expected software stack [7] and [8].

III. PROPOSED TECHNIQUES

We consider the confidentiality and integrity issues of

client’s data within the cloud and provide a solution to these

issues by proposing a framework/system called a Trusted

Storage System for Cloud. The system provides data security

against the cloud provider, especially against the system

administrator who has the maximum number of privileges

over the storage nodes in the cloud.

System Architecture-

The proposed system consists of the following entities:

 User/Client

 Trusted Third Party Node (TTPN)

 Front-End Server (FES)

Group of Storage Servers/Nodes

Joining of a storage node in the Trusted Storage System

of the Cloud-

Figure 2: Joining of a storage node in the Trusted Storage

System of the Cloud.

A storage node in the cloud must join the Trusted Storage

System before it can store a client’s data. The TTPN tests if

a TPM is being installed on the storage node and if installed,

it checks for the correctness of the platform of the storage

 International Journal of Computer Sciences and Engineering Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 95

node. This process is called attestation. After successful

attestation of the platform of the storage node by the TTPN,

the storage node is deemed trusted and can store a client’s

data securely.

Notations-

nTTPN: Nonce of the TTPN PCRVN: The PCR value stored

in the TPM of node N (Hash of the kernel of the node and

sequence of hashes of the software involved in the boot

sequence of the node bootstrap loader, BIOS).

MLN: Measurement list of the node N

pri(AIK): Private attestation identity key of the TPM of node

N

pub(AIK): Public attestation identity key of the TPM of

node N.

C(AIK): Attestation identity key certificate of the TPM of

node N.

pub(N): Public key of the node N.

Nid: ID of the node N.

pub(TTPN): Public key of the TTPN.

pri(TTPN): Private key of the TTPN.

Protocol 1

Message 1: {“Join System”, Nid}

Message 2: {“Send platform state”, nTTPN} pri(TTPN)

Message 3: {{PCRVN , nTTPN} pri(AIK) , MLN, pub(N),

pub(AIK), C(AIK)} pub(TTPN)

Message 4: {“Joined”}pri(TTPN)

Data Storage in the Trusted Storage System-

Figure 3: Data Storage in the Trusted Storage System.

Notations-

UK: User Key

 Uid: User ID

nU: Nonce of the user

nTTPN: Nonce of the TTPN

nN: Nonce of the node

SK: One time session key

pub(TTPN): Public key of the TTPN

pri(TTPN): Private key of the TTPN

pub(N): Public key of the node

pri(N): Private key of the node

{files}SK: User’s/client’s files encrypted with the session

key

Nid: Node ID

Protocol 2

Message 1: {“Data Send Req”, UK ,Uid, nU } pub(TTPN)

Message 2: {{ SK, nU, nTTPN }UK, {H(nU)}pri(TTPN)}

Message 3: {{files}SK, {H({files} SK), nTTPN}

pub(TTPN)}

Message 4: {Message 3, (H(Message 3))pri(N), {nN, Nid}

pub(TTPN)}

Message 5: {{files}SK, {{nN, UK , Uid, SK, H({files}SK) }

pub(N)} pri(TTPN)}

Message 6: {“Data Stored”}UK

The client/user sends a “data send request” (message 1) to

the front-end server (FES) of the cloud to store his data in

the cloud. The front-end server forwards the message to the

TTPN. The user generates a symmetric encryption key, UK,

called user key, to use it in further communications with the

cloud. Message 1 includes the user key, user ID, Uid, and

the user nonce, nU, used for preventing replay attacks. The

message is encrypted with the public key of the TTPN so

that only the TTPN can decrypt and view the message.

Data Integrity

During data storage, the EFS computes a hash of the user’s

data and stores it in the TPM. When the data is accessed by

the user, the EFS computes the hash of the user’s data and

compares it with the hash stored in the TPM. If both the

hashes are equal, the EFS is assured that the user’s data is

not modified. If the hashes are not the same, an integrity

breach is identified.

User’s data is transmitted securely and is stored only on

trusted storage nodes:

The user encrypts his data with the one-time symmetric key,

SK, which is created and provided to the user by the TTPN

which is trusted by the user. The user sends the encrypted

data to the cloud. A storage node within the cloud can

decrypt the user’s data, re-encrypt it with the EFS keys and

store the user’s data within it only after getting itself

authenticated by the TTPN.

The storage node sends an authentication request to the

TTPN by signing the request with its private key. The TTPN

authenticates the storage node if it is a member of the trusted

storage system by checking its database if it has the public

key of the storage node. The TTPN does not authenticate the

storage node in the following situations:

1. If the storage node is not a member of the trusted storage

system, i.e., if the public key of the storage node is not found

in the database of the TTPN.

Or

2. If the public key found in the database does not decrypt

the signature of the node. This is the case when the storage

node is compromised/ rebooted.

 International Journal of Computer Sciences and Engineering Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 96

Data Replication-

ach storage server replicates its data onto other servers in the

cloud to achieve data reliability. The data stored in a trusted

storage server should be replicated onto other trusted storage

servers only. That is, the data should be replicated onto

storage servers which are members of the trusted storage

system.

Storage node ready to accept data for replication-

In order to ensure that the data for replication is transferred

to trusted storage servers, the TTPN maintains a list of

trusted storage servers that are ready to accept data for

replication. This list is called “ready node list”. The ready

node list is a dynamic list which keeps changing when new

nodes are added to it or existing nodes get deleted from it. A

storage server which is ready to accept data for replication

sends a “ready for replication” message to the TTPN. The

TTPN checks if that server is a member of the trusted

storage system. If it is a member, it adds that server to the

ready node list.

Figure 4: Storage node ready to accept data for replication.

Notations-

pri(N): Private key of the node N

Nid: ID of the node N

Protocol 3

Message 1: {“Ready for replication”, {“add to ready node

list”} pri(N), Nid}

Message 2: {“Added/ Rejected”}

A storage server which is ready to accept data for replication

sends “ready for replication” message which includes its ID

and “add to ready node list” message which is encrypted

with the private key of the node, pri(N), so that the TTPN

can authenticate the node by decrypting it using the public

key of the node, pub(N).

When the TTPN receives message 1, checks its database if it

has the public key, pub(N), of that node stored, i.e., it checks

if that node is a member (“trusted node”) of the Trusted

Storage System. If the TTPN finds the public key, it

decrypts the “add to ready node list” message and thus

successfully authenticates and adds the storage node to its

ready node list. If the TPPN does not find the public key of

that node or if it is not able to decrypt the message with the

existing public key of that node, it identifies that the node is

not a member of the trusted storage system or that the node

has been rebooted and compromised. The TTPN will not add

that node to its ready node list. So, the ready node list

contains trusted storage nodes only. In response to message

1, the TTPN sends message 2 containing “added/rejected”

message. When a node cannot accept any more data for

replication, it sends “delete from ready node list” message to

the TTPN. The TTPN deletes that node from the ready node

list. Ni

Storage node sends data for replication-

A storage node N in the cloud which is going to replicate its

data on other storage servers should ensure that they are

trusted, i.e., they are members of the trusted storage system,

before storing data in them. The storage node N requests the

TTPN to send a list of ready nodes that accept data for

replication. Since, the ready node list consists of storage

nodes that are trusted, the storage node N is assured that the

data will be replicated securely. After receiving the ready

node list from the TTPN, the storage node N sends its data to

the storage nodes, (Ni, Ni+1, Ni+2,…), in the received list.

Notations

Nid: ID of node N

{(Ni, pub(Ni)), (N(i+1), pub(N(i+1))), (N(i+2),

pub(N(i+2))),……..)}: Pairs of IDs and public

keys of ready nodes.

Pri(TTPN): Private key of the TTPN

EFSK: Symmetric key created and used by the encrypted file

system of the storage node to encrypt/decrypt the client’s

data

{files}EFSK: Client’s files/data encrypted with the

encryption file system key

Uid: User ID

UK: User key.

Protocol 4

Message 1: {“Data Replication”, Nid, nN}

Message 2: {nN, (Ni, pub(Ni)), (N(i+1), pub(N(i+1))),

(N(i+2), pub(N(i+2))),……..}pri(TTPN)

Message 3: {{files}EFSK, {H({files}EFSK), EFSK, Uid,

UK} pub(Ni)} //

Figure 5: A trusted storage node sends its data for replication

to other trusted storage nodes.

 International Journal of Computer Sciences and Engineering Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 97

Data Access-

Protocol 5 explains how the user accesses his data from the

cloud securely. The user contacts the front-end server, FES,

to access his data. The FES sends the user’s request to a

storage node which has the user’s files and the storage node

securely sends the user files to the user.

Figure 6: User accesses data.

Notations-

Uid: User ID

nU: nonce of the user

files: Client’s files

pub(N): Public key of the storage node N

pri(N): Private key of the storage node N

UK: User key

Protocol 5

Message 1: {“Access Data”, {nU, file name/set of file

names} UK, Uid}

Message 2: {{files, nU, pub(N)} UK , (nU+1) pri(N)}

The user accesses his data stored in the cloud by sending the

file name or a set of file names it needs to access and the

user’s nonce, nU, and the user ID to the front-end server

(FES) in message 1. The user encrypts the nonce and the file

names with its key, UK, to get itself authenticated by the

cloud so that the cloud does not send the requested files to

someone else.

IV. RESULTS ANALYSIS

In protocol 1, we show that only storage nodes with the

expected platform state join the trusted storage system. A

storage node prepares a measurement list, MLN, which

denotes the measurement of the current state of the system at

boot time. The measured state of the system is securely

stored in the TPM of the storage node for maintaining the

integrity of the measured state. The TTPN has the expected

state of the platform stored in it. When a TTPN receives a

“join system” request from the storage node, it sends a “send

platform state” request to the storage node. In return, the

storage node sends the measurement list, MLN, and the

platform state, PCRVN, stored in the PCR registers of the

TPM which is signed by the TPM. The TTPN trusts the

signed content of the TPM after viewing the attestation

identity key certificate which is signed by a certification

authority. There is a possibility that a malicious/

compromised node can modify the measurement list, MLN,

to represent a genuine platform state. The TTPN compares

the signed PCR value, PCRVN, with the measurement list,

MLN, of the node. If they are different, the TTPN does not

attest to the storage node. The attestation fails. If they are

equal, it trusts the measurement list, MLN, of the node. The

TTPN now compares the measurement list, MLN, with the

expected state stored within it. If they are different, the

attestation fails. If they are equal, the TTPN trusts the

platform running on the storage node and hence attests to the

node and sends a “joined” message to the node. So, only

nodes with an expected/genuine platform are allowed to join

the trusted storage system.

In protocol 2, we show that a user’s data is securely

transmitted to the cloud and is stored on trusted storage

nodes only, thus, achieving confidentiality and integrity.

In protocol 3 & 4, We show that a user’s data is replicated

only on trusted storage nodes. The TTPN prepares a list of

storage nodes which are ready to accept data for replication.

This ready node list contains trusted nodes only. A storage

node sends a request to the TTPN to send the ready node list

to it for replicating its data. When the TTPN receives the

request, it sends the ready node list to the storage node.

There is a chance that an attacker modifies the ready node

list prepared by the TTPN or creates his own list of

malicious nodes and sends it to the storage node N. Since

message 2 is signed with the private key of the TTPN, the

list cannot be tampered or changed by any attacker. Hence,

the storage node is assured that the ready node list that it

receives is prepared by the TTPN only. The storage node

replicates its data onto the nodes in the received list. Hence,

data is replicated on trusted storage nodes only and is secure.

In protocol 5 we show that the protocol allows secure data

access by a user. A user U requests the cloud to access his

data by encrypting the required file name/ set of file names

with his user key, UK. When a user U sends a request to

access his data, the storage node encrypts the user’s data

with the user’s key, UK, and sends the encrypted data to the

user. UK is known only to the user, TTPN and the trusted

storage nodes. So the data is securely accessed by the user.

The signature, (nU+1)pri(N), assures the user that the

message is prepared by the storage node only. The user

nonce in the messages ensures that the message received by

the user is fresh.

V. CONCLUSION

The proposed framework provides data security against the

system administrator who has the maximum number of

privileges on a storage node. The system uses a Trusted

Platform Module (TPM) chip in each storage node which

provides protected storage of encryption/decryption keys of

client’s data and remote attestation of each storage node.

Each storage server has an encrypted file system which

 International Journal of Computer Sciences and Engineering Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 98

encrypts the client’s data and the corresponding keys are

stored in the TPM. Cryptographic techniques are used to

provide secure communication between the client and the

cloud. The system ensures that the client’s data is stored

only on trusted storage servers and it cannot be transferred

by malicious system administrators to some corrupt node.

The system architecture and the proposed protocols together

form a Trusted Storage System for Cloud. The system

achieves confidentiality and integrity of the client’s data

stored in the cloud.

REFERENCES

[1] Muhammad Aufeef Chauhan and Muhammad Ali Babar,

“Migrating Service-Oriented System to Cloud Computing: An

Experience Report”, 2011 IEEE 4th International Conference on

Cloud Computing, pp 404-411.

[2] Louridas, P., Up in the Air: Moving Your Applications to the Cloud.

Software, IEEE, 2010. 27(4): p. 6-11.

[3] Ali Babar, M., Chauhan, M. A., A Tale of Migration to Cloud

Computing for Sharing Experiences and Observations, SECLOUD

workshop, Collocated with ICSE 2011, Hawaii, USA.

[4] Rajkumar Buyyaa, Chee Shin Yeoa, , Srikumar Venugopala, James

Broberga, and Ivona Brandicc, “Cloud computing and emerging IT

platforms: Vision, hype, and reality for delivering computing as the

5
th
 utility”, Future Generation Computer Systems, Volume 25,

Issue 6, June 2009, Pp 599-616.

[5] K. Keahey and T. Freeman, “Science Clouds: Early Experiences in

Cloud Computing for Scientific Applications,” in proceedings of

Cloud Computing and Its Applications 2008, Chicago, IL. 2008.

[6] Junjie Peng, Xuejun Zhang, and Zhou Lei, Bofeng Zhang, Wu

Zhang, Qing Li, “Comparison of Several Cloud Computing

Platforms”, Second International Symposium on Information

Science and Engineering, IEEE 2009, pp 23-27.

 [7] Ommeren, E. V., Duivestein, S., deVadoss, J,Reijnen, C. &

Gunvaldson, E. Collaboration in the Cloud. Microsoft and Sogeti,

Bariet, Ruinen, theNetherlands, 2009.

[8] Oram, A. “Cloud computing perspectives and questions at the

World Economic Forum,” WikiContent, 2009. Accessed January

20, 2011

