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Abstract— The monitoring of different parts of the software stack is essential for ensuring acceptable performance and 

availability of large scale heterogeneous software systems. However, given that a large amount of data is generated by various 

parts of the software stack, identifying the minimum set of data elements for inclusion under the initial monitoring umbrella is 

challenging. Although the elements are similar across the majority of the projects, we have seen that teams often spend 

considerable effort and time in identifying them. In this paper, we present a layered monitoring reference model, with different 

layers targeting different parts of the software stack using appropriate data elements. The model provides guidance on the 

minimum set of data elements, drawing on learnings from more than 20 real-life projects. The model also explains the data 

elements and the motivation for including them in the model. 
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I.  INTRODUCTION  
 

Large-scale software systems are ubiquitous in various 

business domains. The characteristics of such systems are a 

large number of users and transactions, complex processing 

needs, multi-tier deployment, and several custom-built, OS 

(Open Source) or COTS (Commercial off-the-shelf) 

components. The systems also interface with various 3rd 

party systems. Besides, the systems evolve continuously over 

time and must adhere to stringent performance and 

availability requirements. 
 

The interaction between the different components that make 

up the system influences the runtime behavior of a large-

scale software system. During the Operations and 

Maintenance (O & M) phase, the production support team 

continuously monitors the vitals of the system to gain 

insights into the availability and performance of the system. 

The heterogeneous nature and complexity of large-scale 

software systems make monitoring difficult. Any downtime 

or slowness may result in significant monetary losses, a 

negative impact on the brand image of organizations, and 

loss of productivity. Apart from ensuring system uptime and 

performance, proactive monitoring can also reduce operating 

costs and improve the quality of services organizations 

provided to their customers. 

 

For monitoring the system behavior in production, the 

technical operations team must set up the initial version of 

monitoring practice before transitioning from the 

development phase to the O & M phase of the development 

lifecycle. System monitoring tools, as they are popularly 

called in the industry, have found their place in organizations 

for monitoring of large-scale software systems. However, 

given a large amount of monitoring data generated by 

various parts of the software stack, it is challenging to 

identify the minimum set of data elements that one needs to 

include under the initial monitoring umbrella. We refer to 

this set as the Minimum Monitoring Data Elements 

(MMDE). Although the data elements to be collected are 

usually similar across the majority of the projects, we have 

seen that teams often spend considerable effort and time in 

the process of identifying them. Further, there needs to be a 

trade-off between the type of data in the MMDE and 

performance overhead introduced in collecting them. To 

address the above issue, we propose a reference model that 

will act as a springboard for setting up the initial version of 

monitoring for software systems transitioning to the O & M 

phase. The proposed model is a framework comprising of 

guidelines summarized from more than 20 real-life software 

systems from the public sector domain. The model is 

agnostic of the tool implemented for monitoring. The model 

derived from practical projects provides a perspective of 

hands-on users and may be valuable for both academic 

researchers and industry practitioners. 
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The rest of the paper is organized as follows, Section I 

contains the introduction. Section II reviews the related 

work. Section III describes the proposed reference model. 

Section IV lists the considerations related to analyzing the 

monitoring data collected by the model, and Section VI 

concludes this paper and provides directions for future work.  

 

II. RELATED WORK  

 

The current work in monitoring the performance and health 

of software systems covers the data elements to be measured, 

analysis techniques, and tools. The data collected as part of 

monitoring include CPU utilization, memory utilization, 

disk, and network utilization, processing, or response times, 

with most of the data being time-series [1][2][3][4]. 

Researchers have proposed several anomaly detection 

techniques in software performance engineering literature. 

 

Acharya et al. propose PerfAnalyzer, a proactive 

performance monitoring framework for building health 

models for detecting performance degradation in a 

production environment and validate the same on five 

performance counters: CPU, memory, I/O, disk, and network 

[5].  Control charts have been used to monitor and detect 

anomalies in performance counters collected during 

operations [1][6][7]. Silva et al. use aspect-oriented 

programming and system monitoring tools for collecting 

performance data and process it using data correlation and 

time-series alignment methods for detecting performance 

anomalies [8]. Malik et al. describe a supervised learning 

technique called WRAPPER to reduce the number of 

performance counters collected during monitoring of low-

level infrastructure and compare its effectiveness with 

unsupervised learning techniques like random selection, 

clustering, and PCA (Principal Component Analysis) [4]. 

Cherkasova et al. first characterize the behavior of 

transactions using characterizations like application 

performance signatures and regression-based transaction 

models and then use the characterizations to detect 

performance anomalies [9][10]. Jiang et al. summarize the 

various techniques used for analyzing load testing results like 

verifying against thresholds, detecting unusual behavior, and 

known types of problems [11]. Bereznay explores and 

compares the use of statistical techniques like Hypothesis 

Testing, Statistical Process Control (SPC), Multi-variate 

Adaptive Statistical Filtering (MASF), and Analysis of 

Variance (ANOVA) for detecting a deviation in metrics [12]. 

Apart from the above work, there are other methods like 

martingale and deep learning for detecting anomalies in time 

series data, which easily apply to performance data [13][14]. 

There are several well-established OS and COTS monitoring 

tools in the Enterprise Monitoring System (EMS) and 

Application Performance Management (APM) domain. 

Zabbix
1
, Nagios

2
, and Prometheus

3
 are in the OS space, 

whereas the COTS space includes tools like Oracle 

Enterprise Monitoring (OEM)
4

, CA Infrastructure 

Management
5
, Dynatrace

6
, AppDynamics

7
. Cloud service 

providers are also offering monitoring and management 

services like Microsoft Azure Monitor
8

, Amazon 

CloudWatch
9
, and Google Stackdriver

10
 for getting complete 

insights into cloud resources and applications hosted on 

them. 

 

III. PROPOSED REFERENCE MODEL 

 

In this section, we describe our reference model based on a 

layered monitoring architecture with different layers 

targeting different parts of the software stack. The proposed 

model is a conceptual framework and agnostic of the actual 

monitoring tool in use. The model is based on the learnings 

from more than 20 real-life software systems having the 

following characteristics. 

 

 The systems are business-critical with a large number of 

users and transactions. 

 Most of the systems have a public-facing portal or 

website on the internet and a back-office portal accessed 

by department users on an intranet. The internet portal is 

accessible 24 x 7 x 365. 

 The systems experience peak periods when deadlines like 

the quarter ending and financial year ending. For 

instance, statutory filings like income tax returns and 

company reports, tax assessments, government treasury 

operations are systems that witness peak periods. 

 The systems use components like web servers, 

application servers, message queues, databases, and 

packaged applications, which are either OS or COTS. 

 The systems run on virtual machines (VMs) or bare-metal 

servers. 

 The systems communicate with various other systems 

using web services, APIs, and managed FTP. 

 The tools used for monitoring availability and 

performance are custom-developed, OS, and COTS. 

 

The different parts of the software stack form a layered 

architecture that includes low-level infrastructure, 

communication and processing middleware, application, and 

                                                           
1https://www.zabbix.com/ 
2https://www.nagios.org/ 
3https://prometheus.io/ 
4https://www.oracle.com/technetwork/oem/sys-mgmt/index.html 
5https://www.ca.com/us/products/application-and-infrastructure-

monitoring.html 
6https://www.dynatrace.com/ 
7https://www.appdynamics.com/ 
8https://azure.microsoft.com/en-in/services/monitor/ 
9https://aws.amazon.com/cloudwatch/ 
10https://cloud.google.com/stackdriver/ 
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end-user. In a layered architecture, each layer provides 

service to the layer above it and receives service from the 

underlying layer. Any issue in one of the layers will have a 

domino effect on all the layers above it. 

 

Based on our detailed analysis of the monitoring practices 

and mechanisms in the real-world software systems, we 

found that it is possible to arrange the monitoring 

components of software systems in four distinct groups of 

related functions or layers. Fig. 1 shows the monitoring 

layers corresponding to the equivalent layers of the software 

stack. The monitoring components collect data in the form of 

metrics (e.g., processor and memory utilization percentage), 

logs (e.g., web server log), and snapshots (e.g., storage, 

database). Metrics are numbers that describe some behavior 

of the component at a given point in time, whereas logs 

contain raw data emitted by the component. The snapshots 

capture several metrics associated with one component at a 

point in time. The snapshots are typically collected less 

frequently than metrics because there may be an overhead 

associated while collecting them. All the examples used in 

this paper are from real-world systems. 

 

Figure 1.  Layered monitoring architecture 

 

 Low-level infrastructure: The tier comprises virtual 

machines and bare-metal servers with computing, 

memory, storage, network, and security devices like 

links, load balancers, and firewalls. 

 Communication and processing middleware: The tier 

comprises of supporting software components like web 

and application servers, message queues, API 

(Application Processing Interface) Gateway, Document 

Management System (DMS), Business Process 

Management (BPM) Identity and Access Management 

(IAM), Relational Database Management Systems 

(RDBMS) and No-SQL databases.  

 Application: The tier includes bespoke or custom-

developed applications like web applications, APIs, 

batches, and packaged software like Customer 

Relationship Management (CRM), Enterprise Resource 

Planning (ERP). 

 End-user: The tier is the user touchpoint for the 

software system like browsers and mobile devices. 

We now describe the data elements collected by the 

monitoring entities of the different layers and the motivation 

for including them. 

 

A. Low-level infrastructure 

Guideline A1 (METRIC): For compute and memory, 

monitor processor utilization percentage, memory utilization 

percentage, and swap utilization percentage. 

Motivation: We have observed that applications experience 

performance issues when they are stranded for resources. 

High processor utilization may indicate a need for reducing 

the compute footprint by tuning the application logic, 

database queries, or Java Virtual Machine (JVM). Swap 

utilization helps assess if there is a paging issue due to a 

shortage of memory. 

 

Guideline A2 (METRIC): For local storage, monitor the 

NFS (Network File System) and SAN (Storage Area 

Networks) measure percentage space utilized by directories 

of the software system. 

Motivation: We have observed that low or out of space 

situations often cause system slowness or unavailability. For 

example, if the directories associated with DMS becomes 

full, no new documents can be added, and calls may block 

resulting in users experiencing slowness due to hung threads. 

 

Guideline A3 (METRIC): For LUNs (Logical Unit 

Number), monitor utilization percentage, IOPs (Input/Output 

Operations Per Second) or throughput, queue length, and 

response time or latency. The response time includes time 

spent in waiting for getting service and time spent in getting 

service. Fig. 3 displays an extract of a disk utilization graph 

with the utilization ranging from 85% to 95% from 13:05 

and 14:10. 

 
Figure 2.  Disk utilization  showing high IO  

 

Motivation: We have seen that slowness occurs whenever 

there is a continuous high IO rate or observed IOPs 

approaches the theoretical IOPs capacity of the associated 

LUNs (Logical Units). LUNs associated with logs, database, 

and DMS are more prone. Looking at throughput and 

utilization percentage can help identify bottleneck LUNs. 
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The higher the queue length for a LUN, the higher is the 

response time. Nowadays, deployments may use tiered 

storage pools comprising of fast SSD (Solid State Drive) and 

slow NL-SAS (Near Line Serial-Attached SCSI) disks. In 

some cases where there is tiered storage, we have noticed 

instances of system slowness caused by the spillover effect in 

which a portion of frequently accessed data has spilled over 

to the slower disks after the space in the faster disks was 

exhausted. 

 

Guideline A4 (METRIC): For network, monitor the 

utilization percentage of both uplink and downlink. 

Motivation: Network links connect (a) the Data Center (DC) 

with the internet or intranet cloud and (b) DC with Disaster 

Recovery site (DR). The DC to DR link replicates data 

between both locations and in some cases, for accessing 

services hosted on the secondary site. The commonly used 

replication strategies include storage level, database level, 

and custom-built. High utilization of the links on a sustained 

basis indicates that the link capacity might be below the 

actual demand, which can result in the degradation of 

application performance and user experience. Similarly, high 

utilization of the link used for replicating data between DC 

and DR can result in application slowness if the replication 

mode is synchronous. However, the probability of data losses 

in the event of DC failure increases if the replication mode is 

asynchronous. 

 

Guideline A5 (METRIC): Monitor the CPU utilization of 

the firewall. A firewall is usually the entry point for end-user 

traffic. 

Motivation: The high CPU usage affects incoming traffic 

resulting in end-users complaining of slowness. We have 

observed that inspection of content in the incoming traffic 

against a growing library of signatures is the usual cause for 

the high CPU use. 

 

Guideline A6 (METRIC): Monitor the memory of the load 

balancers or application delivery controllers (ADC). ADC is 

a device placed between the firewall and one or more web or 

application servers. The device performs functions like load 

balancing, application acceleration, SSL offloading, rate 

shaping, and WAF (web application firewall). Load 

balancers or ADCs form the second touchpoint for end-user 

traffic after the firewall. 

Motivation: The high memory usage can throttle incoming 

traffic, causing end-users to complain of system slowness. 

We have observed that one of the leading causes of high 

memory utilization is the use of advanced cipher suites by 

current browsers. 

 

Guideline A7 (METRIC): Use ping at predefined intervals 

for monitoring the availability of the different low-level 

infrastructure components like servers, load balancers, and 

routers. Ping may be disabled from outside the DC but is 

usually allowed within the DC. 

Motivation: The use of periodic availability checks helps 

detect if any of the low-level infrastructure components are 

down or not responding. If a server is not responding, the 

communication and processing middleware and application 

deployed on the server may also not function correctly. 

 

B. Communication and processing middleware 

Guideline B1 (LOG): For web servers, check for the 

MaxClients warning or error message in the Http error log. 

The number of requests with Http codes other than 200 

(success) and 302 (redirect) needs to be collected. Fig. 3 

shows the MaxClients error message seen in the error log of 

a web server. 

 

[error] server reached MaxClients setting, consider raising 

the MaxClients setting 
Figure 3.  MaxClients error message in the web server log 

 

Motivation: If the MaxClients value is reached, then either 

the webserver is receiving a higher number of requests than it 

is configured to handle, or the backend is responding slowly, 

resulting in many web threads becoming busy. In the latter 

case, the real cause may be garbage collection cycles 

freezing the application server or an expensive query 

executing in the database. The system performance will 

suffer because incoming requests will start getting queued up 

the host operating system. 

 

Guideline B2 (METRIC): For application servers, monitor 

counters related to web container thread pool like the number 

of concurrently active threads, percentage of the pool that is 

in use, and percentage of the time all threads are in use. Fig. 

4 shows 8-13 concurrently active threads in thread pool 

configured with 30 threads. 

 

 
Figure 4.  Web container thread pool showing active threads and pool size 
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Motivation: A consistently high percentage of the pool that 

is in use or number of concurrently active threads indicates 

the application server is receiving a higher number of 

requests than it is configured to handle. Also, the application 

logic executed by the threads may be slow, resulting in 

threads becoming busy. The web server threads which 

originated the call to the application server will also become 

busy, resulting in users experiencing slowness. 

 

Guideline B3 (METRIC): For application servers, monitor 

counters associated with the database connection pool. The 

counter includes the number of free connections, threads 

waiting for a connection to become available, percentage of 

the pool in use, percentage of the time all connections are in 

use, average use time, and average wait time. 

Motivation: If the percentage of used connections or the 

number of threads waiting for a connection to become 

available is very high, it may point to the connection pool is 

not sized correctly or the database queries running slowly 

and requiring tuning. If the count of free connections drops 

to zero and does not increase, there may be a possibility of a 

connection leak. 

 

Guideline B4 (SNAPSHOT): For assessing the health of the 

JVM, the percentage of time spent in processing real 

transactions vs. time spent in garbage collection (GC) 

activity. Also, watch the average interval between stop the 

world (STW) GC events, and average/maximum latency 

experienced during GC event pauses. Fig. 5 shows garbage 

collection activity from one of the JVM of a software system. 

We observe that the GC time varies between 86ms to 240ms, 

and the time between to GC events is 3s to 34s. The overall 

time spent on GC is 1.796s in the monitoring interval of 

149s, resulting in an overhead of 1.2%. Fig. 6 shows the 

JVM memory before and after the garbage collection cycle. 

For instance, after the first cycle, the free memory increased 

from 0 to 425 MB. 

 

 

Figure 5.  GC graph of a JVM showing GC and inter-GC time 

 

Figure 6.  GC graph of a JVM showing shortlived objects (nursery) 

memory before and after GC 

Motivation: If the latency of STW GC events is high, or the 

interval between them is short, requests to the applications 

deployed on the JVM will experience slowness or appear 

stalled. In a domino effect, this will increase the number of 

used web container threads and in turn, database connections. 

High GC rate and pauses may be indicative of high object 

creation rates or small young generation space resulting in 

objects prematurely moving to old generation space. 

 

Guideline B5 (METRIC): The use of message queues is 

typical in large-scale software systems for asynchronously 

exchanging messages. For message queues, include the 

queue length, waiting, and service time in the queue in the 

monitoring. 

Motivation: If the waiting time in the queue shows an 

increase, or there is a build-up of entries in the queue, the 

applications may not be consuming the messages fast 

enough. The build-up may impact the overall user experience 

directly or indirectly. 

 

Guideline B6 (LOG): Implement keyword-based monitoring 

to flag events of interest like stuck or hung web container 

threads and out of memory errors. Fig. 7 shows a hanging 

thread warning, which was found by searching for 

“WSVR0605W” and “may be hung” keyword in the IBM 

Websphere application server log. 

 

ThreadMonitor W   WSVR0605W: Thread "Default : 0" 

(<ThreadID>) has been active for xxx milliseconds and 

may be hung.  There is/are 1 thread(s) in total in the 

server that may be hung. 

Figure 7.  Hung thread warning in the application server log 

 

Motivation: The use of keyword-based search is a simple 

but powerful technique for detecting errors and early warning 

signals. If left undetected, the condition may eventually 
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impact the performance and availability of the software 

system. The above example is an early warning signal 

because if there is a build-up of hung threads, the web 

container thread pool may run out of threads, resulting in 

performance degradation as new requests start getting 

buffered by the host operating system. 

 

Guideline B7 (SNAPSHOT): For database servers, monitor 

at least the ratio of reads from the buffer pool to the reads 

from storage, average CPU time per query, average IO time 

per query, average elapsed time per query. Statistics like the 

number of executions of a query, average rows read need to 

be reported and analyzed regularly. Table 1 shows a tabular 

extract of the Oracle AWR (Automatic Workload 

Repository) report generated from the database of a system. 

In the first query, the database spent 4.16% of 25,519.55 s on 

computing, and 95.9% on doing IO.  

 

Table 1. Extract of an AWR report from an Oracle database 

instance 

Elapsed 

Time (s) 

Execut

ions 

Elapsed 

time per 

exec (s) 

% 

Total 

% 

CPU 

% 

IO 

SQL 

Text 

25,519.55 51 500.38 18.31 4.16 95.9 SEL. 

6,022.47 12 501.87 4.33 1.28 94.1 SEL. 

 

Motivation: Our experience shows that expensive queries 

are one of the most identified reasons for application 

unavailability and poor performance. There may be a need to 

tune the query or add appropriate indexes if the average CPU 

or IO time of a query is high. The query may be waiting on a 

lock if there is a significant difference between the CPU time 

and the execution time. It may be possible to reduce the 

number of query executions using techniques like removing 

redundant calls or caching the results. A high number of 

average rows read are high may be symptoms of a full table 

scan or a generic filter criterion in the query. The overall 

objective is to minimize the total time i.e., CPU, IO, and 

others. 

 

Guideline B8 (METRIC): For monitoring availability of the 

communication and processing middleware, use a mix of 

strategies like periodic checking of a test page for web and 

application server, querying a table in the database, or 

executing telnet to the listening port. It is recommended to 

validate the output using regular expressions or fixed values 

if using a test page or database table query. 

 

Motivation: The checking of availability helps detect if any 

of the communication and processing components are down 

or not responding. If a component is not responding, the 

deployed application may also not function correctly, 

impacting the end-user experience. 

C. Application 

Guideline C1 (METRIC): For monitoring application 

performance, measure the average/median response time, and 

throughput related metrics for the business services. 

Motivation: The average response time and average 

throughput in systems are inversely related. If there is an 

increase in the average response time with a corresponding 

decrease in throughput, it may indicate a performance 

anomaly that needs remediation.  

 

Guideline C2 (METRIC): Configure the monitoring of 

availability and performance of the application by accessing 

select pages (e.g., the home page) at predefined time 

intervals using synthetic transaction monitoring and checking 

the response or success using fixed values or regular 

expressions. Checking for only an Http status 200 may result 

in an error condition not being caught. 

Motivation: The adoption of synthetic transaction 

monitoring helps in detecting failures before they get 

reported from the field. The failures may have originated in 

any of the underlying layers. Monitor the performance and 

availability of applications, even if real users are not 

currently accessing them. 

 

Guideline C3 (METRIC): The execution time, pass or fail 

status, and the number of records processed is to be 

measured for batches. The concurrent number of batches 

running in a given time also needs to be included. 

Motivation: In large-scale software systems, batches are 

used to carry out internal activities or processing data 

received from or generating data for external systems. 

Examples include a reconciliation batch run at the end of the 

day to reconcile credit card payments or bulk submission of 

application forms by a third-party. Batch failures may impact 

the level of business services rendered to users. 

 

Guideline C4 (LOG): We also recommend monitoring of 

application-specific errors using keyword-based searching in 

the application logs. Fig. 8 shows a directory creation error 

detected by searching for “cannot create directory” and 

“java.io.IOException” keyword in the application log of a 

software system. 

java.io.IOException: Cannot create directory 

/xxxx/yyyy/zzzz at 

java.lang.Throwable.<init>(Throwable.java:67) 

Figure 8.  java.io.IOException in the application log 

 

Motivation: As explained under B6, keyword-based search 

helps in the timely detection of errors, which, if left 

undetected, may impact the performance and availability of 

the system. 

 

D. End-user 

Guideline D1 (METRIC): Implement real user 

measurement of traditional metrics like Onload time, Time to 
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First Byte (TTFB), and newer metrics like First Contentful 

Paint (FCP) and Time to Interactive (TTI). Onload time, 

TTFB, and FCP with custom wrappers built on the 

underlying native navigation and paint timing supported by 

the latest browsers. To measure TTI for real users, we may 

need to use a COTS tool. Dheeraj et al. include performance 

as one of the four measures for quantifying software product 

quality [15]. Arush et al. use tools like Lighthouse, 

WebPageTest, and PageSpeed Insights to measure end-user 

metrics [16]. 

Motivation: Real user monitoring helps capture key user 

experience metrics, aggregated from actual users in the field. 

 

IV. DISCUSSION 

 

We have found that it is possible to detect most performance 

and availability issues using MMDE and take quick 

corrective action. For detailed root-cause analysis, more 

details may need to be collected. In this section, we explain 

considerations that need addressing even after obtaining the 

minimum subset of monitoring data. 

 

The frequency of data collection is an important point. If the 

sampling is frequent, it may introduce performance 

overhead. If the sampling frequency is very less, significant 

events of interest with may point to performance or 

availability issues may not be detected. There must be a 

trade-off between the rate of sampling and the possibility of 

misses. 

 

The data collected from a monitoring layer needs to be 

analyzed for identifying unusual behavior. The data from 

various monitoring layers is also to be correlated to point the 

layer and component where the anomaly may have 

originated. For instance, an increase in response time in the 

end-user layer may correlate with high CPU utilization in the 

low-level infrastructure layer during some interval. It is 

relatively simple to identify anomalies like unavailability of a 

part of the software stack, presence of warning or error 

messages in log files. Other anomalies, like a significant 

change in response time or throughput over time, are more 

challenging to detect. OS and COTS monitoring tools like 

Zabbix
11

, Oracle Enterprise Monitoring
12

, CA Unified 

Infrastructure Management
13

, Microsoft SCOM
14

, and 

Dynatrace
15

 provide for setting fixed or adaptive threshold 

values. The tools derive adaptive thresholds by applying 

proprietary algorithms or statistics like mean, median, 95th 

                                                           
11https://www.zabbix.com/documentation/4.2/manual/config/triggers  
12https://docs.oracle.com/cd/E24628_01/doc.121/e24473/adv_threshold.htm
#EMADM15131 
13https://docops.ca.com/ca-unified-infrastructure-management-

probes/ga/en/how-to-articles/configuring-alarm-thresholds 
14https://social.technet.microsoft.com/wiki/contents/articles/237.scom-how-

self-tuning-threshold-baseline-is-computed.aspx 
15https://www.dynatrace.com/platform/artificial-intelligence/anomaly-

detection/ 

percentile, k standard deviations on the historical 

performance data. In some tools, it is possible to have 

different threshold values for different times of the day or 

week to consider changing workloads. There is no shortage 

of advanced techniques for anomaly detection and data 

correlation with one of the cloud service providers even 

offering anomaly detection in time-series data as a service
16

. 

However, the packaging of these techniques into the tools 

usable by the industry and characterization of which methods 

are useful in what scenarios still remains unaddressed. To 

overcome this limitation, we recommend extracting the 

performance data collected by these tools into a separate data 

repository and carrying out the analysis and alerting using 

that data. 

 

The data and analysis need to be presented intuitively and 

interactively to help monitoring teams to focus on areas 

requiring immediate attention. Grafana
17

 is an OS platform 

for building analytics and monitoring dashboards using data 

from various data sources like Graphite, Cloudwatch, 

Prometheus, InfluxDB, MySQL, PostgreSQL. 

 

V. CONCLUSION AND FUTURE SCOPE  

 

Monitoring is critical to ensuring the performance and 

availability of large-scale software systems. Determining the 

minimum but sufficient set of data to be collected as part of 

monitoring is a challenging yet essential activity for the 

technical operations team. Therefore, we propose a reference 

model, consisting of 20 guidelines compiled from more than 

20 real-life software systems for addressing this challenge. 

The model will be beneficial for teams in setting up the initial 

version of monitoring for software systems transitioning to 

the O & M phase. We plan to extend this work in the future to 

include guidelines for monitoring emerging technologies like 

containers, API gateways. We also intend to evaluate the 

performance of popular anomaly detection techniques on 

time-series data from real-world systems. 
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