

 © 2019, IJCSE All Rights Reserved 90

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-10, Oct 2019 E-ISSN: 2347-2693

Reference Model for Effective Performance and Availability Monitoring in

Large Scale Software Systems

Raghu Ramakrishnan
1*

, Arvinder Kaur
2

1
Tata Consultancy Services, C-56, Phase II, Noida, Uttar Pradesh, India

2
USICT, Guru Gobind Singh Indraprastha University, Delhi, India

*Corresponding Author: raghuramakrishnan71@gmail.com

 DOI: https://doi.org/10.26438/ijcse/v7i10.9097 | Available online at: www.ijcseonline.org

Accepted: 11/Oct/2019, Published: 31/Oct/2019

Abstract— The monitoring of different parts of the software stack is essential for ensuring acceptable performance and

availability of large scale heterogeneous software systems. However, given that a large amount of data is generated by various

parts of the software stack, identifying the minimum set of data elements for inclusion under the initial monitoring umbrella is

challenging. Although the elements are similar across the majority of the projects, we have seen that teams often spend

considerable effort and time in identifying them. In this paper, we present a layered monitoring reference model, with different

layers targeting different parts of the software stack using appropriate data elements. The model provides guidance on the

minimum set of data elements, drawing on learnings from more than 20 real-life projects. The model also explains the data

elements and the motivation for including them in the model.

Keywords— System monitoring, Production systems, Performance monitoring, Availability monitoring

I. INTRODUCTION

Large-scale software systems are ubiquitous in various

business domains. The characteristics of such systems are a

large number of users and transactions, complex processing

needs, multi-tier deployment, and several custom-built, OS

(Open Source) or COTS (Commercial off-the-shelf)

components. The systems also interface with various 3rd

party systems. Besides, the systems evolve continuously over

time and must adhere to stringent performance and

availability requirements.

The interaction between the different components that make

up the system influences the runtime behavior of a large-

scale software system. During the Operations and

Maintenance (O & M) phase, the production support team

continuously monitors the vitals of the system to gain

insights into the availability and performance of the system.

The heterogeneous nature and complexity of large-scale

software systems make monitoring difficult. Any downtime

or slowness may result in significant monetary losses, a

negative impact on the brand image of organizations, and

loss of productivity. Apart from ensuring system uptime and

performance, proactive monitoring can also reduce operating

costs and improve the quality of services organizations

provided to their customers.

For monitoring the system behavior in production, the

technical operations team must set up the initial version of

monitoring practice before transitioning from the

development phase to the O & M phase of the development

lifecycle. System monitoring tools, as they are popularly

called in the industry, have found their place in organizations

for monitoring of large-scale software systems. However,

given a large amount of monitoring data generated by

various parts of the software stack, it is challenging to

identify the minimum set of data elements that one needs to

include under the initial monitoring umbrella. We refer to

this set as the Minimum Monitoring Data Elements

(MMDE). Although the data elements to be collected are

usually similar across the majority of the projects, we have

seen that teams often spend considerable effort and time in

the process of identifying them. Further, there needs to be a

trade-off between the type of data in the MMDE and

performance overhead introduced in collecting them. To

address the above issue, we propose a reference model that

will act as a springboard for setting up the initial version of

monitoring for software systems transitioning to the O & M

phase. The proposed model is a framework comprising of

guidelines summarized from more than 20 real-life software

systems from the public sector domain. The model is

agnostic of the tool implemented for monitoring. The model

derived from practical projects provides a perspective of

hands-on users and may be valuable for both academic

researchers and industry practitioners.

 International Journal of Computer Sciences and Engineering Vol.7(10), Oct 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 91

The rest of the paper is organized as follows, Section I

contains the introduction. Section II reviews the related

work. Section III describes the proposed reference model.

Section IV lists the considerations related to analyzing the

monitoring data collected by the model, and Section VI

concludes this paper and provides directions for future work.

II. RELATED WORK

The current work in monitoring the performance and health

of software systems covers the data elements to be measured,

analysis techniques, and tools. The data collected as part of

monitoring include CPU utilization, memory utilization,

disk, and network utilization, processing, or response times,

with most of the data being time-series [1][2][3][4].

Researchers have proposed several anomaly detection

techniques in software performance engineering literature.

Acharya et al. propose PerfAnalyzer, a proactive

performance monitoring framework for building health

models for detecting performance degradation in a

production environment and validate the same on five

performance counters: CPU, memory, I/O, disk, and network

[5]. Control charts have been used to monitor and detect

anomalies in performance counters collected during

operations [1][6][7]. Silva et al. use aspect-oriented

programming and system monitoring tools for collecting

performance data and process it using data correlation and

time-series alignment methods for detecting performance

anomalies [8]. Malik et al. describe a supervised learning

technique called WRAPPER to reduce the number of

performance counters collected during monitoring of low-

level infrastructure and compare its effectiveness with

unsupervised learning techniques like random selection,

clustering, and PCA (Principal Component Analysis) [4].

Cherkasova et al. first characterize the behavior of

transactions using characterizations like application

performance signatures and regression-based transaction

models and then use the characterizations to detect

performance anomalies [9][10]. Jiang et al. summarize the

various techniques used for analyzing load testing results like

verifying against thresholds, detecting unusual behavior, and

known types of problems [11]. Bereznay explores and

compares the use of statistical techniques like Hypothesis

Testing, Statistical Process Control (SPC), Multi-variate

Adaptive Statistical Filtering (MASF), and Analysis of

Variance (ANOVA) for detecting a deviation in metrics [12].

Apart from the above work, there are other methods like

martingale and deep learning for detecting anomalies in time

series data, which easily apply to performance data [13][14].

There are several well-established OS and COTS monitoring

tools in the Enterprise Monitoring System (EMS) and

Application Performance Management (APM) domain.

Zabbix
1
, Nagios

2
, and Prometheus

3
 are in the OS space,

whereas the COTS space includes tools like Oracle

Enterprise Monitoring (OEM)
4

, CA Infrastructure

Management
5
, Dynatrace

6
, AppDynamics

7
. Cloud service

providers are also offering monitoring and management

services like Microsoft Azure Monitor
8

, Amazon

CloudWatch
9
, and Google Stackdriver

10
 for getting complete

insights into cloud resources and applications hosted on

them.

III. PROPOSED REFERENCE MODEL

In this section, we describe our reference model based on a

layered monitoring architecture with different layers

targeting different parts of the software stack. The proposed

model is a conceptual framework and agnostic of the actual

monitoring tool in use. The model is based on the learnings

from more than 20 real-life software systems having the

following characteristics.

 The systems are business-critical with a large number of

users and transactions.

 Most of the systems have a public-facing portal or

website on the internet and a back-office portal accessed

by department users on an intranet. The internet portal is

accessible 24 x 7 x 365.

 The systems experience peak periods when deadlines like

the quarter ending and financial year ending. For

instance, statutory filings like income tax returns and

company reports, tax assessments, government treasury

operations are systems that witness peak periods.

 The systems use components like web servers,

application servers, message queues, databases, and

packaged applications, which are either OS or COTS.

 The systems run on virtual machines (VMs) or bare-metal

servers.

 The systems communicate with various other systems

using web services, APIs, and managed FTP.

 The tools used for monitoring availability and

performance are custom-developed, OS, and COTS.

The different parts of the software stack form a layered

architecture that includes low-level infrastructure,

communication and processing middleware, application, and

1https://www.zabbix.com/
2https://www.nagios.org/
3https://prometheus.io/
4https://www.oracle.com/technetwork/oem/sys-mgmt/index.html
5https://www.ca.com/us/products/application-and-infrastructure-

monitoring.html
6https://www.dynatrace.com/
7https://www.appdynamics.com/
8https://azure.microsoft.com/en-in/services/monitor/
9https://aws.amazon.com/cloudwatch/
10https://cloud.google.com/stackdriver/

 International Journal of Computer Sciences and Engineering Vol.7(10), Oct 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 92

end-user. In a layered architecture, each layer provides

service to the layer above it and receives service from the

underlying layer. Any issue in one of the layers will have a

domino effect on all the layers above it.

Based on our detailed analysis of the monitoring practices

and mechanisms in the real-world software systems, we

found that it is possible to arrange the monitoring

components of software systems in four distinct groups of

related functions or layers. Fig. 1 shows the monitoring

layers corresponding to the equivalent layers of the software

stack. The monitoring components collect data in the form of

metrics (e.g., processor and memory utilization percentage),

logs (e.g., web server log), and snapshots (e.g., storage,

database). Metrics are numbers that describe some behavior

of the component at a given point in time, whereas logs

contain raw data emitted by the component. The snapshots

capture several metrics associated with one component at a

point in time. The snapshots are typically collected less

frequently than metrics because there may be an overhead

associated while collecting them. All the examples used in

this paper are from real-world systems.

Figure 1. Layered monitoring architecture

 Low-level infrastructure: The tier comprises virtual

machines and bare-metal servers with computing,

memory, storage, network, and security devices like

links, load balancers, and firewalls.

 Communication and processing middleware: The tier

comprises of supporting software components like web

and application servers, message queues, API

(Application Processing Interface) Gateway, Document

Management System (DMS), Business Process

Management (BPM) Identity and Access Management

(IAM), Relational Database Management Systems

(RDBMS) and No-SQL databases.

 Application: The tier includes bespoke or custom-

developed applications like web applications, APIs,

batches, and packaged software like Customer

Relationship Management (CRM), Enterprise Resource

Planning (ERP).

 End-user: The tier is the user touchpoint for the

software system like browsers and mobile devices.

We now describe the data elements collected by the

monitoring entities of the different layers and the motivation

for including them.

A. Low-level infrastructure

Guideline A1 (METRIC): For compute and memory,

monitor processor utilization percentage, memory utilization

percentage, and swap utilization percentage.

Motivation: We have observed that applications experience

performance issues when they are stranded for resources.

High processor utilization may indicate a need for reducing

the compute footprint by tuning the application logic,

database queries, or Java Virtual Machine (JVM). Swap

utilization helps assess if there is a paging issue due to a

shortage of memory.

Guideline A2 (METRIC): For local storage, monitor the

NFS (Network File System) and SAN (Storage Area

Networks) measure percentage space utilized by directories

of the software system.

Motivation: We have observed that low or out of space

situations often cause system slowness or unavailability. For

example, if the directories associated with DMS becomes

full, no new documents can be added, and calls may block

resulting in users experiencing slowness due to hung threads.

Guideline A3 (METRIC): For LUNs (Logical Unit

Number), monitor utilization percentage, IOPs (Input/Output

Operations Per Second) or throughput, queue length, and

response time or latency. The response time includes time

spent in waiting for getting service and time spent in getting

service. Fig. 3 displays an extract of a disk utilization graph

with the utilization ranging from 85% to 95% from 13:05

and 14:10.

Figure 2. Disk utilization showing high IO

Motivation: We have seen that slowness occurs whenever

there is a continuous high IO rate or observed IOPs

approaches the theoretical IOPs capacity of the associated

LUNs (Logical Units). LUNs associated with logs, database,

and DMS are more prone. Looking at throughput and

utilization percentage can help identify bottleneck LUNs.

 International Journal of Computer Sciences and Engineering Vol.7(10), Oct 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 93

The higher the queue length for a LUN, the higher is the

response time. Nowadays, deployments may use tiered

storage pools comprising of fast SSD (Solid State Drive) and

slow NL-SAS (Near Line Serial-Attached SCSI) disks. In

some cases where there is tiered storage, we have noticed

instances of system slowness caused by the spillover effect in

which a portion of frequently accessed data has spilled over

to the slower disks after the space in the faster disks was

exhausted.

Guideline A4 (METRIC): For network, monitor the

utilization percentage of both uplink and downlink.

Motivation: Network links connect (a) the Data Center (DC)

with the internet or intranet cloud and (b) DC with Disaster

Recovery site (DR). The DC to DR link replicates data

between both locations and in some cases, for accessing

services hosted on the secondary site. The commonly used

replication strategies include storage level, database level,

and custom-built. High utilization of the links on a sustained

basis indicates that the link capacity might be below the

actual demand, which can result in the degradation of

application performance and user experience. Similarly, high

utilization of the link used for replicating data between DC

and DR can result in application slowness if the replication

mode is synchronous. However, the probability of data losses

in the event of DC failure increases if the replication mode is

asynchronous.

Guideline A5 (METRIC): Monitor the CPU utilization of

the firewall. A firewall is usually the entry point for end-user

traffic.

Motivation: The high CPU usage affects incoming traffic

resulting in end-users complaining of slowness. We have

observed that inspection of content in the incoming traffic

against a growing library of signatures is the usual cause for

the high CPU use.

Guideline A6 (METRIC): Monitor the memory of the load

balancers or application delivery controllers (ADC). ADC is

a device placed between the firewall and one or more web or

application servers. The device performs functions like load

balancing, application acceleration, SSL offloading, rate

shaping, and WAF (web application firewall). Load

balancers or ADCs form the second touchpoint for end-user

traffic after the firewall.

Motivation: The high memory usage can throttle incoming

traffic, causing end-users to complain of system slowness.

We have observed that one of the leading causes of high

memory utilization is the use of advanced cipher suites by

current browsers.

Guideline A7 (METRIC): Use ping at predefined intervals

for monitoring the availability of the different low-level

infrastructure components like servers, load balancers, and

routers. Ping may be disabled from outside the DC but is

usually allowed within the DC.

Motivation: The use of periodic availability checks helps

detect if any of the low-level infrastructure components are

down or not responding. If a server is not responding, the

communication and processing middleware and application

deployed on the server may also not function correctly.

B. Communication and processing middleware

Guideline B1 (LOG): For web servers, check for the

MaxClients warning or error message in the Http error log.

The number of requests with Http codes other than 200

(success) and 302 (redirect) needs to be collected. Fig. 3

shows the MaxClients error message seen in the error log of

a web server.

[error] server reached MaxClients setting, consider raising

the MaxClients setting
Figure 3. MaxClients error message in the web server log

Motivation: If the MaxClients value is reached, then either

the webserver is receiving a higher number of requests than it

is configured to handle, or the backend is responding slowly,

resulting in many web threads becoming busy. In the latter

case, the real cause may be garbage collection cycles

freezing the application server or an expensive query

executing in the database. The system performance will

suffer because incoming requests will start getting queued up

the host operating system.

Guideline B2 (METRIC): For application servers, monitor

counters related to web container thread pool like the number

of concurrently active threads, percentage of the pool that is

in use, and percentage of the time all threads are in use. Fig.

4 shows 8-13 concurrently active threads in thread pool

configured with 30 threads.

Figure 4. Web container thread pool showing active threads and pool size

 International Journal of Computer Sciences and Engineering Vol.7(10), Oct 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 94

Motivation: A consistently high percentage of the pool that

is in use or number of concurrently active threads indicates

the application server is receiving a higher number of

requests than it is configured to handle. Also, the application

logic executed by the threads may be slow, resulting in

threads becoming busy. The web server threads which

originated the call to the application server will also become

busy, resulting in users experiencing slowness.

Guideline B3 (METRIC): For application servers, monitor

counters associated with the database connection pool. The

counter includes the number of free connections, threads

waiting for a connection to become available, percentage of

the pool in use, percentage of the time all connections are in

use, average use time, and average wait time.

Motivation: If the percentage of used connections or the

number of threads waiting for a connection to become

available is very high, it may point to the connection pool is

not sized correctly or the database queries running slowly

and requiring tuning. If the count of free connections drops

to zero and does not increase, there may be a possibility of a

connection leak.

Guideline B4 (SNAPSHOT): For assessing the health of the

JVM, the percentage of time spent in processing real

transactions vs. time spent in garbage collection (GC)

activity. Also, watch the average interval between stop the

world (STW) GC events, and average/maximum latency

experienced during GC event pauses. Fig. 5 shows garbage

collection activity from one of the JVM of a software system.

We observe that the GC time varies between 86ms to 240ms,

and the time between to GC events is 3s to 34s. The overall

time spent on GC is 1.796s in the monitoring interval of

149s, resulting in an overhead of 1.2%. Fig. 6 shows the

JVM memory before and after the garbage collection cycle.

For instance, after the first cycle, the free memory increased

from 0 to 425 MB.

Figure 5. GC graph of a JVM showing GC and inter-GC time

Figure 6. GC graph of a JVM showing shortlived objects (nursery)

memory before and after GC

Motivation: If the latency of STW GC events is high, or the

interval between them is short, requests to the applications

deployed on the JVM will experience slowness or appear

stalled. In a domino effect, this will increase the number of

used web container threads and in turn, database connections.

High GC rate and pauses may be indicative of high object

creation rates or small young generation space resulting in

objects prematurely moving to old generation space.

Guideline B5 (METRIC): The use of message queues is

typical in large-scale software systems for asynchronously

exchanging messages. For message queues, include the

queue length, waiting, and service time in the queue in the

monitoring.

Motivation: If the waiting time in the queue shows an

increase, or there is a build-up of entries in the queue, the

applications may not be consuming the messages fast

enough. The build-up may impact the overall user experience

directly or indirectly.

Guideline B6 (LOG): Implement keyword-based monitoring

to flag events of interest like stuck or hung web container

threads and out of memory errors. Fig. 7 shows a hanging

thread warning, which was found by searching for

“WSVR0605W” and “may be hung” keyword in the IBM

Websphere application server log.

ThreadMonitor W WSVR0605W: Thread "Default : 0"

(<ThreadID>) has been active for xxx milliseconds and

may be hung. There is/are 1 thread(s) in total in the

server that may be hung.

Figure 7. Hung thread warning in the application server log

Motivation: The use of keyword-based search is a simple

but powerful technique for detecting errors and early warning

signals. If left undetected, the condition may eventually

 International Journal of Computer Sciences and Engineering Vol.7(10), Oct 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 95

impact the performance and availability of the software

system. The above example is an early warning signal

because if there is a build-up of hung threads, the web

container thread pool may run out of threads, resulting in

performance degradation as new requests start getting

buffered by the host operating system.

Guideline B7 (SNAPSHOT): For database servers, monitor

at least the ratio of reads from the buffer pool to the reads

from storage, average CPU time per query, average IO time

per query, average elapsed time per query. Statistics like the

number of executions of a query, average rows read need to

be reported and analyzed regularly. Table 1 shows a tabular

extract of the Oracle AWR (Automatic Workload

Repository) report generated from the database of a system.

In the first query, the database spent 4.16% of 25,519.55 s on

computing, and 95.9% on doing IO.

Table 1. Extract of an AWR report from an Oracle database

instance

Elapsed

Time (s)

Execut

ions

Elapsed

time per

exec (s)

%

Total

%

CPU

%

IO

SQL

Text

25,519.55 51 500.38 18.31 4.16 95.9 SEL.

6,022.47 12 501.87 4.33 1.28 94.1 SEL.

Motivation: Our experience shows that expensive queries

are one of the most identified reasons for application

unavailability and poor performance. There may be a need to

tune the query or add appropriate indexes if the average CPU

or IO time of a query is high. The query may be waiting on a

lock if there is a significant difference between the CPU time

and the execution time. It may be possible to reduce the

number of query executions using techniques like removing

redundant calls or caching the results. A high number of

average rows read are high may be symptoms of a full table

scan or a generic filter criterion in the query. The overall

objective is to minimize the total time i.e., CPU, IO, and

others.

Guideline B8 (METRIC): For monitoring availability of the

communication and processing middleware, use a mix of

strategies like periodic checking of a test page for web and

application server, querying a table in the database, or

executing telnet to the listening port. It is recommended to

validate the output using regular expressions or fixed values

if using a test page or database table query.

Motivation: The checking of availability helps detect if any

of the communication and processing components are down

or not responding. If a component is not responding, the

deployed application may also not function correctly,

impacting the end-user experience.

C. Application

Guideline C1 (METRIC): For monitoring application

performance, measure the average/median response time, and

throughput related metrics for the business services.

Motivation: The average response time and average

throughput in systems are inversely related. If there is an

increase in the average response time with a corresponding

decrease in throughput, it may indicate a performance

anomaly that needs remediation.

Guideline C2 (METRIC): Configure the monitoring of

availability and performance of the application by accessing

select pages (e.g., the home page) at predefined time

intervals using synthetic transaction monitoring and checking

the response or success using fixed values or regular

expressions. Checking for only an Http status 200 may result

in an error condition not being caught.

Motivation: The adoption of synthetic transaction

monitoring helps in detecting failures before they get

reported from the field. The failures may have originated in

any of the underlying layers. Monitor the performance and

availability of applications, even if real users are not

currently accessing them.

Guideline C3 (METRIC): The execution time, pass or fail

status, and the number of records processed is to be

measured for batches. The concurrent number of batches

running in a given time also needs to be included.

Motivation: In large-scale software systems, batches are

used to carry out internal activities or processing data

received from or generating data for external systems.

Examples include a reconciliation batch run at the end of the

day to reconcile credit card payments or bulk submission of

application forms by a third-party. Batch failures may impact

the level of business services rendered to users.

Guideline C4 (LOG): We also recommend monitoring of

application-specific errors using keyword-based searching in

the application logs. Fig. 8 shows a directory creation error

detected by searching for “cannot create directory” and

“java.io.IOException” keyword in the application log of a

software system.

java.io.IOException: Cannot create directory

/xxxx/yyyy/zzzz at

java.lang.Throwable.<init>(Throwable.java:67)

Figure 8. java.io.IOException in the application log

Motivation: As explained under B6, keyword-based search

helps in the timely detection of errors, which, if left

undetected, may impact the performance and availability of

the system.

D. End-user

Guideline D1 (METRIC): Implement real user

measurement of traditional metrics like Onload time, Time to

 International Journal of Computer Sciences and Engineering Vol.7(10), Oct 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 96

First Byte (TTFB), and newer metrics like First Contentful

Paint (FCP) and Time to Interactive (TTI). Onload time,

TTFB, and FCP with custom wrappers built on the

underlying native navigation and paint timing supported by

the latest browsers. To measure TTI for real users, we may

need to use a COTS tool. Dheeraj et al. include performance

as one of the four measures for quantifying software product

quality [15]. Arush et al. use tools like Lighthouse,

WebPageTest, and PageSpeed Insights to measure end-user

metrics [16].

Motivation: Real user monitoring helps capture key user

experience metrics, aggregated from actual users in the field.

IV. DISCUSSION

We have found that it is possible to detect most performance

and availability issues using MMDE and take quick

corrective action. For detailed root-cause analysis, more

details may need to be collected. In this section, we explain

considerations that need addressing even after obtaining the

minimum subset of monitoring data.

The frequency of data collection is an important point. If the

sampling is frequent, it may introduce performance

overhead. If the sampling frequency is very less, significant

events of interest with may point to performance or

availability issues may not be detected. There must be a

trade-off between the rate of sampling and the possibility of

misses.

The data collected from a monitoring layer needs to be

analyzed for identifying unusual behavior. The data from

various monitoring layers is also to be correlated to point the

layer and component where the anomaly may have

originated. For instance, an increase in response time in the

end-user layer may correlate with high CPU utilization in the

low-level infrastructure layer during some interval. It is

relatively simple to identify anomalies like unavailability of a

part of the software stack, presence of warning or error

messages in log files. Other anomalies, like a significant

change in response time or throughput over time, are more

challenging to detect. OS and COTS monitoring tools like

Zabbix
11

, Oracle Enterprise Monitoring
12

, CA Unified

Infrastructure Management
13

, Microsoft SCOM
14

, and

Dynatrace
15

 provide for setting fixed or adaptive threshold

values. The tools derive adaptive thresholds by applying

proprietary algorithms or statistics like mean, median, 95th

11https://www.zabbix.com/documentation/4.2/manual/config/triggers
12https://docs.oracle.com/cd/E24628_01/doc.121/e24473/adv_threshold.htm
#EMADM15131
13https://docops.ca.com/ca-unified-infrastructure-management-

probes/ga/en/how-to-articles/configuring-alarm-thresholds
14https://social.technet.microsoft.com/wiki/contents/articles/237.scom-how-

self-tuning-threshold-baseline-is-computed.aspx
15https://www.dynatrace.com/platform/artificial-intelligence/anomaly-

detection/

percentile, k standard deviations on the historical

performance data. In some tools, it is possible to have

different threshold values for different times of the day or

week to consider changing workloads. There is no shortage

of advanced techniques for anomaly detection and data

correlation with one of the cloud service providers even

offering anomaly detection in time-series data as a service
16

.

However, the packaging of these techniques into the tools

usable by the industry and characterization of which methods

are useful in what scenarios still remains unaddressed. To

overcome this limitation, we recommend extracting the

performance data collected by these tools into a separate data

repository and carrying out the analysis and alerting using

that data.

The data and analysis need to be presented intuitively and

interactively to help monitoring teams to focus on areas

requiring immediate attention. Grafana
17

 is an OS platform

for building analytics and monitoring dashboards using data

from various data sources like Graphite, Cloudwatch,

Prometheus, InfluxDB, MySQL, PostgreSQL.

V. CONCLUSION AND FUTURE SCOPE

Monitoring is critical to ensuring the performance and

availability of large-scale software systems. Determining the

minimum but sufficient set of data to be collected as part of

monitoring is a challenging yet essential activity for the

technical operations team. Therefore, we propose a reference

model, consisting of 20 guidelines compiled from more than

20 real-life software systems for addressing this challenge.

The model will be beneficial for teams in setting up the initial

version of monitoring for software systems transitioning to

the O & M phase. We plan to extend this work in the future to

include guidelines for monitoring emerging technologies like

containers, API gateways. We also intend to evaluate the

performance of popular anomaly detection techniques on

time-series data from real-world systems.

ACKNOWLEDGMENT

We wish to thank Vikash Vardhan for providing feedback and

guidance on this work.

REFERENCES

[1] T.H.D. Nguyen, B. Adams, Z. M. Jiang, A. E. Hassan, M. Nasser,

P. Flora, “Automated Detection of Performance Regressions Using

Statistical Process Control Techniques”, In the Proceedings of the

3rd ACM/SPEC International Conference on Performance

Engineering, USA, pp. 299–310, 2012.

[2] H. M. Alghmadi, M. D. Syer, W. Shang, A. E. Hassan, “An

Automated Approach for Recommending When to Stop

16https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/time-series-anomaly-detection
17https://grafana.com/grafana/plugins?type=datasource

 International Journal of Computer Sciences and Engineering Vol.7(10), Oct 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 97

Performance Tests”, In the Proceedings of the IEEE International

Conference on Software Maintenance and Evolution, USA, pp.

279-289, 2016.

[3] S. Ghaith, M. Wang, P. Perry, Z. M. Jiang, P. O’Sullivan, J.

Murphy, “Anomaly detection in performance regression testing by

transaction profile estimation”, Journal of Software Testing,

Verification and Reliability. Vol. 26, Issue. 1, pp. 4–39, 2016.

[4] H. Malik, H. Hemmati, A. E. Hassan, “Automatic detection of

performance deviations in the load testing of Large Scale

Systems”, In the Proceedings of the International Conference on

Software Engineering, USA, pp. 1012-1021, 2013

[5] M. Acharya, V. Kommineni, “Mining Health Models for

Performance Monitoring of Services”, In the Proceedings of the

IEEE/ACM International Conference on Automated Software

Engineering, New Zealand, pp. 409–420, 2009.

[6] S. Iwata, Kono, K, “Narrowing Down Possible Causes of

Performance Anomaly in Web Applications”, In the Proceedings of

Dependable Computing Conference, USA, pp. 185–190, 2010.

[7] I. Trubin, “Capturing workload pathology by statistical exception

detection systems”, In the Proceedings of International Computer

Measurement Group Conference, USA, 2005.

[8] L. M. Silva, J. P. Magalhães, “Detection of Performance

Anomalies in Web-Based Applications”, In the Proceedings of

IEEE International Symposium on Network Computing and

Applications, USA, pp. 60-67, 2010.

[9] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, E. Smirni,

“Anomaly? application change? or workload change? towards

automated detection of application performance anomaly and

change”, In the Proceedings of the IEEE International Conference

on Dependable Systems and Networks With FTCS and DCC,

USA, pp. 452-461, 2008.

[10] N. Mi, L. Cherkasova, K. Ozonat, J. Symons, E. Smirni, “Analysis

of application performance and its change via representative

application signatures”, In the Proceedings of IEEE Network

Operations and Management Symposium, Brazil, pp. 216–223,

2008.

[11] Z.M. Jiang, A.E. Hassan, “A Survey on Load Testing of Large-

Scale Software Systems”, IEEE Transactions on Software

Engineering. Vol. 41, No. 11, pp. 1091–1118, 2015.

[12] F.M. Bereznay, “Did something change? using statistical

techniques to interpret service and resource metrics”, In the

Proceedings of the International Computer Measurement Group

Conference, USA, 2006.

[13] Shen-Shyang Ho, “A martingale framework for concept change

detection in time-varying data streams”, In the Proceedings of

international conference on Machine learning, Germany, pp. 321-

327, 2005.

[14] D. T. Shipmon, J. M. Gurevitch, P. M. Piselli, S. T. Edwards,

“Time Series Anomaly Detection; “Detection of anomalous drops

with limited features and sparse examples in noisy highly periodic

data”, Vol. abs/1708.03665, CoRR, 2017.

[15] Dheeraj, K. Sharma, “Proposed 4S Quality Metrics and Automated

Continuous Quality (ACQ) Metrics Dashboard to Quantify

Software Product Quality”, International Journal of Computer

Sciences and Engineering, Vol. 7, Issue. 1, pp.865-869, 2019.

[16] A. Agarwal, A. Dixit, “Progressive Web Applications:

Architectural Structure and Service Worker Asset Caching”,

International Journal of Computer Sciences and Engineering, Vol.

7, Issue. 9, pp. 127-139, 2019.

Authors Profile

Raghu Ramakrishnan is Chief Architect

and Head, Technology in Public Sector

Unit of Tata Consultancy Services. He has

over 25 years of experience in designing

and performance engineering business

critical software systems for government,

airlines and financial institutions. He is

pursuing research in University School of

Information and Communication Technology, Guru Gobind

Singh Indraprastha University, Delhi, India. He is member of

the IEEE and Computer Society of India..

Arvinder Kaur is Professor in University

School of Information and

Communication Technology, Guru

Gobind Singh Indraprastha University,

Delhi, India. Her research interests

include Software Engineering, Software

Testing, Software Metrics, Fault

Prediction and Project Management. She has authored more

than 80 research papers in International Journals and

Conferences.

