
 © 2016, IJCSE All Rights Reserved 95

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Study Paper Volume-4, Issue-5 E-ISSN: 2347-2693

Study on Block Device Driver and NVMe their Implementation Impacts

on Performance

Raman Kumar Kharch
1*

, Vijay D. Katkar
2
 and Kedar Kulkarni

3

1,2
 Department of Information Technology Pimpri Chinchwad College of Engineering Pune, India

3
Center of Development in Advance Computing, Pune, India

Available online at: www.ijcseonline.org

Received: Apr/27/2016 Revised: May/09/2016 Accepted: May/24/2016 Published: May/31/2016

Abstract— Solid-State Drive (SSD) is also known as Solid-State Disk it contains no moving components. Attraction for SSD is

due to its high throughput and scalability. It distinguishes from traditional magnetic disks like hard disk drives which contains

movable head and spinning disk. SSDs are electronic circuit built on NAND-Flash/NOR-Flash and PCM. Solid-State Drive uses

non-volatile memory for storage and retrieval of data or information in the form of sectors and/or pages and shows better

performance than hard disks. Maximum IO performance of the used memory technology can be achieved using a properly

written software device driver, which can effectively utilizes underlying hardware resources and extracts the maximum

performance from the storage device. This paper is a survey on key literature on IO performance of SSD and block driver. It

deals with the effort that defines what characteristics an effective solid state drive should have. The paper also discusses trends

and categories in research and questions that are further open for investigation.

Keywords— Dynamic Block Driver, NVMe, Solid state drive, block layer, latency.

I. INTRODUCTION

From hand-held embedded system to super-computers,
data storage is massive for all computing system. Memory
system plays the primary role in determining application
performance, reliability, power consumption [4]. With
increase in data consumption the applications demand high
performance within the stringent power and cost constraint.
These requirements made researchers to develop flash
memory based storage devices termed as Solid State Drive
(SSD). SSDs are the PCIe storage devices. Multiple NVM
channel works in parallel are used in SSDs. The data
retrieval process in SSD is faster and efficient than
traditional HDDs [10].

Solid State Drives are more reliable, faster and more
efficient than the traditional Hard Disk Drive. Various NVM
technologies have different characteristics in terms of data
block, need for erase, aging, rewritability and bit error rate.
There are two categories of NAND flash Single-Level Cell
(SLC) and Multiple-Level Cell (MLC). SLC flash stores one
bit of data per cell. MLC flash stores multiple bits of data per
cell.

For interfacing with the user applications at the host
system, meaning no changes with the user-level, the OS
software layers and I/O stack used for HDDs remain the
same and the differences are encapsulated by an emulation
software layer, called the Flash Translation Layer (FTL),
which is added in the SSD’s storage controller [6].

For handling the system calls related to filesystem from
the user applications Linux kernel uses the Virtual File
System (VFS). VFS is an abstraction layer of a more

concrete filesystem. It is an interface between the kernel and
various other filesystems [7]. One of most important feature
of Linux kernel is it supports different types of filesystem.
The VFS manages all this different filesystem that are
mounted that the given time. The user application accesses
the storage devices through the standard system calls to the
filesystem. The kernel then forwards the request(s) to the
VFS layer, which forward the request to the generic
filesystem specific function(s). The filesystem know about
the logical layout of the data, and perform functioning to the
block layer on behalf of the user application.

The Block Layer is a middle layer between the Linux
kernel and the storage device. It allows the application to
access the storage device and it includes single point of entry
from all application to the storage devices and driver. A user
application uses a block device through the filesystem; the
virtual file system (VFS) is the entry for all the requests. The
recently read and written portions of the block devices are
store in buffer/page cache of the kernel. It is then forwarded
to the block layer, which allows I/O requests to the block
drivers [9]. Block layer implements IO scheduler, allows
merging request, reorder request. The response is send back
to the user application through the same path, preserving the
order.

The rest of the paper is organized as follows. Section 2

covers an overview of the PCIe-based Storage Device and

Non-Volatile Memory Express. Section 3 discusses related

work, the main observations and findings of the study and

analysis. Finally, we conclude our work in section 4.

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(95--98) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 96

II. LITERATURE SURVEY

A. Storage Device

The performance of PCIe storage devices are depend on the

used NVM technology, the NVM channel, host I/O

interface, internal architecture of the storage controller, and

the upper layer software components that counts device

driver. PCIe-based SSD was announced by Fusion-io in

2007 [5]. In single card it has 100,000 IOPS of performance,

with capacity up to 320GB. NAND flash based SSD are

used widely today. Unlike DRAM, NAND flash is a non-

volatile storage of data which can retains data without power

[8]. The emerging NVM technologies such as PCM (Phase

Change Media), Memristor, are the component which can

replace NAND flash. I/O latency in SSD based on NVM

exhibits little difference between sequential and random IOs.

On parallel IOPS single lock coarse design becomes a

bottleneck to overall performance for protecting the request

queues.

B. Non-Volatile Memory Express (NVMe)

NVMe is an interface specification for accessing the SSD

attached through the PCIe bus. NVMe is a logical interface.

It is a software based standard that was specifically

optimized for PCIe-based interface SSDs. NVMe block

driver was published by Intel for Linux [4]. In the kernel of

Linux, a resizable or scalable block layer for high

performance SSD are fused together. As a result of this

fusion the performance of I/O submission rate increases. The

main structure NVMe protocol contains two commands,

namely Admin command and IO command. Admin

command is used to inform NVMe-capable controller for

creating, deleting IO queue. IO commands are the core of the

functioning. Contents of the IO commands indicates

read/write/flush request. To hold such commands, NVMe

maintains two queues namely, Submission Queue (SQ) and

Completion Queue (CQ). The SQs are used to submit the

command to the NVMe controller and the CQs are written

by the NVMe controller to indicate status of the command

and error reporting if occurs. Each core can have multiple

SQ and CQ. In the direct memory access (DMA) region of

host memory the both queues are located. The I/O

commands are executed in the NVMe-controller in four

stages fetch, decode, execute, complete. The NVMe

controller is implemented in hardware which is mainly

responsible various stages required for the completion of

IOs.

III. RELATED WORK

For the purpose of achieving high throughput and low

latency dynamic block device driver has been proposed in

Prototyping and Performance Evaluation of a Dynamically

Adaptable Block Device Driver for PCIe-based SSDs [1].

Dynamic Block Device Driver is compatible with Linux I/O

stack, and it is flexible with a PCIe-based NVM storage

device. Due to which it provides high performance interface

between the host computer and storage device. Figure 1

shows the flow of device driver. The functionality of

Dynamic Device Driver which consists of three main

components, they are I/O Request, New Descriptor Block

Processor, I/O Responses Generator. The bio structure is

used to represent I/O requests between block layer and

device driver. The structure represent block I/O operation

that are active (flight). From the block layer bios are passed

to the driver space. The device driver translate bio into

proper descriptor, which is then forwarded to the interface

queue and finally passed to the storage device for

processing. The PCIe device generates an interrupt to the

device driver about signal completion of previous block.

Now, the New Descriptor Block Processor function is

activated for forwarding a new block to the PCIe device with

descriptors, only when if there are some pending request

available. The descriptors to the PCIe device are variable-

size blocks. The block returned by the PCIe device with the

response is processed in I/O Responses Generator function

(The New Block Descriptor Processor function wakes it up).

The function checks all updated contents and flag of

descriptor of returned block, generates respective I/O

completion and transferred it to the user application through

block layer, saving the original order. Whenever a block of

descriptor is returned from the PCIe device, the I/O

Responses Generator function finds the respective bio

pointers in 'Bio Array', generates I/O completions and

removes the pointers from the array.

For pending requests from bio structure, a memory point

Bio Array is defined along with two pointer variables, one

point to the first descriptor of the next block that will be

sent to the PCIe device, and another one which points to the

first free position in the interface queue for the future

descriptors.

The advantage of using dynamic device driver is that it

supports variable-size blocks of descriptor. The cyclic buffer

is implemented on the interface queue, and it is of fixed size.

In the kernel of Linux, a resizable or scalable block layer for

high performance SSD are fused together. As a result of this

fusion the performance of I/O submission rate increases. For

managing I/O NVMe maintains two queues namely,

Submission queue and Completion queue. Each core can

have multiple submission queues. I/O latency in SSD based

on NVM exhibits little difference between sequential and

random IOs.

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(95--98) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 97

Fig. 1: Dynamic Block Driver Architecture

On parallel IOPS single lock coarse design becomes a

bottleneck to overall performance for protecting the request

queues. In Linux Block IO: Introducing Multi-queue SSD

Access on Multi-core Systems [2], to minimize cache

coherency multiple IO submission/completion queues across

CPU cores. The design contains idea of introducing two

level of queue in the block layer: (a) Software queue, (b)

Hardware queue.

Figure 2 shows the two-level queue mechanism in block

layer. Block layer cannot support IO scheduling across

devices in single queue per device. The block layer of SATA

is evaluated with high performance NVMe-based SSD and

found that block layer for Linux environment has

considerable overhead for each IO. The three main

problems, namely Request Queue Locking, Hardware

interrupts, Remote memory access. For the multi-queue

block layer, the lock contention is moved to two-level queue

from single-level is designed for the Linux block layer.

Three major requirements are: Single Device Fairness,

Single and Multiple Device Accounting, Single Device IO

staging area (place for IO scheduling). Functionality of the

two-level queues are, Software Staging Queues, dispatching

IO request rather in single queue it is now maintained in

multiple block IO request per core, per socket on the system.

Hardware dispatch queues, IO on entering into the staging

area is sent to the hardware dispatch queues, instead of to the

device drivers. In the queue, it matches the number of

hardware contexts supported by the device driver. The

number of queues supported by the device driver is

anywhere from one to 2048 queues. IO ordering is not

possible inside the block layer any software queue may feed

any hardware queue without needing to maintain a global

ordering. This* allows hardware to implement one or more

queues that map onto CPU’s directly and provide a fast IO

path from application to hardware that never has to access

remote memory on any other node.

Fig.2. Two-Level Queue Block Layer

The requests in the hardware queues are not sorted but
queued using FIFO policy: the incoming block IO submitted
by the core i is inserted to top of the request queue attached
to core i. The device performance doesn’t get affected
because of interleaving IOs from multiple software dispatch
queues into a single hardware dispatch queues. Reason is:
the two level queuing mechanisms rely on the fact that the
random read and write latency are faster than the sequential
for modern SSDs. The SATA based SSDs have single
completions using single interrupt, single hardware dispatch
queue. In the driver submission queue for uniquely
identifying the position of the block IO an integer value tag
is used. After completing it is passed to the driver. The tag is
then re-used by the device driver. The need of linear search
is eliminated for checking of completion of IOs. The block
layer generates a unique tag associate to the IO i.e. inserted
to the hardware dispatch queue. For supporting fine grained
IO accounting the internal Linux library are modified. The
modification is done to provide statistics for the state of both
the software queues and the dispatch queues.

In Non-Volatile Memory Host Controller Interface
Performance Analysis in High-Performance I/O Systems [3]
show that, the NVMe controller performs the I/O commands
in four stages. First it fetches the command from the SQ in
the main memory and writes it to its Outstanding Requests
Tracker (ORT). Second, it decodes the command. Third, it
depends on the number of pages that needs to be read from
or write to the host memory. If the number of pages more

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(95--98) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 98

than two, we need to read a table of pointers to these pages.
This table is called Physical Region Descriptor Table
(PRDT). Fourth, the NVMe controller has to notify the host
about the completion of the executed I/O request, command,
and error occur during execution. The organization of I/O
SQ and CQ can affect the performance. The system has a
single SQ/CQ, shared by all cores gives the lowest memory
overhead. Clearly this model has a synchronization
bottleneck it needs to acquire lock for the queue when each
time a core wants to submit an I/O command. Otherwise the
system has a SQ/CQ per core it avoids the bottleneck of
acquiring single lock to all cores. For the scalability factor
large number of allocated queue affects the system
performance. The overall protocol scalability is affected
mainly by three factors. First, the time spent submitting I/O
command. Second, time to identify a completion entry and
processing it. Third, submission/completion entries,
reading/writing data. The software layer is the highest
contributor for affecting the overall execution time. A
software layer through which any I/O request needs to go in
Linux is called block layer.

The performance highly degrades when interrupting the

processor each time for an I/O command is ready. A

significant amount of time is spent in context switching. To

the best periodic interrupts can be used. Each tau

microsecond period if at least one completion occurred, the

NVMe controller triggers an interrupt. The large value of

interrupt detection period tau microsecond can reduce the

number of interruption to the processor, but can increases the

gap between the time commands and ready and processed.

The small value will increase the number of interruption.

The moderate period can achieve good improvement over

previous two. The gap between the commands is ready and

being processed is low.

CONCLUSION

In this paper we have understood that the Linux Block layer

and its importance. In the second section we studied the idea

about storage devices and Non-Volatile Memory Express. In

the third section we studied the dynamic device driver for

PCIe-based SSD that is compatible with the Linux I/O stack.

ACKNOWLEDGMENT

This work is support by Center of Development for the

Advance Computing C-DAC, Pune.

REFERENCES

[1] Eleni Bougioukou, Athina Ntalla, Aspa Palli, Maria

Varsamou and Theodore Antonakopoulos, “Prototyping and

Performance Evaluation of a Dynamically Adaptable Block

Device Driver for PCIe-based SSDs”, IEEE 2014

[2] Matias Bjørling, Jens Axboe, David Nellans, Philippe Bonnet,

“Linux Block IO: Introducing Multi-queue SSD Access on

Multi-core Systems”, SYSTOR ACM, 2013

[3] Amro Awad, Brett Kettering, and Yan Solihin,” Non-Volatile

Memory Host Controller Interface Performance Analysis in

High-Performance I/O Systems”, IEEE, 2015

[4] Sivashankar, Dr. S. Ramasamy, “Design and Implementation

of Non-Volatile Memory Express”, International Conference

on Recent Trends in Information Technology, IEEE, 2014

[5] Mojtaba Tarihi, Hossein Asadi, Alireza Haghdoost,

Mohammad Arjomand, and Hamid Sarbazi-Azad, “A Hybrid

Non-Volatile Cache Design for Solid-State Drives Using

Comprehensive I/O Characterization”, IEEE, 2015.

[6] Hiroko Midorikawa, Hideyuki Tan, Toshio Endo, “An

Evaluation of the Potential of Flash SSD as Large and Slow

Memory for Stencil Computations”, IEEE, 2014

[7] Shuichi Oikawa, Satoshi Miki, “Future Non-Volatile Memory

Storage Architecture and File System Interface”, First

International Symposium on Computing and Networking,

2013

[8] Myoungsoo Jung, “Exploring Design Challenges in Getting

Solid State Drives Closer to CPU”, IEEE, 2013

[9] M. Wu and W. Zwaenepoel, “envy: a non-volatile,

main memory storage system,” in Proceedings of

the 6th International Conference on Architectural

Support for Programming Languages and Operating

Systems, ser. ASPLOS VI. New York, NY,

USA: ACM, 1994, pp. 86–97. [Online]. Available:

http://doi.acm.org/10.1145/195473.195506

[10] Nguyen, A. ; Satish, N. ; Chhugani, J. ; Changkyu Kim;

Dubey, P., “3.5-D Blocking Optimization for Stencil

Computations on Modern CPUs and GPUs”, High

Performance Computing, Networking, Storage and Analysis,

2010

