
 © 2016, IJCSE All Rights Reserved 73

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Review Paper Volume-4, Issue-4 E-ISSN: 2347-2693

Continuous Integration and Deployment Modern Technique's

Vivek Verma
1*

 and Vinay M
2

1 ,2
Department of Computer Science, Christ University, Bengaluru India,

www.ijcseonline.org

Received: Mar/26/2016 Revised: Apr/04/2016 Accepted: Apr/17/2016 Published: Apr/30/ 2016

Abstract— In current world where software companies are moving towards sustainable rapid development and deployment
model, it’s very important to automate the process of software development, build, testing and deployment to avoid the delay in
software release. In software development process many developers are involved during software product development. It is
very significant that there should be framework which must notify the compilation and build error at least once is a day, so that
reported error can be corrected. In most of the cases developer writes a unit test case to test their own written method. So as
soon as new code stored into the shared repository there should be a way that we can perform all the unit test cases execution
automatically and publish the result to all the developers. The next part of the problem domain is, how fast we deploy the newly
build product version on the test environment and execute the test automation suite and publish the result to the all-stake holder
on the new build. The last part of the problem domain is as soon as product got passed from the test environment, it must move
to the next (Staging / Production like environment) automatically where again we must perform the basic sanity testing and on
successful result framework must deploy the product finally to production environment automatically.

Keywords— Continuous Integration ;Continuous Deployment; Software Development; Regression Testing; Code Coverage,

Unit Test; Shared Repository.

I. INTRODUCTION

Continuous integration and deployment both are essential for

successful software deliverables. Continuous integration

helps us to identify the software code integration issues as

early as possible in SDLC to avoid last minute integration

conflict [1]. Continuous integration allows the system to

build the code at least daily once in order to avoid

compilation and other build issue. Continuous deployment

help us to deploy the executable file and execute and verify

the regression test cases(older functionality) doesn’t get

affected by the new code and provide the daily execution

report with all the stake holder. Its helps us to get confidence

on the software release made by the system [6].

A. Continuous Integration

Continuous integration allows the developers to test their

code multiple times, at least once in a day, to verify

integrity issue. To enhance the result of continuous

integration we have to follow the best way of doing

continuous iteration [1].

• Every developer has to check in their code every

day in source code repository [8].

• Developer has to write unit test cases before cheek

in the code to central repository [2].

• Every day at night system has to check out the

code from source code repository [6].

• Analysis of the source code to be done using static

analysis tool to figure out the Error's in early stage.

(For Example Sonar Cube).

• Check the overall code coverage using code

coverage tool after unit testing (For Ex Jacaco) [7].

• Use the code coverage tool to figure out how much

% of newly added lines are covered using unit

testing [7].

• Code coverage helps the tester to figure out the

untested part of the code.

• Share the result of static analysis tool and code

coverage tool with all stake holders.

• Build the deploy-able file (for Ex jar/war/rpm)

from source code.

• Deploy the created deploy-able file into test

environment and do the required configuration.

• Perform the Sanity check first before starting

Functional test.

• Automatically report the bug in case of Failure [1].

• Automate as many as functional test cases to

perform testing automatically [2].

B. Continuous Deployment

In the deployment process, if deployment job is no
automated we faced major issue while deploying the
software artifact to QA, staging and production environment.

One of the most frequent issue faced is that if software is
working in development environment but not working on
QA environment , sometimes if it’s working on QA
environment then it’s not working on either staging or

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(73-75) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 74

production environment , because some of the steps missed
during deployment or because of the deployment read me is
not proper [2].

To overcome this issue continuous deployment will help to
identify the deployment related issue early either in
Development or QA environment, because in continuous
deployment process we build, deploy and test the software
artifact every day on QA environment to detect and fix the
issue as early as possible.

As continuous deployment is an fully automated process

there is very rare chance of manual mistake due to which

deployment get effected also continuous deployment provide

the fastest turnaround time to deploy the artifact to

production environment which is the demand of agile

methodology development, where every 15 or 30 days

software build is out for the use of end customer [1].

II. CONTINOUS INTEGRATIONS AND CODE

COVERAGE

Code coverage is one of the ways to check how much testing
is performed on the product and how much testing still can
perform before releasing the product to production
environment.

In code coverage, we generally figure out how many lines of
code is covered during unit and functional testing and how
much line still not covered, which gives the clear idea to all
the stake holder to know which part of the code is required
more testing.

There are various open source tools are available for

performing the code coverage which can be easily integrated

with the continuous integration software Hudson/Jenkins and

provide the standard HTML based report for code coverage

achieved by the testing.

In the above figure we have shown the simple code coverage

report where out of 51 classes of code 23 classes got covered

using testing; Henceforth the code coverage for classes are

45 %.

III. CONTINOUS INTEGRATION AND PRALLEL

TESTING

Continuous Integration helps the tester to test the

software in different environment parallel. For Example

if tester wants to test a mobile app with different

android OS version can be easily done using continuous

integration.

Continuous integration tool Hudson supports the

pipeline job which can be used to run the different test

on the same software build which can be either run

sequential or parallel best on the pipe line configuration.

IV. CONTINOUS INTEGRATION AND PRALLEL

TESTING

Continuous Integration helps the tester to test the software

in different environment parallel. For Example if tester

wants to test a mobile app with different android OS version

can be easily done using continuous integration.

Continuous integration tool Hudson supports the pipeline

job which can be used to run the different test on the same

software build which can be either run sequential or parallel

best on the pipe line configuration.

V. POPULAR TOOLS

Existing tools which are getting popularity for managing

Continuous Integration are:

• Hudson/Jenkins.

• GIT

• Phabricator

• Ant/Maven.

• Jacaco/Cobetura

A. Hudson/Jenkins

Hudson is a continuous integration (CI) tool written in Java

which provide the GUI to end user, it can be integrated with

source code repository to check out the code from

repository, either manual checkout or cron based checkout,

also it can be easily integrated with any kind of build script

Ant/Maven to build and deploy the software artifact to

different environment. It can be easily integrated with any

of the scripting language or unit test framework to perform

unit and functional testing in automated way. It having their

own plug-in to present the HTML based report in to the

Hudson fronted.

B. Git

Git is a version control system for software development .It

is a distributed revision control system with an emphasis

data integrity and support for distributed, non-linear work

 International Journal of Computer Sciences and Engineering Vol.-4(4), PP(73-75) April 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 75

flows. In Git we have the main branch where every day

continuous integration system checkout the code for build,

deployment and testing. Git supports the local branching

feature where every developer can create their own branch

for development and post development and unit testing he

can merge the code with master branch for testing.

C. Phabricator

Phabricator is a suite of web based software development

collaboration tools, Phabricator provide the platform to the

development team to share the code with his peer members

or team lead for review comments before merging the code

to master branch, which can be used by the end customer.

Also its supports the difference function which can easily

figure out the old line and newly added line is the source

file for the reviewer.

D. Ant/Maven

Ant and Maven both are developed by Apache and used to

build the software artificial for deployment. Both can be

easily integrated with Hudson to provide the build and

deployment environment.

E. Jacoco/Cobetura

Jacaco and Cobetura both are open source tool for code

coverage. They instrument the code during unit and

functional testing and show the code coverage achieved

from the unit and functional testing.

VI. SUMMARY AND CONCLUSIONS

Our research found that product which is maintained using

continuous integration and development:

• Give a clear picture of test coverage with respect to

the code coverage.

• Have a past result recorded for comparison.

• Give a clear picture of software quality to all stake

holders in terms of graph.

• Reduces the no of production bug.

• Identify the untested part of the code, which need

attention.

• Reduces the time to market because most of the

old test cases are executed by the system

automatically.

Best practices of the Continuous Integration and

deployment provide several benefits to the organization,

few of the benefits are:

A. Detect Issue early in the SDLC

Most common use of the CI is to identify issues with the

software as early as possible. As development team

continues to add new features to the code and fix bugs, the

code base is constantly in unstable stage. If you are not

performing a CI server to continually build your software,

Using CI, we build and test the software every day so that

we can detect and fix the issue as early as possible.

B. Provide Platform for Continuous Deployment

Continuous deployment is related to Continuous

Integration and CI enable the feature to deploy and test

the stable build on staging or production environment.

C. Make Software Stable

By continually building the software and (optionally)

executing unit and functional tests make the software more

stable day by day.

D. Faster Delivery

Continuous integration and deployment both enable the

faster delivery of the software artifact to end customer ,

Also in case of any urgent customer request can be

delivered fast using these technology.

REFERENCES

[1] "Testing Extreme Programming", Lisa Crispin and Tip

House, 2003, Addison Wesley.

[2] Paul Ammann, Jeff Offutt (2013). Introduction to Software

Testing. Cambridge University Press.

[3] Eldh, Sigrid, et al. "Towards a Test Automation

Improvement Model (TAIM)." Software Testing,

Verification and Validation Workshops (ICSTW), 2014

IEEE Seventh International Conference on. IEEE, 2014.

[4] Campbell, G., and Patroklos P. Papapetrou. SonarQube in

Action. Manning Publications Co., 2014.

[5] Humble, Jez, and David Farley. Continuous delivery:

reliable software releases through build, test, and

deployment automation. Pearson Education, 2010.

[6] Jenkins https://jenkins.io/doc/, 2015.

[7] Jacoco http://eclemma.org/jacoco/trunk/doc/, 2015.

[8] Git https://git-scm.com/doc , 2015.

AUTHORS PROFILE

Vivek Verma , received the Bachelor in

Computer Application degree from Rani

Durgavati University, Jabalpur, India and

Currently Perusing a Master of Computer

Science and application degree from Christ

University Bangalore, India. Currently, he is

working as a Senior Member of Technical Staff at Oracle India Pvt

Ltd

Vinay M, received the Masters of Computer

Application Degree from Indira Gandhi open

National Open University, India and a Mphil in

Computer Science from Madurai Kamaraj

University, India respectively. Currently he is an

Assistant Professor at Christ University

Bangalore, India.

