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Abstract- Storing the information about human nucleotide is become essential now a day for various medical research 

purposes. A human genome consists of almost 3.2 billion nucleotides. It is unmanageable to store, access and retrieve the 

desired information from the massive bulk of unprocessed data. So the possible solution is genome compression. By 

compression we mean that we are restricting on the data storage. Existing data compression methodology is not suitable to deal 

with this massive data. In this paper we provide a survey analysis on various types of genome compression and read 

compression algorithm which are specially designed to handle this voluminous raw DNA information. To extract the unique 

non repeated information from the whole sequence is actually a tough challenge .These compression algorithms not only save 

time but also provide high compression rate. We have discussed all the types of compression algorithm with their distinctive 

approach. Each of them having some benefit over other. We also briefly discuss on various file formats used while 

compression. 
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I.  INTRODUCTION 

 

The cost of ordering the nucleotides within a genome has 

dropped in such a way that it is more tending to produce 

larger and longer reads by various sequencing platforms 

which results in a massive amount of unmanageable data. It 

is not easy to store, access, retrieve or transfer this amount of 

data as it is a time consuming and costly process. Storing 

these large amount of data need a sufficient storage space 

which is beyond the possibility after a certain level. 

Accessing this data took lot of time to retrieve the required 

information. Transferring this data needs a large bandwidth 

and also most of the time it cause network congestion. One 

easily achievable solution is to remove the sequences form 

storage after manipulating it or to store the sequence in a 

compressed form for future reusability. The second method 

is more reliable and scientific. This compression of genome 

sequencing can be acquired by the use of any genome 

compression algorithm. These compression algorithms are 

complicated as they give importance to find out the raw non 

repeated sub-sequences from the huge amount of data.  

In this paper we are first going to discuss about some DNA 

compression algorithm in section II. Sequencing the genome 

is very crucial to properly analyse the genome information. 

The production of short reads were done while sequencing. 

In the section III of our paper we have mentioned about  

 

various read compression algorithm. Following this we talk 

about various research works done on genome compression 

recently in section IV. After that in the next segment i.e. in 

section V we converse about various file formats specifically 

required to support genomic compressed data. Finally we 

conclude our paper in section VI by providing our opinion on 

various compression techniques which we have discussed in 

this paper. In this paper we have done a survey analysis on 

various genome compressions and read compression 

techniques so that anyone could get an overview of different 

methodology which will help in their future research works 

and also those who are unaware of this domain of 

bioinformatics could get the basic concept about genome and 

read compression.  

 

                           II.  GENOME COMPRESSION 

 

There are various type of genome compression algorithm are 

there each of them having their own unique logical structure. 

This can be categorized into following way- 

 

2.1. Bit operation oriented compression 

Each DNA sequence consists of chain of genome bases 

which are also known as nucleotides, they are adenine (A), 

guanine (G), cytosine (C) and thymine (T). In this technique 

each bases are represented using binary code( like A->00,C-
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>01,G->10,T->11) and two or more bases are put into one 

set. In this way the whole compression technique took place. 

GenBit Compress (GBC) [1] algorithm use this methodology 

for compression. The algorithm based on 2 bit compression 

and run length encoding technique. Using similar approach 

Rajendra Kumar Bharti et al. presents a sequence 

compression algorithm in 2011 where they put three bases in 

a set to encode the genome and then compress it using LZ77 

[2]. In 2010 Ateet Mehta and Bankim Patel incorporates hash 

functions with bit operation to compress genome sequences 

[3]. Piyuan Lin, Shaopeng Liu, Lixia Zhang, et al in 2009 

make revolutionary change in approach by applying pattern 

matching technique for compression [4]. In 2011 Pothuraju 

Rajeswari and Allam Apparao [5] give attention not to 

compress the whole genome sequence but to figure out the 

non-repeated portion in a genome and hence produces 

different bit patterns for compression of repeated and non-

repeated part in the genome. 

 

2.2. Dictionary oriented compression 

In this method the input sequence is scanned from left to 

right to check for the repeated and non-repeated substrings 

within the given sequence. After scanning the non-repeated 

parts is stored for future reference but the redundant repeated 

parts are not stored in place of that a reference is stored 

which then links with a dictionary where all the repeated 

substrings are stored. This method of compression does not 

depend on the given input sequence. Hence this approach 

focuses on the reduction on the storage consumption made 

by the genome sequences. Biocompress [6], Biocompress-

2[7] and Cfact [8] these algorithms follow this approach, but 

compression rate for these are very poor. To improve the 

performance approximate repeated sequences are being given 

preference and in 2000, Chen et al. developed GenCompress 

[9] with better result. This algorithm is further improved by 

incorporating palindrome scheme in DNACompress [10] by 

Chen et al. in 2002. This algorithm achieves higher 

compression rates for large sequence as well. CWT+LZ 

developed by  Matsumoto et al.[11] follow the same 

procedure as GenCompress but it is capable of encoding only 

smaller repeated sub sequences, the longer sequences are 

handled by substitution method and to store the non-repeated 

parts it uses a context tree weighting technique. COMRAD 

[12] algorithm creates the dictionary simultaneously while 

checking for the similar subsequence from the input. This 

algorithm operates in multiple passes. Each time while 

scanning the input sequence it discovered a longer sub-

sequence, it simply updates the dictionary with it. The 

compressed sequence string with the dictionary is further 

encoded. The above mentioned algorithms are unable to do 

the storage utilization due to the approach of finding the 

approximate match from the given sequence, Manzini and 

Rastero thoroughly examines the various sequences and 

detects three types of repeat can be occurred in any sequence, 

i.e. non-repeated, approximate repeat and reverse 

complement repeat. Depending on this category they 

invented DNA-X [13] algorithm which performs in better 

storage utilization and also gives higher compression rate. 

The modernization of Cfact algorithm was done by Lee et 

al.[14] with four phases. In the first phase exact matched sub-

strings are detected to form a suffix tree, these were 

comprehended to approximate repeat using dynamic 

programing method in the next phase, it further recognize the 

non-overlapped portion from it and finally Fibonacci 

encoding is used for the repeated portions. Dimitris Antoniou 

et al. [15] incorporate the functioning of splay tree in their 

compression algorithm. It has been proved that conventional 

way of compression of the genome by considering the 

sequence altogether is not always gives the optimal 

compression rate whereas Kalyan Kumar Kaipa et al. [16] 

designed a new approach of genome compression by 

partitioning the whole sequence into uneven chunks of 

sequences, then encode them independently. To keep track of 

the repeated parts in various chunks a hash table is 

maintained. It is necessary to recognize the replicated parts 

within a sequence to achieve optimal compression. Hamming 

distance between various sequences can be measured to 

identify the repeated parts within them; this method is used 

in DNAPack  [17] algorithm. 

  

2.3. Substitution and Statistics Oriented Algorithms 

Dictionary based algorithms tries to find out the duplicate 

segments within a genome but it unable to deal with 

approximate repeated segments whereas the statistical 

algorithms only concentrates on detecting the sub-sequences 

which appears frequently within a sequence. So it is obvious 

that statistical methods give better performance than 

dictionary based approach. When we combine these two 

approaches its performance is extremely noticeable. 

Following this approach in 2000 Matsumoto et al. introduces 

CTW+LZ [18]. This algorithm first scan the sequence to 

detect the palindrome and approximate repeated segments 

through dynamic programming and hash based functions, 

after that it uses LZ77 encoding technique to compress the 

longer replicated partitions and the shorter one is encoded 

using CTW (context tree weighting) structure. The 

algorithms based on NML (normalized maximum 

likelihood)[19] and GeNML [20] are also belongs to this 

category. The NML firstly divides the whole sequence into 

equal sized blocks then it tries to locate the approximate 

repeated segments within each block. The approximate 

repeated segments of the present block are further encoded 

with the reference to a segment of previously occurred block 

with least hamming distance and the exact replicated portions 

are encoded using simple Markov model. Thus the inability 

to deal with approximate repeated segments with in a 

sequence is reduced after invention of NML. GeNML is the 

improved version of the previous algorithm. This algorithm 

divides the sequence into variable sized blocks. Here the 

reference sequence can be modified (insertion, deletion or 
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substitution) according to the present sequence. In 2010 

Mishra et al. presented DNA Sequence Compressor 

(DNASC 21]. In this algorithm both horizontal and vertical 

compression took place.  For horizontal compression they 

used extended Lempel-ziv encoding technique. In the next 

phase the previous encoded sequence is further compressed 

vertically taking a block size of 6 and window size of 128. 

 

2.4. Statistics Oriented Algorithm 

The statistical based algorithms focus on the occurrence 

frequency of the sub sequences within a genome. The 

probability distribution of each symbol must be recognized 

to achieve high compression. The most common statistical 

encoding technique is Huffman encoding [22]. It produces a 

binary tree depending upon the occurrence of the substring. 

The substring with higher frequency is represented using 

shorter code and substring with lower frequency is 

represented with longer codes. This approach is very useful 

in DNA compression. The compressed sequence is stored 

with an additional Huffman code table for computing the 

compression ratio when required. This same reference table 

can be shared among many sequences while compression. 

Hence it also reduces the storage cost. CDNA [23] is the first 

statistical based algorithm introduced by Loewenstern et al. 

in the year 1997. This algorithm scans the whole sequence to 

keep track of the probability distribution of each symbol. 

This algorithm is trying to detect the approximate matched 

subsequence with reference to a previously occurred 

sequence having smaller Hamming distance. In the next year 

Allison et al. proposed ARM [24] algorithm which is also 

based on statistical analysis of occurrence of sub-sequences 

within a genome. To calculate the probability of a 

subsequence the algorithm first observe the production of 

each sub-sequences and then adding the probabilities of all 

sequences. XM [25] is another statistical algorithm which 

compresses the sequence depending upon the frequency of 

appearance of each symbol. The appearance frequency 

means how many time that symbol is appeared with in the 

sequence. It is also known as probability distribution of the 

symbol. This probability distribution of symbols is further 

passed to an arithmetic encoder for final encoding. To 

determine the occurrence of each symbol the algorithm took 

help of a group of systems i.e. (1) order-2 Markov models; 

(2) order-1 context Markov models and (3) a copy expert. 

Diogo Pratas and Armando J. Pinho [26] discover a 

statistical compression algorithm whose compression 

methodology is made up of integrating six different Markov 

model’s functional logic. Gene-Compressor [27] ,this 

statistical algorithm works differently than XM ,it follows 

three steps for compression. In the first step a Huffman 

encoding scheme is selected for each symbol of the sequence 

depending upon the probability of occurrence. In the next 

step the encoded output is divided into blocks and in the final 

step these blocks are further encoded using run-length 

encoding. All the above mentioned compression techniques 

have some similar sub-sequences present in the input 

sequence but if the blocks of any given input sequence is 

totally distinguish from each other i.e. the sub-sequences 

within the blocks have no common parts in them. In the 2008 

I. Tabus et al. [28] tries to find the solution in their innovated 

algorithm. As the blocks are totally distinct from each other 

the algorithm treats each block individually. All the blocks 

are treated separately by Markov model to identify the 

sequence with minimum length after selection it is further 

compressed using an arithmetic compressor. Kalyan Kumar 

Kaipa et al.[29] discovers another compression algorithm 

based on Markov model but the algorithm only do the 

encoding for the non-replicated portions and dissimilar parts 

within a replicated sequence. 

 

2.5. Reference Sequence Oriented Algorithm 

When researchers are working on compressing genomes of 

same species it is found that they are highly similar and to 

compress this kind of genomes the referential compression 

approach was introduced. In this method the target genome 

sequence (which is to be compressed) is compressed with 

respect to or a set of previously known sequences (reference 

sequences). This approach gives best results for similar type 

of genomic sequences. It has been found that the 

compression rate of reference based algorithms is highest 

compared to all other types of algorithms. To get the best 

result good reference strings must be chosen and for that K-

mer hashing technique applied where the value of k should 

be greater than 15 in order to avoid random matches. The 

main challenge with this approach is to find long suitable 

matching sequence and this goal can be achieved with the 

help of suffix tree or hash based structure. Marty C. Brandon 

et al.[30] proposed one algorithm where they concentrates 

only to store the dissimilarity between the reference sequence 

and the to be compressed sequence. The dissimilarity could 

be found in any of the following three form i.e. insertion, 

deletion or replacement. After pointing out the differences 

between the two sequences various encoding schemes like 

Golomb [31], Elias [32], Huffman [33] are used to do the 

further encoding. ). Christley S et al[34] in 2009 present 

DNAzip algorithm , this algorithm also tries to found out the 

mismatches occurred between the reference sequence and the 

target sequence but in the form of SNPs (single-nucleotide 

polymorphism (SNP) or an INDEL (an insertion or a deletion 

of multiple bases) . Congmao Wang and Dabing Zhang [35] 

introduces GRS technique which finds longest common 

sequence between two given sequences and if the length of 

the matched sequence is more than a predefined threshold 

value then the differences between the sequences is 

compressed using Huffman encoding technique otherwise the 

reference sequence and the input sequence is divided into 

smaller sequences and the procedure repeats. The algorithms 

based on self-indexing gives better compression rates. The 

algorithm encodes the input sequence using LZ77 method 

with respect to the suffix array of the available reference 
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sequence. Shanika Kuruppu et al. present a reference 

oriented algorithm based on self-indexing structure, known 

as RLZ [36] algorithm is further revised and RLZopt [37] 

formulated where they give emphasize on local look-ahead 

optimization technique. This algorithm calculates longest 

increasing subsequence which allows efficiently encode 

positions. Szymon Grabowski and Sebastian Deorowicz 

discover another new approach [38] established on RLZopt 

with compression technique using LZ77 algorithm. The 

uniqueness of this algorithm is that it compresses the input 

sequence depending upon a set of reference sequences. This 

algorithm gives special recognition for encoding approximate 

matches within the sequence. Additionally Lempel-Ziv 

algorithm considers length of matches and distance between 

matched portions. Further the compression is done by shared 

Huffman encoding on the input blocks. GReEN [39] 

introduced by Armando J. Pinho et al. is another reference 

based model which builds upon copy-expert and it tries to 

find out the k-mer matching between the input sequence and 

the reference sequence. The algorithm works differently 

when it founds the length of the reference sequence and the 

target sequence are same. In that case it only encodes the 

SNPs expecting the sequence to be already aligned. Hyoung 

Do Kim and Ju-Han Kim produce another algorithm [40] 

which is a web based approach depending on LZ77 

compression style with random access. Heba Afy, 

Muhammad Islam, and Manal Abdel Wahed [41][42] 

implemented a sequence alignment tool as a referenced based 

compression technique which is used to calculate the 

modified distance between pair of sequences. The sequences 

with least dissimilarity will be selected as reference 

sequence. The concept of RLZopt was further revised by 

Deorowicz S et al. this algorithm known as GDC [43]. The 

important features of this algorithm are 1) it does not select 

the reference sequence randomly ,2) sub-sequences of the 

target sequence are not necessarily be the part of reference 

sequence, 3) substrings are identified through approximate 

matching and 4) the algorithm partitioned the whole 

sequence into roughly equal size of blocks for encoding. It 

used Huffman encoding technique to ensure random access 

of the compress data. 

 

2.6. Reference-Free Oriented Algorithms 

Reference based methods provides best result when to be 

compressed sequence and the reference sequence are having 

similarity between them. But sometime target genomes 

having lack of similarities with known ones and such as in 

case of de novo sequencing and difference between the target 

sequence and the reference sequence is not properly 

obtainable then we need reference free compression 

techniques. . In 2012 Bose T, Mohammed MH, Dutta A, et 

al. [44] proposed BIND algorithm which encodes each target 

sequence using two binary strings for compression. In the 

first string base A or T are set with 0 and base G or C are set 

with 1, but in the second string base T or C are set with 0 and 

base A or G is set with 1. After assigning the bases with their 

respective bit value the length of 1 and 0 are recorded for 

further encoding. DELIMINATE[45] algorithm was 

discovered in the same year by Mohammed MH, Dutta A, 

Bose T where it first scan the whole sequence to find out the 

two most dominating bases within the sequence then it is 

delta encoded[46] ,after that it is deleted from the sequence 

and the remaining sequence is further designated using 

binary code. It had been noticed that DELIMINATE 

produces better result than general purpose algorithms such 

as gzip, bzip2 etc. DNAEnc3 [47] developed by Pinho AJ et 

al. also found to be a reference free compression technique. 

This algorithm is based on the performance of various 

Markov models. The models of different orders worked into 

different portions of the sequence in order to detect 

contextual and palindrome information from the sequence. 

The performance of the models is further analyzed to choose 

the best model for encoding the various parts of the 

sequence.  

 

Thus when an appropriate reference sequence is available it 

is feasible to use reference based methods for better 

compression gain. On the other hand reference free methods 

are totally independent of any other reference sequence and 

they give not only better compression rates but also efficient 

in time.  

 

   III.   READ COMPRESSION  

 

While working with DNA sequencing sometimes we need to 

reconstruct the DNA sequence in order to get the original 

sequence so aligning and merging of DNA fragments are 

done from a longer sequence. This process is required as 

sequencing technology cannot read the whole genomes in 

one go but rather reads small portion of fragments between 

20 to 30000 bases. Typically these small fragments are 

known as reads. In this section we will discuss some read 

compression technologies. This reads are aligned directly to 

the reference sequence and it is further used for SNP 

detection. The difference between genome sequencing and 

read sequencing is that genome sequencing can be erroneous. 

Each reads have a quality score which denotes the 

probability of the base to be in correct position , so from this 

quality score it can be decided whether the base is its actual 

position or not. This score is very essential in SNP detection 

methods.  

 

3.1. Algorithms based on dictionary formation 

Oscar Herrera and Angel Kuri-Morales proposes one 

dictionary based approach [48] which detects the rate of  

appearing of each meta symbols  in multiple sequence. The 

meta symbols are nothing but the alphabetical symbols with 

an additional gap in between the sequence which can be 

further replaced by any symbol. The algorithm maintains a 

separate dictionary structure to store each meta symbols to 
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achieve better compression rate. Next in 2008 Giulia 

Menconi, Vieri Benci, and Marcello Buiatti discovers 

another approach named CASToRe [49] which is a higher 

version of Lempel-Ziv compression. This algorithm also 

maintains an additional dictionary to do the comparison 

between the sequences with the dictionary entries. Whenever 

it detects a new entry to the dictionary it stores the new entry 

in the form of two already stored sequence of the same 

dictionary. Zexuan Zhu, Jiarui Zhou, Zhen Ji, et al proposed 

an approach POMA [50] which is an optimization based 

approach. This algorithm categorizes the repeated part into 

four types as: direct, mirror, pairing and inverted. The 

fragments which reoccur at most in the sequence are added to 

the dictionary. 

 

3.2. Algorithms based on statistics 

Vishal Bhola, Ajit Bopardikar, Rangavittal Narayanan, et al 

developed a non-referential lossless compression algorithm 

in FASTQ format in 2011 named DSRC [51]. The file has 

four parts sequence identifier, raw sequence, description and 

quality scores. Different encoding schemes and compression 

techniques are used for each part of the sequence. The 

Sequence identifiers and description parts are further scanned 

to check for the needless information. Markov experts are 

used here to compress the raw sequences and runlength 

encoding scheme has been used to compress the quality score 

part. In 2011 Kiyoshi Asai et al. prepared a read compression 

technique [52] focusing on the quality score portion of any 

sequence. It has been observed that information within the 

quality score degrades after compression for FASTQ files. 

So they emphasizes on lossy and lossless compression of 

quality score. In this paper it has been shown that lossy 

compression for quality score gives impressive result by 

reducing storage cost. Waibhav Tembe et al. produce another 

scheme which also gives importance to quality score of any 

read sequence. In this new algorithm G-SQZ [53] the base 

value and quality score forms a pair i.e. (base, score) and 

each pair of this base and score is encoded using Huffman 

coding, further this coded contents are written into a binary 

file. Sebastian Deorowicz and Szymon Grabowski invented 

block based compression approach DSRC [54]. In this 

algorithm the FASTQ file is divided into three parts as 

identifiers, raw bases and quality score and different 

compression techniques are applied to those parts. The 

quality score pattern found to be of two type quasi-random 

and repetitive and for each of them two different 

compression technology is being used here. Huffman coding 

is used for quasi-random type and run-length encoding 

technique is used for repetitive quality score steams. In 2011 

Wei-Hsin Chen et al. [55] uncovers an approach where a 

complete compression sequence system with a data 

management component and a graphical user interface is 

produced. In this approach the sequence length is encoded 

using Fibonacci code and the conflicting nucleotides are 

represented using 2-bit encoding. 

3.3. Referenced based read compression 

Identifying the mismatch occurrence of read with in a 

sequence with respect to a reference   sequence is essential 

for compression. The algorithms based on reference 

sequence mainly contain two phases: mapping the reads and 

encoding them. While compression quality score became 

prioritized as it plays a vital role on compression rate. In 

GenCompress[56] read  compression algorithm  reads are 

aligned to a reference sequence, here Bowtie is used for 

aligning  the read and then Golomb , Elias Gamma , MOV or 

Huffman coding is used to encode the mapping results. It 

stores the starting position, the match length and an optional 

difference list describing the mismatches with the reference 

string. Sequencing errors may occur at the end of reads to 

avoid this base mismatches are indexed form the end of the 

reads. GenCompress can only compress the four bases, it 

cannot handle any additional information or information of 

quality score. Christos Kozanitis, Chris Saunders, Semyon 

Kruglyak, et al. originate another similar approach named 

SlimGene [57] which done the alignment using CASAVA 

software toolkit. This may be a lossy or losseless 

compression scheme. This algorithm only emphasize on 

encoding technique to save the storage space. This algorithm 

uses Huffman encoding and arithmetic encoding. The 

mapping of reads and the encoding process is done by two 

binary vectors in this algorithm. In 2011 Fritz MH-Y et al 

introduces CRAM [58] algorithm , which also follow the 

similar approach as the previous algorithm in addition with 

that this process use an additional data structure de Bruijn 

graph to keep track of unmapped reads for a reference 

sequence. De Bruijn graph was also used in Quip [59], which 

was invented by Jones DC et al., in this algorithm the 

reference sequence is created form the target sequence itself. 

NGC [60] algorithm goes through the read alignment 

columns in order to find out the similarity among the 

multiple reads which are mapped to a particular genome 

sequence position. These reads are further encoded using 

run-length encoding technique. . In 2013 Bonfield JK et al. 

produces Samcomp [61] which is based on SAM format. A 

totally distinct approach of read compression was introduced 

by Markus H. Fritz et al. [62] which is based on image 

compression technology. The matched position of the bases 

is stored using Huffman coding then this base positions are 

further delta encoded using Golomb encoding according to 

their appearing order in the reference sequence. 

 

3.4. Reference-free read compression 

Sometimes for some compression implementation reference 

sequences selection is not possible as in de novo sequencing 

in that case reference-free compression methods are useful. . 

In 2011 Yanovsky V. ReCoil introduces a read compression 

algorithm ReCoil [63] which is based on the logic of 

constructing maximum spanning tree(MST). At first an 

undirected graph is built in which vertices designate the 

reads and the edges designates the common kmers number 



   International Journal of Computer Sciences and Engineering                                      Vol.6(8), Aug 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        988 

between the end vertices. Depending on this graph an MST is 

formed and traversed from a randomly selected root node. 

The reads for each root nodes are stored directly and other 

surviving reads are encoded. BEETL [64] was presented by 

Cox AJ, Bauer MJ, Jakobi T, et al. in 2012 which follows the 

method of Burrows Wheeler Transformation (BWT) to point 

out the repeated reads within the sequence. Next it is further 

compressed using gzip, bzip2 etc. Assembling the reads 

which share common elements is sometime very useful 

technique in read compression. SCALCE[65] algorithm form 

a group of reads which have common “core” substrings next 

compression is done by gzip or LZ77 . 

 

                                  IV. RECENT WORK 

 

Here we will discuss some recent invented algorithms on 

genome compression which is based on recent advanced 

technology. In august 2011 Heba Afify, Muhammad Islam 

and Manal Abdel Wahed present a DNA lossless differential 

compression algorithm [66]. This algorithm is of differential 

type which generates difference sequence depending upon a 

op-code table. Here the sequences are stored in the form of 

reference sequence, sequence differences and differences 

within the location of the sequences. Bacem Saada, Member, 

IAENG, Jing Zhang proposed a Modified DNABIT [67] 

algorithm in 2016. This is a two phase compression 

technique. In the first phase, modified version of DNABIT 

compression algorithm is used to compress and convert the 

DNA sequence into binary representation. In the next phase, 

compression is done to the resulting DNA using the 

Extended-ASCII encoding through which one character can 

represent four nucleotides or more. It gives better 

compression ratio than other existing algorithms. In May 

2016 Rajesh Mukherjee, Subhrajyoti Mandal , Bijoy Mandal 

discovered an approach based on reversed sequencing [68]. 

This algorithm scans the whole sequence to find out the 

reverse substring. This algorithm maintains a library file to 

store the reverse substring and its corresponding original 

reverse substring. The reverse original substring of the 

algorithm setup a Dynamic Look up Table to store the ASCII 

character which is placed on the source file to get better 

compression. Recently in September 2017 Rexline S J and 

Trujilla Lobo F produced a DNA compression algorithm [69] 

using pattern recognition technique. This algorithm consists 

of two phases. In the first phase it finds the repeats, 

palindromes, complements and reverses complements and 

generates the Pattern Code Table. The source file is encoded 

using the Pattern Code during the second pass. 

 

  V. FILE FORMATS 

 

Genome sequencing produces bulk of data even after 

compression. The normal files are not fitted to store these 

voluminous data. There are many file formats which are used 

to store the sequence data each having some advantages over 

other. Here we are going to discuss the various data formats. 

This file formats are mainly supported by SRA (sequence 

read archive).  It is a data archive which stores various 

biological sequences so that researchers can use access this 

information to reproduce new sequences by comparing the 

various data sets. 

 

5.1. SAM 

This file format is used to store read alignment within a 

sequence. Heng Li invented this Sequence Alignment/ Map 

format which is a TAB delimited format. This format consist 

of two parts the header section and the alignment section. 

The header section should start with a “@” symbol. The 

alignment segment should content 11 compulsory ordered 

alignment related data. The header section of each data 

contains a ‘TAG:VALUE’ which is used to describe the 

format and content of the value. The value of the 11 

compulsory alignment related data are either ‘0’or ‘*’. Those 

11 fields are as follows: 

 

• QNAME: it is string type 

•             FLAG: it is integer type 

• RNAME:  it is string type 

• POS: it is integer type 

• MAPQ: it is integer type 

• CIGAR:  it is string type 

• RNEXT: it is string type 

• PNEXT: it is integer type 

• TLEN: it is integer type 

•  SEQ: it is string type 

•  QUAL: it is string type 

          

5.2. BAM 

This file format is the binary representation of the SAM 

format. BAM files are further compressed into BGZF format. 

BAM files also contain a header section and an alignment 

section. After decompression of BAM file it can be 

understood by human depending upon some SAM/BAM 

utility tools. 

 

5.3. CRAM 

This file format was discovered by EBI .This file format can 

be used to store compress lossless as well as lossy form of 

data. The advantage of this file over BAM format is that it 

gives better compression result than BAM. Also transition 

between CRAM to BAM can easily be done. In this file 

format data can be stored either in CRAM format or using 

some compressor like gzip, bzip2. 

 

5.4. SFF 

SFF or Standard Flowgram Format is a file format which can 

store at most 454 reads. These reads are different from 

normal DNA reads as it does not come up with base 

measurement information in place of that it provides the 

length details of the coming homo polymer string in the 
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sequence. This format possess three parts a common header 

segment, a read header segment and a read data segment. The 

data of each segment are mixture of numeric and character 

data. 

 

5.5. HDF5 

HDF5 is a file format which maintains a hierarchical data 

format. HDF5 is not only a file format but also a data model 

and library. It consists of two basic structures, the first one is 

group and the second one is dataset. The group structure is 

formed with any number of group or dataset with their 

corresponding metadata. Whereas the dataset structure is 

formed using array of data elements of multiple dimensions 

with their corresponding metadata. The group structure is 

composed of two parts group header and group symbol table. 

Group header includes name of the group header and the list 

of group attributes. Group symbol table on the other hand 

includes the list of objects which are the member of that 

particular group. The dataset structure has two parts the 

header and the data array. The header portion contains the 

information to access the data array and metadata.  

 

5.6. FASTA 

FASTA file format was first introduced by Bill Pearson. So it 

is also named as Pearson format. In this format the starting of 

new sequence is indicated by ‘>’ symbol. It stores the 

information in plain text format so it very easily 

understandable. Each sequence should be of 80 characters or 

less than that in each line. This file format sometimes comes 

up along with a QUAL file which is used to store the quality 

score information of nucleotide.  

 

FASTQ: FASTQ [70] is one of the most commonly used file 

format in genome sequencing.  It is an extended version of 

FASTA format which are able store the quality score 

information of each nucleotides with in a sequence. This 

format was introduced by Jim Mullikin. This format is easy 

to understand and represent that is why it became one of the 

most popular used file formats in the world. This format 

stores a numeric value with each nucleotide of any sequence 

defining quality score of the nucleotides. . Initially FASTQ 

format was used for Sanger capillary sequencing. This 

particular type of FASTQ format was known as Sanger 

FASTQ format. The other FASTQ formats are SOLEXA, 

ILLUMINA + etc. In this format each information 

represented using four lines. The first line is indicated by 

‘@’ symbol with the sequence name. Next the sequence lines 

which have no bound on the number of characters appeared 

in a sequence. The third line is initiated by ‘+’ symbol, in 

this line the information about the sequence may be repeated. 

Sometime it consists of a single character which helps to 

maintain the reduced file size. The fourth line dedicatedly 

used to store the quality score information. 

 

                            VI.  DISCUSSION AND CONCLUSION 

 

In this survey paper we discussed four different types of 

genome compression algorithm and give an overview of 

various genome compressions and read compression 

algorithms. Next we provide the different file formats which 

are used to store the genome sequences. All the algorithms 

discussed above have the common goal to store the genome 

sequence in a compressed form to reduce the storage cost. 

The dictionary based algorithms emphasizes to find out the 

similar sequence or reverse sequence or palindromes to 

achieve the reduced form while the statistical based 

algorithms emphasizes on the probability distribution of 

symbols within a sequence for compression. Among all of 

the four types referenced based algorithm performs better 

with highest compression rate. This compression rate could 

be enhanced much more if we can incorporate cloud 

computing in this as it introduces parallel  compression 

technique but in that case synchronization among various 

nodes would be a subject to notice for better achievement.  
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