

 © 2018, IJCSE All Rights Reserved 983

International Journal of Computer Sciences and Engineering Open Access

Survey Paper Vol.-6, Issue-8, Aug 2018 E-ISSN: 2347-2693

A Survey of Genome Compression Methodology

Rituparna Mitra

1
, Subhankar Roy

2*

1
Dep. of Computer Science, Kirtipur Nabin Chandra High School (H.S.), Kirtipur, Kolkata-700128, W.B., India

2
Dep. of Computer Science and Engineering, Academy of Technology, G. T. Road, Aedconagar, Hooghly-712121, W.B., India

*Corresponding Author: subhankar.roy07@gmail.com, Tel.: +919681011727

Available online at: www.ijcseonline.org

Accepted: 18/Aug/2018, Published: 31/Aug/2018

Abstract- Storing the information about human nucleotide is become essential now a day for various medical research

purposes. A human genome consists of almost 3.2 billion nucleotides. It is unmanageable to store, access and retrieve the

desired information from the massive bulk of unprocessed data. So the possible solution is genome compression. By

compression we mean that we are restricting on the data storage. Existing data compression methodology is not suitable to deal

with this massive data. In this paper we provide a survey analysis on various types of genome compression and read

compression algorithm which are specially designed to handle this voluminous raw DNA information. To extract the unique

non repeated information from the whole sequence is actually a tough challenge .These compression algorithms not only save

time but also provide high compression rate. We have discussed all the types of compression algorithm with their distinctive

approach. Each of them having some benefit over other. We also briefly discuss on various file formats used while

compression.

Keywords— Genome compression, Read compression, Data formats

I. INTRODUCTION

The cost of ordering the nucleotides within a genome has

dropped in such a way that it is more tending to produce

larger and longer reads by various sequencing platforms

which results in a massive amount of unmanageable data. It

is not easy to store, access, retrieve or transfer this amount of

data as it is a time consuming and costly process. Storing

these large amount of data need a sufficient storage space

which is beyond the possibility after a certain level.

Accessing this data took lot of time to retrieve the required

information. Transferring this data needs a large bandwidth

and also most of the time it cause network congestion. One

easily achievable solution is to remove the sequences form

storage after manipulating it or to store the sequence in a

compressed form for future reusability. The second method

is more reliable and scientific. This compression of genome

sequencing can be acquired by the use of any genome

compression algorithm. These compression algorithms are

complicated as they give importance to find out the raw non

repeated sub-sequences from the huge amount of data.

In this paper we are first going to discuss about some DNA

compression algorithm in section II. Sequencing the genome

is very crucial to properly analyse the genome information.

The production of short reads were done while sequencing.

In the section III of our paper we have mentioned about

various read compression algorithm. Following this we talk

about various research works done on genome compression

recently in section IV. After that in the next segment i.e. in

section V we converse about various file formats specifically

required to support genomic compressed data. Finally we

conclude our paper in section VI by providing our opinion on

various compression techniques which we have discussed in

this paper. In this paper we have done a survey analysis on

various genome compressions and read compression

techniques so that anyone could get an overview of different

methodology which will help in their future research works

and also those who are unaware of this domain of

bioinformatics could get the basic concept about genome and

read compression.

 II. GENOME COMPRESSION

There are various type of genome compression algorithm are

there each of them having their own unique logical structure.

This can be categorized into following way-

2.1. Bit operation oriented compression

Each DNA sequence consists of chain of genome bases

which are also known as nucleotides, they are adenine (A),

guanine (G), cytosine (C) and thymine (T). In this technique

each bases are represented using binary code(like A->00,C-

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 984

>01,G->10,T->11) and two or more bases are put into one

set. In this way the whole compression technique took place.

GenBit Compress (GBC) [1] algorithm use this methodology

for compression. The algorithm based on 2 bit compression

and run length encoding technique. Using similar approach

Rajendra Kumar Bharti et al. presents a sequence

compression algorithm in 2011 where they put three bases in

a set to encode the genome and then compress it using LZ77

[2]. In 2010 Ateet Mehta and Bankim Patel incorporates hash

functions with bit operation to compress genome sequences

[3]. Piyuan Lin, Shaopeng Liu, Lixia Zhang, et al in 2009

make revolutionary change in approach by applying pattern

matching technique for compression [4]. In 2011 Pothuraju

Rajeswari and Allam Apparao [5] give attention not to

compress the whole genome sequence but to figure out the

non-repeated portion in a genome and hence produces

different bit patterns for compression of repeated and non-

repeated part in the genome.

2.2. Dictionary oriented compression

In this method the input sequence is scanned from left to

right to check for the repeated and non-repeated substrings

within the given sequence. After scanning the non-repeated

parts is stored for future reference but the redundant repeated

parts are not stored in place of that a reference is stored

which then links with a dictionary where all the repeated

substrings are stored. This method of compression does not

depend on the given input sequence. Hence this approach

focuses on the reduction on the storage consumption made

by the genome sequences. Biocompress [6], Biocompress-

2[7] and Cfact [8] these algorithms follow this approach, but

compression rate for these are very poor. To improve the

performance approximate repeated sequences are being given

preference and in 2000, Chen et al. developed GenCompress

[9] with better result. This algorithm is further improved by

incorporating palindrome scheme in DNACompress [10] by

Chen et al. in 2002. This algorithm achieves higher

compression rates for large sequence as well. CWT+LZ

developed by Matsumoto et al.[11] follow the same

procedure as GenCompress but it is capable of encoding only

smaller repeated sub sequences, the longer sequences are

handled by substitution method and to store the non-repeated

parts it uses a context tree weighting technique. COMRAD

[12] algorithm creates the dictionary simultaneously while

checking for the similar subsequence from the input. This

algorithm operates in multiple passes. Each time while

scanning the input sequence it discovered a longer sub-

sequence, it simply updates the dictionary with it. The

compressed sequence string with the dictionary is further

encoded. The above mentioned algorithms are unable to do

the storage utilization due to the approach of finding the

approximate match from the given sequence, Manzini and

Rastero thoroughly examines the various sequences and

detects three types of repeat can be occurred in any sequence,

i.e. non-repeated, approximate repeat and reverse

complement repeat. Depending on this category they

invented DNA-X [13] algorithm which performs in better

storage utilization and also gives higher compression rate.

The modernization of Cfact algorithm was done by Lee et

al.[14] with four phases. In the first phase exact matched sub-

strings are detected to form a suffix tree, these were

comprehended to approximate repeat using dynamic

programing method in the next phase, it further recognize the

non-overlapped portion from it and finally Fibonacci

encoding is used for the repeated portions. Dimitris Antoniou

et al. [15] incorporate the functioning of splay tree in their

compression algorithm. It has been proved that conventional

way of compression of the genome by considering the

sequence altogether is not always gives the optimal

compression rate whereas Kalyan Kumar Kaipa et al. [16]

designed a new approach of genome compression by

partitioning the whole sequence into uneven chunks of

sequences, then encode them independently. To keep track of

the repeated parts in various chunks a hash table is

maintained. It is necessary to recognize the replicated parts

within a sequence to achieve optimal compression. Hamming

distance between various sequences can be measured to

identify the repeated parts within them; this method is used

in DNAPack [17] algorithm.

2.3. Substitution and Statistics Oriented Algorithms

Dictionary based algorithms tries to find out the duplicate

segments within a genome but it unable to deal with

approximate repeated segments whereas the statistical

algorithms only concentrates on detecting the sub-sequences

which appears frequently within a sequence. So it is obvious

that statistical methods give better performance than

dictionary based approach. When we combine these two

approaches its performance is extremely noticeable.

Following this approach in 2000 Matsumoto et al. introduces

CTW+LZ [18]. This algorithm first scan the sequence to

detect the palindrome and approximate repeated segments

through dynamic programming and hash based functions,

after that it uses LZ77 encoding technique to compress the

longer replicated partitions and the shorter one is encoded

using CTW (context tree weighting) structure. The

algorithms based on NML (normalized maximum

likelihood)[19] and GeNML [20] are also belongs to this

category. The NML firstly divides the whole sequence into

equal sized blocks then it tries to locate the approximate

repeated segments within each block. The approximate

repeated segments of the present block are further encoded

with the reference to a segment of previously occurred block

with least hamming distance and the exact replicated portions

are encoded using simple Markov model. Thus the inability

to deal with approximate repeated segments with in a

sequence is reduced after invention of NML. GeNML is the

improved version of the previous algorithm. This algorithm

divides the sequence into variable sized blocks. Here the

reference sequence can be modified (insertion, deletion or

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 985

substitution) according to the present sequence. In 2010

Mishra et al. presented DNA Sequence Compressor

(DNASC 21]. In this algorithm both horizontal and vertical

compression took place. For horizontal compression they

used extended Lempel-ziv encoding technique. In the next

phase the previous encoded sequence is further compressed

vertically taking a block size of 6 and window size of 128.

2.4. Statistics Oriented Algorithm

The statistical based algorithms focus on the occurrence

frequency of the sub sequences within a genome. The

probability distribution of each symbol must be recognized

to achieve high compression. The most common statistical

encoding technique is Huffman encoding [22]. It produces a

binary tree depending upon the occurrence of the substring.

The substring with higher frequency is represented using

shorter code and substring with lower frequency is

represented with longer codes. This approach is very useful

in DNA compression. The compressed sequence is stored

with an additional Huffman code table for computing the

compression ratio when required. This same reference table

can be shared among many sequences while compression.

Hence it also reduces the storage cost. CDNA [23] is the first

statistical based algorithm introduced by Loewenstern et al.

in the year 1997. This algorithm scans the whole sequence to

keep track of the probability distribution of each symbol.

This algorithm is trying to detect the approximate matched

subsequence with reference to a previously occurred

sequence having smaller Hamming distance. In the next year

Allison et al. proposed ARM [24] algorithm which is also

based on statistical analysis of occurrence of sub-sequences

within a genome. To calculate the probability of a

subsequence the algorithm first observe the production of

each sub-sequences and then adding the probabilities of all

sequences. XM [25] is another statistical algorithm which

compresses the sequence depending upon the frequency of

appearance of each symbol. The appearance frequency

means how many time that symbol is appeared with in the

sequence. It is also known as probability distribution of the

symbol. This probability distribution of symbols is further

passed to an arithmetic encoder for final encoding. To

determine the occurrence of each symbol the algorithm took

help of a group of systems i.e. (1) order-2 Markov models;

(2) order-1 context Markov models and (3) a copy expert.

Diogo Pratas and Armando J. Pinho [26] discover a

statistical compression algorithm whose compression

methodology is made up of integrating six different Markov

model’s functional logic. Gene-Compressor [27] ,this

statistical algorithm works differently than XM ,it follows

three steps for compression. In the first step a Huffman

encoding scheme is selected for each symbol of the sequence

depending upon the probability of occurrence. In the next

step the encoded output is divided into blocks and in the final

step these blocks are further encoded using run-length

encoding. All the above mentioned compression techniques

have some similar sub-sequences present in the input

sequence but if the blocks of any given input sequence is

totally distinguish from each other i.e. the sub-sequences

within the blocks have no common parts in them. In the 2008

I. Tabus et al. [28] tries to find the solution in their innovated

algorithm. As the blocks are totally distinct from each other

the algorithm treats each block individually. All the blocks

are treated separately by Markov model to identify the

sequence with minimum length after selection it is further

compressed using an arithmetic compressor. Kalyan Kumar

Kaipa et al.[29] discovers another compression algorithm

based on Markov model but the algorithm only do the

encoding for the non-replicated portions and dissimilar parts

within a replicated sequence.

2.5. Reference Sequence Oriented Algorithm

When researchers are working on compressing genomes of

same species it is found that they are highly similar and to

compress this kind of genomes the referential compression

approach was introduced. In this method the target genome

sequence (which is to be compressed) is compressed with

respect to or a set of previously known sequences (reference

sequences). This approach gives best results for similar type

of genomic sequences. It has been found that the

compression rate of reference based algorithms is highest

compared to all other types of algorithms. To get the best

result good reference strings must be chosen and for that K-

mer hashing technique applied where the value of k should

be greater than 15 in order to avoid random matches. The

main challenge with this approach is to find long suitable

matching sequence and this goal can be achieved with the

help of suffix tree or hash based structure. Marty C. Brandon

et al.[30] proposed one algorithm where they concentrates

only to store the dissimilarity between the reference sequence

and the to be compressed sequence. The dissimilarity could

be found in any of the following three form i.e. insertion,

deletion or replacement. After pointing out the differences

between the two sequences various encoding schemes like

Golomb [31], Elias [32], Huffman [33] are used to do the

further encoding.). Christley S et al[34] in 2009 present

DNAzip algorithm , this algorithm also tries to found out the

mismatches occurred between the reference sequence and the

target sequence but in the form of SNPs (single-nucleotide

polymorphism (SNP) or an INDEL (an insertion or a deletion

of multiple bases) . Congmao Wang and Dabing Zhang [35]

introduces GRS technique which finds longest common

sequence between two given sequences and if the length of

the matched sequence is more than a predefined threshold

value then the differences between the sequences is

compressed using Huffman encoding technique otherwise the

reference sequence and the input sequence is divided into

smaller sequences and the procedure repeats. The algorithms

based on self-indexing gives better compression rates. The

algorithm encodes the input sequence using LZ77 method

with respect to the suffix array of the available reference

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 986

sequence. Shanika Kuruppu et al. present a reference

oriented algorithm based on self-indexing structure, known

as RLZ [36] algorithm is further revised and RLZopt [37]

formulated where they give emphasize on local look-ahead

optimization technique. This algorithm calculates longest

increasing subsequence which allows efficiently encode

positions. Szymon Grabowski and Sebastian Deorowicz

discover another new approach [38] established on RLZopt

with compression technique using LZ77 algorithm. The

uniqueness of this algorithm is that it compresses the input

sequence depending upon a set of reference sequences. This

algorithm gives special recognition for encoding approximate

matches within the sequence. Additionally Lempel-Ziv

algorithm considers length of matches and distance between

matched portions. Further the compression is done by shared

Huffman encoding on the input blocks. GReEN [39]

introduced by Armando J. Pinho et al. is another reference

based model which builds upon copy-expert and it tries to

find out the k-mer matching between the input sequence and

the reference sequence. The algorithm works differently

when it founds the length of the reference sequence and the

target sequence are same. In that case it only encodes the

SNPs expecting the sequence to be already aligned. Hyoung

Do Kim and Ju-Han Kim produce another algorithm [40]

which is a web based approach depending on LZ77

compression style with random access. Heba Afy,

Muhammad Islam, and Manal Abdel Wahed [41][42]

implemented a sequence alignment tool as a referenced based

compression technique which is used to calculate the

modified distance between pair of sequences. The sequences

with least dissimilarity will be selected as reference

sequence. The concept of RLZopt was further revised by

Deorowicz S et al. this algorithm known as GDC [43]. The

important features of this algorithm are 1) it does not select

the reference sequence randomly ,2) sub-sequences of the

target sequence are not necessarily be the part of reference

sequence, 3) substrings are identified through approximate

matching and 4) the algorithm partitioned the whole

sequence into roughly equal size of blocks for encoding. It

used Huffman encoding technique to ensure random access

of the compress data.

2.6. Reference-Free Oriented Algorithms

Reference based methods provides best result when to be

compressed sequence and the reference sequence are having

similarity between them. But sometime target genomes

having lack of similarities with known ones and such as in

case of de novo sequencing and difference between the target

sequence and the reference sequence is not properly

obtainable then we need reference free compression

techniques. . In 2012 Bose T, Mohammed MH, Dutta A, et

al. [44] proposed BIND algorithm which encodes each target

sequence using two binary strings for compression. In the

first string base A or T are set with 0 and base G or C are set

with 1, but in the second string base T or C are set with 0 and

base A or G is set with 1. After assigning the bases with their

respective bit value the length of 1 and 0 are recorded for

further encoding. DELIMINATE[45] algorithm was

discovered in the same year by Mohammed MH, Dutta A,

Bose T where it first scan the whole sequence to find out the

two most dominating bases within the sequence then it is

delta encoded[46] ,after that it is deleted from the sequence

and the remaining sequence is further designated using

binary code. It had been noticed that DELIMINATE

produces better result than general purpose algorithms such

as gzip, bzip2 etc. DNAEnc3 [47] developed by Pinho AJ et

al. also found to be a reference free compression technique.

This algorithm is based on the performance of various

Markov models. The models of different orders worked into

different portions of the sequence in order to detect

contextual and palindrome information from the sequence.

The performance of the models is further analyzed to choose

the best model for encoding the various parts of the

sequence.

Thus when an appropriate reference sequence is available it

is feasible to use reference based methods for better

compression gain. On the other hand reference free methods

are totally independent of any other reference sequence and

they give not only better compression rates but also efficient

in time.

 III. READ COMPRESSION

While working with DNA sequencing sometimes we need to

reconstruct the DNA sequence in order to get the original

sequence so aligning and merging of DNA fragments are

done from a longer sequence. This process is required as

sequencing technology cannot read the whole genomes in

one go but rather reads small portion of fragments between

20 to 30000 bases. Typically these small fragments are

known as reads. In this section we will discuss some read

compression technologies. This reads are aligned directly to

the reference sequence and it is further used for SNP

detection. The difference between genome sequencing and

read sequencing is that genome sequencing can be erroneous.

Each reads have a quality score which denotes the

probability of the base to be in correct position , so from this

quality score it can be decided whether the base is its actual

position or not. This score is very essential in SNP detection

methods.

3.1. Algorithms based on dictionary formation

Oscar Herrera and Angel Kuri-Morales proposes one

dictionary based approach [48] which detects the rate of

appearing of each meta symbols in multiple sequence. The

meta symbols are nothing but the alphabetical symbols with

an additional gap in between the sequence which can be

further replaced by any symbol. The algorithm maintains a

separate dictionary structure to store each meta symbols to

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 987

achieve better compression rate. Next in 2008 Giulia

Menconi, Vieri Benci, and Marcello Buiatti discovers

another approach named CASToRe [49] which is a higher

version of Lempel-Ziv compression. This algorithm also

maintains an additional dictionary to do the comparison

between the sequences with the dictionary entries. Whenever

it detects a new entry to the dictionary it stores the new entry

in the form of two already stored sequence of the same

dictionary. Zexuan Zhu, Jiarui Zhou, Zhen Ji, et al proposed

an approach POMA [50] which is an optimization based

approach. This algorithm categorizes the repeated part into

four types as: direct, mirror, pairing and inverted. The

fragments which reoccur at most in the sequence are added to

the dictionary.

3.2. Algorithms based on statistics

Vishal Bhola, Ajit Bopardikar, Rangavittal Narayanan, et al

developed a non-referential lossless compression algorithm

in FASTQ format in 2011 named DSRC [51]. The file has

four parts sequence identifier, raw sequence, description and

quality scores. Different encoding schemes and compression

techniques are used for each part of the sequence. The

Sequence identifiers and description parts are further scanned

to check for the needless information. Markov experts are

used here to compress the raw sequences and runlength

encoding scheme has been used to compress the quality score

part. In 2011 Kiyoshi Asai et al. prepared a read compression

technique [52] focusing on the quality score portion of any

sequence. It has been observed that information within the

quality score degrades after compression for FASTQ files.

So they emphasizes on lossy and lossless compression of

quality score. In this paper it has been shown that lossy

compression for quality score gives impressive result by

reducing storage cost. Waibhav Tembe et al. produce another

scheme which also gives importance to quality score of any

read sequence. In this new algorithm G-SQZ [53] the base

value and quality score forms a pair i.e. (base, score) and

each pair of this base and score is encoded using Huffman

coding, further this coded contents are written into a binary

file. Sebastian Deorowicz and Szymon Grabowski invented

block based compression approach DSRC [54]. In this

algorithm the FASTQ file is divided into three parts as

identifiers, raw bases and quality score and different

compression techniques are applied to those parts. The

quality score pattern found to be of two type quasi-random

and repetitive and for each of them two different

compression technology is being used here. Huffman coding

is used for quasi-random type and run-length encoding

technique is used for repetitive quality score steams. In 2011

Wei-Hsin Chen et al. [55] uncovers an approach where a

complete compression sequence system with a data

management component and a graphical user interface is

produced. In this approach the sequence length is encoded

using Fibonacci code and the conflicting nucleotides are

represented using 2-bit encoding.

3.3. Referenced based read compression

Identifying the mismatch occurrence of read with in a

sequence with respect to a reference sequence is essential

for compression. The algorithms based on reference

sequence mainly contain two phases: mapping the reads and

encoding them. While compression quality score became

prioritized as it plays a vital role on compression rate. In

GenCompress[56] read compression algorithm reads are

aligned to a reference sequence, here Bowtie is used for

aligning the read and then Golomb , Elias Gamma , MOV or

Huffman coding is used to encode the mapping results. It

stores the starting position, the match length and an optional

difference list describing the mismatches with the reference

string. Sequencing errors may occur at the end of reads to

avoid this base mismatches are indexed form the end of the

reads. GenCompress can only compress the four bases, it

cannot handle any additional information or information of

quality score. Christos Kozanitis, Chris Saunders, Semyon

Kruglyak, et al. originate another similar approach named

SlimGene [57] which done the alignment using CASAVA

software toolkit. This may be a lossy or losseless

compression scheme. This algorithm only emphasize on

encoding technique to save the storage space. This algorithm

uses Huffman encoding and arithmetic encoding. The

mapping of reads and the encoding process is done by two

binary vectors in this algorithm. In 2011 Fritz MH-Y et al

introduces CRAM [58] algorithm , which also follow the

similar approach as the previous algorithm in addition with

that this process use an additional data structure de Bruijn

graph to keep track of unmapped reads for a reference

sequence. De Bruijn graph was also used in Quip [59], which

was invented by Jones DC et al., in this algorithm the

reference sequence is created form the target sequence itself.

NGC [60] algorithm goes through the read alignment

columns in order to find out the similarity among the

multiple reads which are mapped to a particular genome

sequence position. These reads are further encoded using

run-length encoding technique. . In 2013 Bonfield JK et al.

produces Samcomp [61] which is based on SAM format. A

totally distinct approach of read compression was introduced

by Markus H. Fritz et al. [62] which is based on image

compression technology. The matched position of the bases

is stored using Huffman coding then this base positions are

further delta encoded using Golomb encoding according to

their appearing order in the reference sequence.

3.4. Reference-free read compression

Sometimes for some compression implementation reference

sequences selection is not possible as in de novo sequencing

in that case reference-free compression methods are useful. .

In 2011 Yanovsky V. ReCoil introduces a read compression

algorithm ReCoil [63] which is based on the logic of

constructing maximum spanning tree(MST). At first an

undirected graph is built in which vertices designate the

reads and the edges designates the common kmers number

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 988

between the end vertices. Depending on this graph an MST is

formed and traversed from a randomly selected root node.

The reads for each root nodes are stored directly and other

surviving reads are encoded. BEETL [64] was presented by

Cox AJ, Bauer MJ, Jakobi T, et al. in 2012 which follows the

method of Burrows Wheeler Transformation (BWT) to point

out the repeated reads within the sequence. Next it is further

compressed using gzip, bzip2 etc. Assembling the reads

which share common elements is sometime very useful

technique in read compression. SCALCE[65] algorithm form

a group of reads which have common “core” substrings next

compression is done by gzip or LZ77 .

 IV. RECENT WORK

Here we will discuss some recent invented algorithms on

genome compression which is based on recent advanced

technology. In august 2011 Heba Afify, Muhammad Islam

and Manal Abdel Wahed present a DNA lossless differential

compression algorithm [66]. This algorithm is of differential

type which generates difference sequence depending upon a

op-code table. Here the sequences are stored in the form of

reference sequence, sequence differences and differences

within the location of the sequences. Bacem Saada, Member,

IAENG, Jing Zhang proposed a Modified DNABIT [67]

algorithm in 2016. This is a two phase compression

technique. In the first phase, modified version of DNABIT

compression algorithm is used to compress and convert the

DNA sequence into binary representation. In the next phase,

compression is done to the resulting DNA using the

Extended-ASCII encoding through which one character can

represent four nucleotides or more. It gives better

compression ratio than other existing algorithms. In May

2016 Rajesh Mukherjee, Subhrajyoti Mandal , Bijoy Mandal

discovered an approach based on reversed sequencing [68].

This algorithm scans the whole sequence to find out the

reverse substring. This algorithm maintains a library file to

store the reverse substring and its corresponding original

reverse substring. The reverse original substring of the

algorithm setup a Dynamic Look up Table to store the ASCII

character which is placed on the source file to get better

compression. Recently in September 2017 Rexline S J and

Trujilla Lobo F produced a DNA compression algorithm [69]

using pattern recognition technique. This algorithm consists

of two phases. In the first phase it finds the repeats,

palindromes, complements and reverses complements and

generates the Pattern Code Table. The source file is encoded

using the Pattern Code during the second pass.

 V. FILE FORMATS

Genome sequencing produces bulk of data even after

compression. The normal files are not fitted to store these

voluminous data. There are many file formats which are used

to store the sequence data each having some advantages over

other. Here we are going to discuss the various data formats.

This file formats are mainly supported by SRA (sequence

read archive). It is a data archive which stores various

biological sequences so that researchers can use access this

information to reproduce new sequences by comparing the

various data sets.

5.1. SAM

This file format is used to store read alignment within a

sequence. Heng Li invented this Sequence Alignment/ Map

format which is a TAB delimited format. This format consist

of two parts the header section and the alignment section.

The header section should start with a “@” symbol. The

alignment segment should content 11 compulsory ordered

alignment related data. The header section of each data

contains a ‘TAG:VALUE’ which is used to describe the

format and content of the value. The value of the 11

compulsory alignment related data are either ‘0’or ‘*’. Those

11 fields are as follows:

• QNAME: it is string type

• FLAG: it is integer type

• RNAME: it is string type

• POS: it is integer type

• MAPQ: it is integer type

• CIGAR: it is string type

• RNEXT: it is string type

• PNEXT: it is integer type

• TLEN: it is integer type

• SEQ: it is string type

• QUAL: it is string type

5.2. BAM

This file format is the binary representation of the SAM

format. BAM files are further compressed into BGZF format.

BAM files also contain a header section and an alignment

section. After decompression of BAM file it can be

understood by human depending upon some SAM/BAM

utility tools.

5.3. CRAM

This file format was discovered by EBI .This file format can

be used to store compress lossless as well as lossy form of

data. The advantage of this file over BAM format is that it

gives better compression result than BAM. Also transition

between CRAM to BAM can easily be done. In this file

format data can be stored either in CRAM format or using

some compressor like gzip, bzip2.

5.4. SFF

SFF or Standard Flowgram Format is a file format which can

store at most 454 reads. These reads are different from

normal DNA reads as it does not come up with base

measurement information in place of that it provides the

length details of the coming homo polymer string in the

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 989

sequence. This format possess three parts a common header

segment, a read header segment and a read data segment. The

data of each segment are mixture of numeric and character

data.

5.5. HDF5

HDF5 is a file format which maintains a hierarchical data

format. HDF5 is not only a file format but also a data model

and library. It consists of two basic structures, the first one is

group and the second one is dataset. The group structure is

formed with any number of group or dataset with their

corresponding metadata. Whereas the dataset structure is

formed using array of data elements of multiple dimensions

with their corresponding metadata. The group structure is

composed of two parts group header and group symbol table.

Group header includes name of the group header and the list

of group attributes. Group symbol table on the other hand

includes the list of objects which are the member of that

particular group. The dataset structure has two parts the

header and the data array. The header portion contains the

information to access the data array and metadata.

5.6. FASTA

FASTA file format was first introduced by Bill Pearson. So it

is also named as Pearson format. In this format the starting of

new sequence is indicated by ‘>’ symbol. It stores the

information in plain text format so it very easily

understandable. Each sequence should be of 80 characters or

less than that in each line. This file format sometimes comes

up along with a QUAL file which is used to store the quality

score information of nucleotide.

FASTQ: FASTQ [70] is one of the most commonly used file

format in genome sequencing. It is an extended version of

FASTA format which are able store the quality score

information of each nucleotides with in a sequence. This

format was introduced by Jim Mullikin. This format is easy

to understand and represent that is why it became one of the

most popular used file formats in the world. This format

stores a numeric value with each nucleotide of any sequence

defining quality score of the nucleotides. . Initially FASTQ

format was used for Sanger capillary sequencing. This

particular type of FASTQ format was known as Sanger

FASTQ format. The other FASTQ formats are SOLEXA,

ILLUMINA + etc. In this format each information

represented using four lines. The first line is indicated by

‘@’ symbol with the sequence name. Next the sequence lines

which have no bound on the number of characters appeared

in a sequence. The third line is initiated by ‘+’ symbol, in

this line the information about the sequence may be repeated.

Sometime it consists of a single character which helps to

maintain the reduced file size. The fourth line dedicatedly

used to store the quality score information.

 VI. DISCUSSION AND CONCLUSION

In this survey paper we discussed four different types of

genome compression algorithm and give an overview of

various genome compressions and read compression

algorithms. Next we provide the different file formats which

are used to store the genome sequences. All the algorithms

discussed above have the common goal to store the genome

sequence in a compressed form to reduce the storage cost.

The dictionary based algorithms emphasizes to find out the

similar sequence or reverse sequence or palindromes to

achieve the reduced form while the statistical based

algorithms emphasizes on the probability distribution of

symbols within a sequence for compression. Among all of

the four types referenced based algorithm performs better

with highest compression rate. This compression rate could

be enhanced much more if we can incorporate cloud

computing in this as it introduces parallel compression

technique but in that case synchronization among various

nodes would be a subject to notice for better achievement.

REFERENCES

[1] P.Raja Rajeswari (1) Allam Apparo (2), V.K. Kumar, Genbit

Compress Tool(GBC): A Java-Based Tool to Compress DNA

Sequences and Compute Compression Ratio(bits/base) of

Genomes , Acharya Nagarjuna University, India, (2) Jawaharlal

Nehru Technological University, India and (3) S.V.H. College Of

Engineering, India7 Jun 2010

[2] Jacob Ziv and Abraham Lempel. A universal algorithm for

sequential data compression. IEEE Transactions on Information

Theory, 23(3):337-343, 1977

[3] Ateet Mehta and Bankim Patel. Dna compression using hash based

data structure. International Journal of Information Technology &

Knowledge Management, 3:383-386, 2010.

[4] Piyuan Lin, Shaopeng Liu, Lixia Zhang, et al. Compressed pattern

matching in dna sequences using multithreaded technology. In 3rd

International Conference on Bioinformatics and Biomedical

Engineering, ICBBE'09, 2009.

[5] Pothuraju Rajeswari and Allam Apparao. Dnabit compress -genome

compression algorithm. Bioinformation, 5(8):350-60, 2011.

[6] Grumbach, S. and Tahi, F. (1993). Compression of DNA sequences.

In DCC'93:Proceedings of the Conference on Data Compression,

pages 340-350.

[7] Grumbach, S. and Tahi, F. (1994). A new challenge for compression

algorithms:Genetic sequences. Information Processing and

Management, 30(6), 875-886

[8] Rivals, E., Delahaye, J., Dauchet, M., and Delgrange, O. (1996). A

guaranteed compression scheme for repetitive DNA sequences. In

DCC '96: Proceedings of the Conference on Data Compression,

page 453.

[9] Chen, X., Kwong, S., and Li, M. (2000). A compression algorithm

for DNA sequences and its applications in genome comparison. In

RECOMB'00: Proceedings of the 4th Annual International

Conference on Computational Molecular Biology, pages 107-117.

[10] Chen, X., Li, M., Ma, B., and Tromp, J. (2002). DNACompress:

fast and effective DNA sequence compression. Bioinformatics,

18(12), 1696-1698.

[11] T. Matsumoto, K. Sadakane, and H. Imai. Biological sequence

compression algorithms. Genome l.Informatics, 11:43–52, 2000.

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 990

[12] Kuruppu S, Beresford-Smith B, Conway T, et al. Iterative

dictionary construction for compression of large DNA datasets.

IEEE-ACM Trans Computat Biol Bioinformatics 2012;9:137-49

[13] Manzini, G., and Rastero, M., 2004, A Simple and Fast DNA

Compressor, Software: Practice and Experience, 34(14), 1397–

1411.

[14] A. J. T. Lee, C. Chang and C. Chen, "DNAC: An Efficient

Compression Algorithm for DNA Sequences," National Taiwan

University, Taipei, Taiwan 10617, R.O.C., 2004.

[15] Dimitris Antoniou, Evangelos Theodoridis, and Athanasios

Tsakalidis. Compressing biological sequences using selfadjusting

data structures. In Information Technology and Applications in

Biomedicine, 2010

[16] Kalyan Kumar Kaipa, Ajit S Bopardikar, Srikantha Abhilash, et al.

Algorithm for dnasequence compression based on prediction of

mismatch bases and repeat location. In Bioinformatics and

Biomedicine Workshops, BIBMW, 2010.

[17] Behzadi, B. and Le Fessant, F. (2005). DNA compression

challenge revisited: A dynamic programming approach. In

CPM'05: Proceedings of the 16th Annual Symposium on

Combinatorial Pattern Matching, volume 3537 of LNCS, pages

85-96.

[18] Matsumoto, T., Sadakane, K., and Imai, H. (2000). Biological

sequence compression algorithms. Genome Informatics, 11, 43-52.

[19] I. Tabus, G. Korodi, and J. Rissanen, "DNA sequence compression

using the normalized maximum likelihood model for discrete

regression," in Proc. of the Data Compression Conf. (DCC2003),

2003, 253–262.

[20] Korodi, G. and Tabus, I. (2005). An effcient normalized maximum

likelihood algorithm for DNA sequence compression. ACM

Transactions on Information Systems, 23(1), 3-34.

[21] Mishra, K. N., Aaggarwal, A., Abdelhadi, E., et al., 2010, An

Efficient Horizontal and Vertical Method for Online DNA

Sequence Compression, International Journal of Computer

Applications, 3(1), 39-46.

[22] David A Huffman. A method for the construction of minimum-

redundancy codes. Proceedings of the Institute of Radio Engineers,

40(9):1098-1101, 1952.

[23] D. Loewenstern, and P. N. Yianilos, "Significantly lower entropy

estimates for natural DNA sequences," in Proc. of the Data

Compression Conf., (DCC '97), 1997, 151–160.

[24] Allison, L., Edgoose, T., and Dix, T. I., 1998, Compression of

strings with approximate repeats, Proc. ISMB, 8–16.

[25] M. D. Cao, T. I. Dix, L. Allison, et al., "A Simple Statistical

Algorithm for Biological Sequence Compression," in Proc. of the

Data Compression Conf., (DCC '07), 2007, 43–52.

[26] Diogo Pratas and Armando J. Pinho. Compressing the human

genome using exclusively markov models. In Miguel P. Rocha,

Juan M. Corchado Rodrguez, Florentino Fdez-Riverola, and

Alfonso Valencia, editors, PACBB, volume 93 of Advances in

Intelligent and Soft Computing, pages 213-220. Springer, 2011.

[27] K. R. Venugopal, K. G. Srinivasa, and Lalit Patnaik. Probabilistic

Approach for DNA Compression, chapter 14, pages 279-289.

Springer, 2009.

[28] I. Tabus and G. Korodi. Genome compression using normalized

maximum likelihood models for constrained markov sources. In

Information Theory Workshop, 2008.

[29] Kalyan Kumar Kaipa, Kyusang Lee, Taejin Ahn, et al. System for

random access dna sequence compression. In International

Conference on Bioinformatics and Biomedicine Workshops, 2010.

[30] Marty C. Brandon, Douglas C. Wallace, and Pierre Baldi. Data

structures and compression algorithms for genomic sequence data.

Bioinformatics, 25(14):1731-1738, 2009.

[31] Golomb S. Run-length encodings. IEEETrans InformTheory

1965;12:399–401.

[32] Elias P. Universal codeword sets and representations of the

integers. IEEETrans InformTheory 1975;21:194–203.

[33] Huffman DA. A method for the construction of minimum

redundancy codes. Proc IRE 1952;40:1098–101.

[34] Scott Christley, Yiming Lu, Chen Li, et al. Human genomes as

email attachments. Bioinfor-matics, 25(2):274-275, 2009.

[35] Congmao Wang and Dabing Zhang. A novel compression tool for

efficient storage of genome resequencing data. Nucleic Acids

Research, 39(7):e45, 2011.

[36] Shanika Kuruppu, Simon J. Puglisi, and Justin Zobel. Relative

lempel-ziv compression of genomes for large-scale storage and

retrieval. In Proceedings of the 17th International Conference on

String Processing and Information Retrieval, SPIRE'10, pages

201-206, 2010.

[37] Shanika Kuruppu, Simon Puglisi, and Justin Zobel. Optimized

relative lempel-ziv compression of genomes. In Australasian

Computer Science Conference, 2011.

[38] Szymon Grabowski and Sebastian Deorowicz. Engineering relative

compression of genomes. CoRR, abs/1103.2351, 2011.

[39] Armando J. Pinho, Diogo Pratas, and Sara P. Garcia. Green: a tool

for efficient compression of genome resequencing data. Nucleic

Acids Research, 2011.

[40] Sebastian Kreft and Gonzalo Navarro. Lz77-like compression with

fast random access. In Proceedings of the 2010 Conference on

Data Compression, DCC'10, pages 239-248, 2010.

[41] Heba Afify, Muhammad Islam, and Manal Abdel Wahed. Dna

lossless differential compression algorithm based on similarity of

genomic sequence database. CoRR, abs/1109.0094, 2011.

[42] Heba Afify, Muhammad Islam, and Manal Abdel Wahed. Genomic

sequences differential compressionmodel. International Journal of

Computer Science and Information Technology,3:145-154, 2011.

[43] Deorowicz S, Grabowski S. Robust relative compression of

genomes with random access. Bioinformatics 2011;27:2979–86.

[44] Mohammed MH, Dutta A, Bose T, et al. DELIMINATE-afast and

efficient method for loss-less compression of genomic sequences.

Bioinformatics 2012;28:2527–9.

[45] Pinho AJ, Ferreira PJSG, Neves AJR, et al. On the representability

of complete genomes by multiple competing finite-context

(Markov) models. PLoS One 2011;6:e21588.

[46] Hunt JJ, Vo K-P, Tichy WF. Delta algorithms: an empirical

analysis. ACMTrans Software EngMethodol (TOSEM)

1998;7:192–214.

[47] Pinho AJ, Ferreira PJSG, Neves AJR, et al. On the representability

of complete genomes by multiple competing finite-context

(Markov) models. PLoS One 2011;6:e21588.

[48] Oscar Herrera and Angel Kuri-Morales. Lossless compression of

biological sequences with evolutionary metadictionaries. In

Workshop on Machine Learning and Data Mining, 2009.

[49] Giulia Menconi, Vieri Benci, and Marcello Buiatti. Data

compression and genomes: a two dimensional life domain map.

Journal of Theoretical Biology, 253(2):281-288, 2008.

[50] Zexuan Zhu, Jiarui Zhou, Zhen Ji, et al. Dna sequence compression

using adaptive particle swarm optimization-based memetic

algorithm. IEEE Transactions on Evolutionary Computation,

15(5):643-658, 2011.

[51] Vishal Bhola, Ajit Bopardikar, Rangavittal Narayanan, et al. No-

reference compression of genomic data stored in fastq format. In

Proceedings of the 2011 IEEE International Conference on

Bioinformatics and Biomedicine, BIBM'11, pages 147-150, 2011.

[52] Raymond Wan, Vo N. Anh, and Kiyoshi Asai. Transformations for

the compression of fastq quality scores of next generation

sequencing data. Bioinformatics, 2011

[53] Waibhav Tembe, James Lowey, and Edward Suh. G-sqz: compact

encoding of genomic sequence and quality data. Bioinformatics,

26(17):2192-2194, 2010.

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 991

[54] Sebastian Deorowicz and Szymon Grabowski. Compression of dna

sequence reads in fastq format. Bioinformatics, 27(6):860-862,

2011.

[55] Wei-Hsin Chen, Yu-Wen Lu, Feipei Lai, et al. Integrating human

genome database into electronic health record with sequence

alignment and compression mechanism. Journal of Medical

Systems, 36(3):2587-2597, 2011.

[56] Kenny Daily, Paul Rigor, Scott Christley, et al. Data structures and

compression algorithms for high-throughput sequencing

technologies. BMC Bioinformatics, 11(1):514+, 2010.

[57] Christos Kozanitis, Chris Saunders, Semyon Kruglyak, et al.

Compressing genomic sequence fragments using slimgene. In

Proceedings of the 14th Annual International Conference on

Research in Computational Molecular Biology, RECOMB'10,

pages 310-324, 2010.

[58] Fritz MH-Y, Leinonen R, Cochrane G, et al. Efficient storage of

high throughput DNA sequencing data using reference based

compression. GenomeRes 2011; 21:734–40.

[59] Jones DC, Ruzzo WL, Peng X, et al. Compression of

nextgeneration sequencing reads aided by highly efficient denovo

assembly. Nucleic Acids Res 2012;40:e171.

[60] Popitsch N, von Haeseler A. NGC: lossless and lossy compression

of aligned high-throughput sequencing data. Nucleic Acids Res

2013;41:e27.

[61] Bonfield JK, Mahoney MV. Compression of FASTQ and SAM

format sequencing data. PLoS One 2013;8:e59190.

[62] Markus H. Fritz, Rasko Leinonen, Guy Cochrane, et al. Effcient

storage of high throughput dna sequencing data using reference-

based compression. Genome Research, 21(5):734-740,2011.

[63] Yanovsky V. ReCoil - an algorithm for compression of extremely

large datasets of DNA data. Algorithms Mol Biol 2011;6:23.

[64] Cox AJ, Bauer MJ, Jakobi T, et al. Large-scale compression of

genomic sequence databases with the Burrows-Wheeler transform.

Bioinformatics 2012;28:1415–9.

[65] Hach F, Numanagic I, Alkan C, et al. SCALCE: boosting sequence

compression algorithms using locally consistent encoding.

Bioinformatics 2012;28:3051–7.

[66] Heba Afify, Muhammad Islam and Manal Abdel Wahed. DNA

LOSSLESS DIFFERENTIAL COMPRESSION ALGORITHM

BASED ON SIMILARITY OF GENOMIC SEQUENCE

DATABASE. International Journal of Computer Science &

Information Technology (IJCSIT) Vol 3, No 4, August 2011 .

[67] Bacem Saada, Member, IAENG, Jing Zhang. DNA Sequences

Compression Techniques Based on Modified DNABIT Algorithm.

Proceedings of the World Congress on Engineering 2016 Vol I

WCE 2016, June 29 - July 1, 2016, London, U.K.

[68] Rajesh Mukherjee , Subhrajyoti Mandal , Bijoy Mandal. Reverse

Sequencing based Genome Sequence using Lossless Compression

Algorithm. International Research Journal of Engineering and

Technology (IRJET) Volume: 03 Issue: 05 ,May-2016 .

[69] Rexline S J, Trujilla Lobo F. DNA Compression Algorithm Using

Pattern Hunter. International Journal on Computer Science and

Engineering (IJCSE).

[70] Peter J. A. Cock,Christopher J. Fields, Naohisa Goto, Michael L.

Heuer and Peter M. Rice. The Sanger FASTQ file format for

sequences with quality scores, and the Solexa/Illumina FASTQ

variants. Plant Pathology, SCRI, Invergowrie, Dundee DD2 5DA,

UK.

Authors Profile

Mrs. Rituparna Mitra has completed Master

of Science from University of Calcutta in

year 2011 and Master of Technology from

University of Calcutta in year 2013. She is

currently working as an Assistant Teacher in

the Department of Computer Science of

Kirtipur Nabin Chandra High School, W.B. since January

2014. Her research area is mainly Genome data

Compression. She has 4 years of teaching experience and 2

years of Research Experience.

Mr. S. Roy pursed Bachelor of Technology

from University of Calcutta, India in 2010

and Master of Technology from University of

Calcutta in year 2012. He is currently

pursuing Ph.D. and working as Assistant

Professor in Department of Computer

Science and Engg. Academy of Technology, AOT,

MAKAUT,India since 2013. He is a member of IEEE since

2014. He has published more than 6 research papers in

reputed international journals. His main research work

focuses on Genome data Compression, Big Data Analytics

and IoT. He has 6 years of teaching experience and 3 years

of Research Experience.

