
 © 2018, IJCSE All Rights Reserved 948

International Journal of Computer Sciences and Engineering Open Access

Survey Paper Vol.-6, Issue-8, Aug 2018 E-ISSN: 2347-2693

Present Approaches for Detection of Design Pattern: A Survey

A. Chaturvedi

School of studies in Computer Science and Applications, Jiwaji University, Gwalior (M.P.), India

Corresponding Author :arti.2408@gmail.com Tel.: 9926485989

Available online at: www.ijcseonline.org

Accepted: 13/Aug/2018, Published: 31/Aug/2018

Abstract- Existing software’s are implemented by a third party and open source software may take a lot of time to understand,

and patterns are applied without explicit class name, comments, or attached documents. If better reusability is required for an

existing application where design patterns were used, then an approach that can detect the used design pattern in the existing

application will be useful. Therefore, a reliable design pattern detection approach is required to promote software reusability.

Design pattern detection is expected to improve the understandability and reusability of existing software. This paper

represents the background work of design pattern detection. I review different approaches that have been documented so far in

the literature and present the tools that have been developed. Pattern detection approaches are classified into structural analysis,

behavioral analysis, and semantic analysis to mining the design pattern from the source code of different legacy application.

Structural analysis approaches based on recovering the structural relationship from different artifacts available in the source

code. Behavioral analysis approaches take in account the execution behavior of the program and this analysis is dynamic which

execute run time behavior of the software. Semantic analysis approaches are combination of both, structure and behavioral

analysis for verifying the accuracy of found result. In this paper I propose a survey of structural analysis approaches for design

pattern detection.

Keywords- Design Pattern, UML, Ontology, Sub-Graph Isomorphism, Structural Analysis.

I. INTRODUCTION

Object oriented design pattern is a general repeatable

solution to a commonly occurring problem in software

development, and are considered as standard of “good”

software designs. The idea of patterns was firstly introduced

by Christopher Alexander, in the field of architecture. In

future the concept of patterns has been changed in order to

fit software design by Gamma, Helm, Johnson and

Vlissides [48]. The authors catalogued 23 design patterns,

known as GoF design patterns. The Concept of pattern is

widely used in software development to facilitate the

software reuse. Moreover, a design pattern can be reused as

a building block for better software implementation and

their documentation in a software system can improve

software reusability and program understanding. In OO

software development, object and classes is fundamental

reusable unit but they alone would not be enough for an

effective reuse. Therefore OO methodologies gave birth of

design pattern for developing OO application [49]. The

purpose for using design pattern in software development is

to improve the reusability and the quality of software .The

motivation for formalizing design pattern is to make them

easier to understand and implement in new software

application [1].

Design pattern provide ways to structure software modules

into system that are flexible, extensible, and have a high

degree of reusability. Design pattern are an attempt to

capture expertise in building object oriented software that

describes solution to a repeated design problem in a logical

and general way. Gamma at el [48] defines design pattern as

“description of communicating objects and classes that are

customized to solve a general design problem in a particular

context.” A design pattern names, abstracts, and identifies

the basic features of a common design structure that makes

it beneficial for creating a reusable object –oriented design.

The design pattern recognizes the participating classes and

their instances, their roles and collaboration, and the

distribution of responsibilities. Object-oriented design

pattern usually show relationships and interaction between

classes or objects, without specifying the final application

classes or objects that are involved. [50]

The identification of design patterns as part of the

reengineering process can convey important information to

the designers. [33] “The central objective of pattern

identification approaches is to accurately detect patterns

from the source code which improve the software

reusability, maintenance, program comprehension,

refactoring, restructuring, reverse engineering and

reengineering disciplines” . [51] “Design pattern is useful to

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 949

gain knowledge on the design issues of an existing system,

on its architecture and design quality, improving the

comprehension of the system and hence its reusability,

maintainability and evolution” [52].

The rest of the paper is organized as follows: review on

different approaches is proposed in section II. Section III

explores review on graph based approaches. And

conclusion is given in section IV.

II. DIFFERENT APPROACHES AND TOOLS FOR

DESIGN PATTERN DETECTION

In this section, I review the various existing approaches that

discover the design pattern.

In paper[2] , authors are introduce a detection approach for

Creational design pattern such that “Abstract Factory”,

“Factory Method”, “Builder”, “Prototype” and “Singleton”.

Now this approach is based on anti-patterns characteristic.

According to author’s “anti-patterns are bad alternative

solutions to the design pattern, those are termed as missing

design patterns”. This approach performs in three levels:

“structural”, “behavioral”, and “semantic” analysis and

every level analyze anti-patterns information of particular

design pattern in existing software design. The result of this

analysis is presents in a tool named as “Anti-pattern” based

“Creational Design Pattern Recommendation (ACDPR)”.

After detection of anti-pattern information of particular

design pattern, this tool gives a score to such design pattern

and this score determine the approval of design pattern.

This tool is implemented in Java and 21 existing software

were used as dataset.

In paper [3], authors are proposed machine learning based

approach for design pattern detection. This approach has

two stages for design pattern detection. First stage for

prepare dataset which complete in following steps: 1)

Define design pattern template element such as problem,

solution, applicability etc. 2) Select the patterns participants

such that number of classes in a pattern, role of each class

etc. 3) Prepare Object Oriented metrics vector and using

various pattern detection tools. Here this approach consider

67 different number of Object Oriented metrics types. Also

store metrics value of all patterns participants in a single

row .If one pattern has four numbers of participants then it

includes 67x4=268 number of features vector for single

instance of that pattern. Second stage also complete in three

sub process: 1) Here two classifiers such as “Layer

Recurrent Neural Network” and “Decision Tree” used for

learning process. These classifiers validate features of

pattern participants in software i.e. check either pattern

participants present in software or not. 2) In next sub

process, classifiers are removing unfitted features of pattern

participants. 3) And last verify the results.

Reference [4] Proposed a design pattern identification

approach based on similarity between design pattern and

domain matrixes. This is two phase approach. In first phase,

this method finds matching between existing software and

design pattern using matrix where rows are shows keywords

of the pattern and columns represents in term of design (like

class name of design) . After obtaining different matrices,

they are listing the matrices which have maximum score for

measured the function. In second phase, this approach

applies some question on matrices which is found in first

phase. These questions are explaining design of specific

design pattern. This phase can be repeated until the specific

design pattern will be identified.

In paper [5], authors are proposed a pattern identification

algorithm “SiDiff” which measures difference between two

graph structure diagrams, one is design pattern graph and

other is existing software design graph. This algorithm

compares two graphical figure components and calculates

the similarity of pair figure component. If two components

of both graphs are found to be similar to each other but not

similar to other components then they are matched. In this

algorithm each class of UML diagram has fixed criteria and

their weight value. The similarity verification is based on

these criteria weight value. This approach also detects

incomplete instances of design pattern. In this paper authors

are not produce experimental results for any live software.

In paper [6], authors are proposed a design pattern detection

technique based on some fixed attributes of a specific

design pattern. These attributes are “structural”, “relational”

and “behavioral”. This process first define pattern attribute

such that name of participating classes, “Generalization”

and “Aggregation” relationship between two classes,

“Method return type” etc. This process also focuses on

different implementation variation of particular design

pattern. Moreover, next this process searches these

attributes in existing software using different detection

approaches. In this paper attributes of “Factory Method”

design pattern and “Strategy” design pattern are define and

as domain this approach uses “JHotDraw”, “JRefactory”

and “JUnit” software. These researchers also proposed

implementation variants of “Abstract Factory”,

“Decorator”, “Adapter”, “Proxy”, “Chain of

Responsibility”, and “Façade” design patterns in [7] and

[8].

In paper [9] authors are proposed a machine learning based

technique for design pattern detection. They uses

“Columbus framework” as domain where source code of

existing software is converted into ASG (“Abstract Syntax

Graph”). Here, the authors are applying some predictors

(such as whether a participant class has a base or not, or

how many new method define by participant class) on

structure instance of specific design pattern which is

recovered from Columbus framework. Moreover, ASG

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 950

calculate predictor value and manually inspect source code

of software for verification of that design pattern.

Afterwards they propose a machine learning system with

predictor value. This system based on “decision tree” and

“back propagation neural network”. Finally the outputs of

machine learning system merge with “Columbus

framework”. In this paper authors are defining predictor for

“Adapter” and “Strategy” design pattern.

In paper [10] authors are using a “Template matching”

technique for design pattern detection. This method

calculates “normalized cross correlation” between sub part

of existing software matrix and design pattern matrix.

“Normalized cross correlation” measures similarity degree

between specific design pattern and sub part of existing

software. If a sub part of existing software is similar to the

design pattern than an instance of that design pattern is

found. In this technique, not only the exact match of pattern

instance is detected from existing software source code, but

also the pattern variation can be identified.

In [11] authors are proposed “Micro Structure” as software

module based on object oriented design. This process

examines the role of participating classes of that structure

manually. In this process authors are create a class library

and calculates metrics value for each class such that “Size

of class” (in terms of number of methods and fields),

“Filiation of class” (in terms of number of parents class,

number of child class), “Cohesion value of class” (in terms

of degree of both, method and attributes belong together),

and “Coupling between classes” (in terms of collaboration

of one class to another class). Moreover, authors are

applying a “rule learner” algorithm with set of metrics value

and compare these values with metrics value of library

classes using “leave-one-out” method. This approach

considers six open source software’s for find out pattern

instances and finally they create a pattern repository.

In paper [12], authors are present a novel technique for

design pattern detection that uses machine learning

technique and calculate software matrices. This method is

completed in two phases. First is “learning phase” ,where

authors define five patterns of GoF, such as “Singleton”,

“Template Method”, “Adapter”, “State”, and “Strategy” and

consider 12 roles (patterns class name) of these patterns

such as for “singleton” (“singleton”), for “Template

Method” (“Abstract class”, “Concrete class”), for “Adapter”

(“Target”, “Adapter”, “Adaptee”) etc. Now this process

decide matrices using “Goal Question Metrics” (“GQM”)

such as to abstract class role identification the GQM is “are

abstract method defined?” etc. and then they apply neural

network algorithm and find out the value of each role .

Second phase is “Detection phase”. Moreover, the output of

learning phase is input of detection phase, so in this phase,

determine role candidate using machine learning simulator

and input these role candidate in pattern detection system

according to definition of pattern structure and get an

occurrence of specific design pattern.

In paper [13], authors are presents a method for

reorganization of design pattern in source code through

dynamic and static analysis method combination. The

implementation procedure has three different steps: 1)

“Static Parser”. 2) “Dynamic validation” and 3) “SWRL

rules”. The source code is examined through AST (“abstract

syntax tree”) parser. Meanwhile, rules set is in certain

design pattern manually describe in “SWRL”. These

“SWRL rules” are defined in “OWL” format, and then

“OWL” individuals map with ontology model. Finally

dynamic study is working to deteriorate or approve the

candidate outcome. Another “ontology-based” three layer

approach for design pattern reorganization is proposed by

Damir Kirasic [14]. Here, in first layer, existing software

source code is converted into “AST” and “XML” form.

Second layer create structural features of design pattern and

rules of programming concepts in “OWL” ontology form

and finally a tool “analyzer” identify design pattern in

“XML” of existing software source code. For parsing

source code, this process using “ANTLR” framework. In

paper [15], also proposed method is based on “ontology”

idea. This process explain class structure of specific design

pattern in “Semantic Query-enhances Web Rules

Language” (“SQWRL”) and Class diagram of source code

define in UML and XMI format. Moreover, a tool

(developed by them) “XSLT” is converted this “XMI” into

“OWL”(“Web Ontology Language”). This process

identifies specific design pattern represent by “SQWRL” in

“OWL” (source code) and identifies exact matching of

design pattern and their location in domain (existing

software).

In [16], MARPLE (“Metrics and Architecture

Reconstruction Plug-in for Eclipse”) is a design pattern

recognition tool which determines candidate design pattern

instances by applying data mining approach using

“structural query”. This method creates “elemental design

pattern” which is similar to structure of design pattern or

sub pattern. Moreover, in this system existing software

source code represents in AST and then extract structured

facts applying simple “structural query”. These facts are

store in XML file. Moreover this XML file analyses by a

sub-system “Joiner” which define rules for design patterns.

“Joiner” supports design pattern in graph structure where

classes of existing software represented by “nodes” and

“edges” define structure of “design pattern or sub-

patterns”. Moreover, by Appling a “graph matching query”,

this “joiner” finds out design pattern instances. Another sub

system of “MARPLE” is “Classifier” which verifies that

output of “joiner” is actual design pattern instance or not. In

this work, five design patterns proposed as an output

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 951

“Singleton”, “Adapter”, “Composite”, “Decorator”, Factory

Method”.

In [17], authors are suggesting a new technique which is

based on “weight” and “matrix” to discover design patterns

from of source code. In specific, the system structure is

represented in columns and rows matrix to be each class in

the system. The every cell value represents relation among

classes. The all pattern design structure is also represented

into another matrix. The design patterns discovery from

source code become matching between two different

matrices. If the pattern matrix matches with sub-part of the

system matrix, then a candidate pattern instance is found.

This method consist three different phases: “Structural”,

“behavioral” and “semantic” analysis. In “structural

analysis”, this approach explores the features of pattern

structure for example classes and their relationships. The

outcomes of “structural analysis” are the input of

“behavioral analysis” which checks run time

communication between objects. This work automated the

structural, behavioral, and semantic analysis in “DP-Miner”

tool. Authors are present a case study on the “Java.awt”

package in “JDK 1.4” with this technique and discover

design patterns.

In paper [18], pattern mining method is based on the

detection of “micro structures”. These “micro structures”

are small modules that have limited size and scope, and that

can be represented as program element such as class,

method, and attribute etc. In the context of these micro

structure authors are introduced design pattern clue idea

which is useful in design pattern reorganization. They

present “A design pattern clue catalogue”. In this catalogue

46 design pattern signs are describe, subdivide into the

following nine categories. 1) “Class information”—

characterizes a single class. 2) “Multiple class

information”—Comparison among two (or more) classes.

3) “Variable information”—Facts about particular variable.

4) “Instance information”—Particular instance of a certain

class. 5) “Method Signature information” – Identify

signature of a method. 6) “Method Body information”—

Body of any kind of method. 7) Method Set information –

Whole set of method involved in the classes. 8) “Return

information” – Various possible return modes. 9) “Java

information”—Clues which are strictly bound to the java

language. They apply these clues on four existing detection

tools and determine accuracy of result.

In paper [19], design pattern recovery approach uses “AOL”

(“Abstract Object Language”) for describing the structure of

design pattern and existing source code. Moreover this

process extracts class based metrics such that “number of

public, private, protected attributes” , “number of public ,

private, protected operation”, “ number of association,

aggregation , inheritance relationship” of a class of source

code and apply a “brute force” method to identify particular

design pattern. This approach uses open source existing

software as domain which are implemented in “C++” with

some conditions such that size of code is in between 3000 to

11000 LOC, number of classes are in between 29 to 187,

number of relationships are in between 34 to 585. As a

result this approach recovers instances of “adapter”,

“proxy”, “composite”, “bridge” and “decorator” design

patterns.

In paper [20], a design pattern detection tool “Ptidej”

(“Pattern Trace Identification, Enhancement and Detection

in Java”) is proposed. In this system the extraction of design

pattern is based on “micro patterns” mining and uses

“constraint satisfaction” method. Moreover, this system

creates 27 different “micro patterns” which are used to

describe the design patterns structure. Also this system uses

its “PADL meta-model” to represent an existing software

source code. Afterwards, using a software metrics library,

this process identifies the design pattern structure from

existing software.

In paper [21], a “micro-structure” based design pattern

detection approach proposed. In this process, they are

considering three issues for construct design structure. First

is “Elemental Design Pattern”, these structure deals with

basic design features. Second is “design pattern clues”,

these are hints for design pattern structure. And third is

“Micro Patterns”, these are based on common object

oriented design programming concepts such that how many

attributes in a class, how many method exists in a class.

Moreover this process analyze “micro structure” for design

pattern detection , on the basis of six facets such that

“objectives”, “detail level”, “definition techniques”,

“detection techniques”, “categorization”, and

“interdependence among elements” . Afterwards this

process verify so called design pattern instances using

existing design pattern detection tool (which are developed

by other researchers) such that “PINOT”, “FUJABA” etc.

and also provide “refinement rules” for every “GoF” design

pattern.

In paper [22], a tool “PINOT” is proposed that detect design

pattern from existing software source code using

reclassification method. This tool reclassify design pattern

into five types, 1) “Patterns that are already exists in the

language”. 2) Patterns that are detected by “static structural

analysis”. 3) Patterns that are detected by “static behavioral

analysis”. 4) Patterns that are domain specific.5) Patterns

that are only generic designs. This tool uses AST (“Abstract

Syntax Tree”) for structure analysis of design pattern and

CFG (“Control-Flow Graph”) for execution flow of design

pattern. It is built in an open source java compiler “Jakies”.

In this tool the pattern detection is completely hardcoded

and thus it is not extendable.

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 952

In [23], a pattern detection tool “SPQR” (“System for

Pattern Query and Recognition”) is proposed that

constructed on a theorem proving method using “rho-

calculus” concept. This system is based on the EDP

(“Elemental Design Pattern”) extraction, which are small

patterns and use of it to describe design patterns. In this

process structured features of existing source code are

analyzed by “rho-calculus” and represent by AST

(“Abstract Syntax Tree”). A tool “gcctree2oml” read this

“AST” file and generates “XML” file for object structure

features. Moreover another tool “oml2otter” reads this xml

file and generates a structured feature-rule input file for

theorem proving. And finally, this tool using “Argonne

National Laboratory’s”, “OTTER” to find instances of

design patterns.

In paper [24], researchers are proposed tool uses a three

levels design pattern detection approach. The lower level

finds source code information using “reverse engineering”

process. This process uses “Datrix” tool that provide

existing system source code in “ASCII” based

representation, here “Datrix/TA” file is intermediate format.

Moreover, this approach converts “Datrix/TA” file into

“XML” file. Using this “XML” file, the process extract

structural information of source code such that “files name”,

“classifiers”, “generalization relationship”, “attributes”,

“operations”, “methods”, “parameter”, “return type”, “call

action”, “create action”, “variable use”, “friendship

relationship”, “class” and “function”. Middle level provides

a repository schema of object oriented design such as

“structure”, “behavior” and ‘mechanisms” etc. And upper

level provide end user program for pattern recovery.

In paper [25], authors provide a “reverse engineering” tool

that detect design pattern in Java source code. This

approach detect “structural design pattern” in two phases, in

first phase candidate design patterns are identified by

analyzing the class diagram information such as “name and

type of class”, “inheritance”, “association relationship”

through a “visual language parser”. In second phase, this

approach verifies the design structure through a source code

“analyzer”. This “analyzer” checks declaration and the

invocation of the methods of the classes involved in the

candidate design pattern and show whether the recognized

candidate patterns are correct patterns or not. This technique

implemented on structural design patterns such as

“Adapter”, “Bridge”, “Composite”, “Decorator”, “Façade”

and “proxy”.

In paper [26], authors are proposed a metrics based

approach for design pattern detection in three phases. In

first phase Java source code derived in “Abstract Syntax

Tree’ (AST) form. In Second phase, extract necessary

structural information from the AST as base for specific

design pattern and create predicate for each structural

condition that necessary for pattern identification. And at

last stage they define a threshold value for each predicate of

specific pattern. If this threshold value is true then result

show that pattern is exist in application software.

In paper [27], a study on reusability using design pattern,

proposed by researchers. Here, 10 metrics are proposed that

are key factors of design pattern and their value show the

status of reusability. These metrics are: “Method Reuse

Factor in Pattern (MRFP)”: This metric measure the “ratio

of number of inherited method to the total number of

declared as well as inherited method. Where inherited and

declared M are the set of inherited and declared method

respectively”. Higher depth of inheritance increased value

of “MRFP” and improve the reusability of pattern. 2)

“Attributed Reuse Factor of Pattern (ARFP)”: This metric

measure the “ratio of number of inherited attribute to the

total number of declared as well as inherited attributes”.

Higher value of ARFP will increase the reusability of

pattern. 3) “Total Operation of Pattern (TOP)”: In pattern,

if number of “public operation” is large then code

“complexity” is high and pattern tends to low quality. And

if number of “private operation” is more than pattern tends

to isolation quality. Both factor effect the pattern

reusability. 4) “Total Attributes Available to a Pattern

(TAP)”: Like operation, this metric calculate “how many

variable used in a pattern”, if number of “public variable” is

high then “complexity” increases and quality of pattern

decreases. Private variable tends to pattern isolation but

“protected variable” improve the quality of pattern. 5)

“Hierarchy of Pattern Metric (HPM)”: This metric explain

order of other metric used in a class. This value helps to

identify similarity among classes structure. 6) “Depth of

reusability for Pattern Tree (DRPT)”: This metric calculate

the depth of “inheritance” in complete pattern that is

complete tree structure of classes used in pattern. If the

value of “DPRT” high then reusability of pattern is also

high.7) “Maximum Breath of pattern tree (MBPT)”: This

metric calculate the width of class structure used in pattern.

If value of “MBPT” is high then “complexity” among

classes is increased and quality of pattern will be decreased.

8) “Size of Pattern Hierarchy (SPH)”: This metric value

calculates the sum of “DRPT” and “MBPT”. To reduce the

“complexity” of software and improve the quality pattern,

improve the value of “DRPT” and minimize the value of

“MBPT”.

In paper [28] researchers are provide a study on the

reusability of design pattern. In this work authors are said

that re-users are find out a group of classes from existing

software that are part of specific design pattern. Moreover,

modified these classes and propose in form of design

pattern as a reusable piece of software. They also analyze

that what is more reusable unit among “Classes”, “pattern”,

“package”. In this study they present a methodology in

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 953

following steps.1) Propose some research questions. 2)

Select some open source existing application software. 3)

Identify approaches for comparison. 4) Minimize effect of

confusing features. 5) Prepare case study.6) Implement

strategy of case study.7) Analyze and give outcomes.

Amit Kumar [29] proposed a method for design pattern

detection which included four steps. In first step, existing

software source code converts in UML format using two

tools “Rational Rose” and “StarUML”. In second step, this

process uses another open source tool “JAVEX” which

extract structure features from existing software source code

file such that “Interface”, “Classes”, “Methods”,

“Variables”, “Arrays”, “Fields”, “Relationships” etc. In

third step this process analyzes run time features like

“Method calls” etc. And in fourth step, using outcomes of

upper three steps, In this process manually inspect the

instance of specific design pattern.

In paper [30], authors are proposed a theory for design

pattern. They suggested there are three types of design

patterns, one is “Static Structure pattern” , i.e. patterns that

consider structural relationship among participating classes

of design pattern such that “Association”, Aggregation”,

Generalization” etc. Second is “Dynamic Behavior Pattern”,

i.e. patterns that depends on collaboration between different

class objects and third is “Program Specific Patterns”, i.e.

patterns that uses specific keywords in program

implementation. In this paper, source code of existing

software represent in AST or ASG format and search the

design pattern structure using “XMI” in existing code file.

Moreover, this process applying “Behavioral” and

implementation specific analysis. “Builder” and

“Prototype” design pattern are detected in this paper.

In [45], the design pattern detection approach , consider

five type of classes such as “Non Abstract class”, “Java

Abstract class”, “Java Interface”, “Abstract class” of

existing software and any other type of class. This process

also explores six types of relationship such as

“Dependency”, “Aggregation”, “Association”,

“Multiplicity”, and” Inheritance”. On the basis of these

parameters they create a text file and generate “AST” for

design pattern. Moreover, they also use “Java Compiler tree

“API” for extracting features of existing software source

code. For detection of candidate design pattern this tool

extract all possible permutation of classes using brute force

method. This tool detects six design patterns, “Command”,

“Bridge”, “Builder”, “Visitor”, “Observer”, “Abstract

Factory” and as existing domain , this process consider

“JHotDraw”, “Jawa Awt”, “Apache Ant” projects.

In paper [47], authors are prosed a static analysis based on

“constraints” for design pattern detection. Here they focus

on structure features of existing software as well as design

patterns. This process considers 4 types of constraints: 1)

“class level constraints” such as “inheritance”,

“association”, “aggregation” and “delegation”. 2) “Method

constraints” such as invoke method. 3) “Method- class

relationship constraints” such as has method, return type,

has parameter etc. 4) “Attributes-class relationship

constraints”. To extract the information, this process applies

these “constraints” on existing software and participants of

design patterns. This process also define situation where

variation arise in particular design pattern. Moreover, a

unique “classifier” proposed for each constraint and applies

a method to match the structure features between existing

software and specific design pattern. Now to find out the

information, this process uses AST as intermediate

presentation. Authors are also developing an information

extraction tool “DPET4V”. An open source tool “Drools” is

used for structure feature matching between existing

software and design patterns. In this paper, the experimental

results are shown on two design pattern, “Composite” and

“Adapter”.

In paper [53], a “CSP” based approach suggested where a

set of structural attribute proposed for existing software and

design patterns. Moreover, in this process, “constraints” are

defined as, how the structural attributes are collaborates in

design. A mapping process identifies the presence design

pattern in existing software. In [54] researcher provided a

sub-graph mining approach for design pattern detection.

Here source code of existing software is presented by AST

and UML. Afterward this process apply a graph partitioning

algorithm that divide source code model graph into small

module on the basis of some structural attributes such that

“class”, “interface”, “abstract class”, “template class”, and

12 types of relation between classes. Moreover this process

apply another algorithm that matched design pattern graph

with these small module graph and identify that any module

graph is identical to design pattern graph. If a match is

found than it is an instance of specific design pattern.

In paper [55], researchers are suggested a detection

approach that is language independent i.e. it detect design

pattern in any object oriented language. Moreover in this

process, existing source code is in C# and a list of criteria

defines where features of each design pattern are described.

Afterwards a matching algorithm prescribes which recover

the instances of design pattern.

In [56] Dirk Beyer et al. suggested a tool “Crocopat” that

provides a relational programming concept for source code

and uses RML (“Relation Manipulation Language”) for

describing the relationship between participating classes of

specific design pattern . This language based on “first order

predicate logic”. Moreover, as output this tool is recover

occurrences of specific design pattern in existing domain.

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 954

In [57] Marek Vokac et al. provide a tool for detection of

structure of design pattern in C++ domain. Here design

patterns are described in graphical notation and C++ source

code file describe by a tool “UNDERSTAND”. Moreover

this tool uses SQL for identify the design pattern in source

code and got five types of design pattern such as

“Observer”, “Decorator”, “Factory Method”, “Singleton”

and “Template Method”.

In [58], a “weight and matrix” based approach exist for

design pattern detection. Here, design pattern and existing

software code are presented in “binary matrix” form.

Moreover by applying a sub-matrix algorithm, this process

recover design pattern structure from source code. In this

method, the structural information of source code is extract

by two software, “Rational Rose” and “Star UML” and

generated XMI file. Another tool “SDMatrix” is calculates

the weight value for structure attributes.

Another pattern mining tool “DPRE” (Design Pattern

Recovery Environment), based on visual grammar

language, and is proposed in [59]. It is a two stage model

where in first stage, UML of existing software source code

converted into visual format of class diagram. Moreover,

the structural attributes of design pattern are described in a

grammar language using “XPG” (eXtended Positional

Grammar). In second phase this tool identifies a sub part of

visual system of source code which matched with grammar

rules of specific design pattern structure. Finally outcome is

shows name of classes of source code that are formed

detected design pattern. In [60], a tool “HEDGEHOG”

reads pattern definition which represented in “SPINE”

language. This language describes structural features of

design pattern. In this tool, existing source codes file

representing in “AST”. Moreover a pattern detection

process verify that a class or group of classes of source code

construct structure of particular design pattern.

III. GRAPH BASED APPROACHES FOR DESIGN

PATTERN DETECTION

In paper [31], authors are proposed a design pattern

recovery approach based on “sub-pattern”. They introduced

15 ‘sub-patterns” which are different structured attributes of

23 Gof design pattern [48]. The detection process

completed in three phases, first phase converts source code

of existing application software and predefined “sub-

patterns”, both are into the class relationship directed graph.

In these graphs classes are represented by “nodes” and

relationships are represented by “edges”. This approach also

assigns weights to the edges by prime number of 2, 3, 5 and

7 to represents “association”, “inheritance”, “aggregation”

and “dependency” respectively. Second phase of this

approach identifies the number of occurrences of sub-

pattern in existing software graph using “sub-graph

isomorphism” method. Third phase of this process merge

the required “sub-patterns” for making the specific design

pattern structure (some time one sub-pattern is sufficient for

a particular design pattern). Finally verify the method

signature of the classes that are part of specific design

pattern and compare with predefine structure of standard

design patters.

In paper [32], authors are proposed a tool “DesPaD”

(“Design Pattern Detector”) for design pattern identification

based on “sub-graph isomorphism” approach. This tool

generates AST (“Abstract syntax Tree”) for existing

software with the help of an open source tool “ANTLR”.

“DesPaD” uses BNF (“Backus Normal Form”) diagrams to

find the relationship between classes of existing software.

This tool considers four types of classes (“Class”,

“Interface”, “Abstract Class”, “template” class) and 12 type

of relationship. After that this process generates design

patterns structure in query item format. And last, for

detection of design pattern, it applies an algorithm

“Subdue’s Sgiso”, based on “sub-graph isomorphism”.

In paper [33] the proposed methodology considers two

graphs, one for existing software and other for design

pattern. In specific, the method works on matrices set which

expressive each significant characteristics of their static

structure. For the patterns detection, employ a graph

similarity algorithm which takes as input both the existing

software and the pattern graph and calculates similarity

scores between their vertices. The main benefit of this

method is the ability to detect not only patterns in their

common terms but improved variety of them. The limitation

of this technique is that it only calculates similarity between

two different vertices, not similarity between different

graphs. To solve this problem Jing Dong [10] provide

another method known as “Template Matching”, which

calculates the similarity between two graphs sub-graphs

vertices instead. Another drawback of this method is that if

the source graph is a large one then it needs a lot of

computation.

Researchers Manjari Gupta and Akshara Pande are

proposed some techniques in [34],[35],[36],[37],[38],[39]

and [40] for structural analysis of design pattern detection.

All techniques are followed “sub-graph isomorphism”

concept. In these process two graphs are considered, one for

existing software design graph and other for structure of

design pattern. Here, these graphs are obtained from UML

structure diagram of source code and UML class structure

of design pattern, where nodes are represents the classes

and edges are shows relationship between classes.

Moreover, in [34] they applying “Decision Tree” method

where both graph converts in “Adjacency Matrix” and try to

find out, is there any isomorphism between sub-graph of

existing software and design pattern graph. In “adjacency

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 955

matrix”, this algorithm considering only those nodes in

which relationship exists. In this process, first extract all

possible sub-graph of existing software graph. It can be

found out by generating row-column elements for all the

possible “permutation” of “adjacency matrix”. Second, this

process take out specific design pattern relationship matrix

and represent in row-column element format and then

starting from root node traverse of the “decision tree” of

existing software design matrix. If any row-column element

matched with design pattern matrix than an instance of

design pattern is found. “Decision tree” approach is

applicable for all 23 Gof design patterns. This process is not

uses any real application for design pattern detection. In

[35] they proposed a technique that based on matrix

calculation. Here specific design pattern is identifying at

various depths in the directed graph of existing software. In

this process existing software transforms into a rooted graph

and assigning a depth value to each node of graph.

Moreover specific design pattern graph is converted into

matrix for each relationship included in it. The researchers

have invented a new algorithm, “DNIT”, in which the edges

and nodes are labeled based on the reachability graph

concept to calculate a “DNIT” table. Every relationship will

have its corresponding “DNIT” table. Similarly for the

design pattern its corresponding “DNIT” table is

constructed. Now to search for the design pattern

occurrences, the same depth entries of existing software

graph and design pattern is compared. This method also can

detect both incomplete and complete match of patterns. In

[36], the authors are detecting design patterns in

“Geographical Information Systems (GIS)”. Moreover, they

draw the equivalent UML diagram for GIS application and

try to find out whether a particular design pattern exists in

that application or not by applying graph matching

technique. In UML diagram, this process considers two

relationships “aggregation” and “generalization”. Moreover

these relationships are representing in “graphs” and

“matrix” form. The process is complete in three steps. First

step measures the graph distance between two graphs. In

Second step, this process using “Normalize Cross

Correlation”, to find similarity between matrixes of both

graphs and in third step this process using “sub-graph

isomorphism” approach to determining whether a design

pattern graph is isomorphic to a sub-graph of GIS

application graph. In [37], the detection process uses the

“relational view” of “sub-graph isomorphism” to detect

design pattern in the existing source code. A method of “n-

ary” relations for “sub-graph isomorphism” is applying and

find out whether a relationship graph of the design pattern

exists in existing software graph. This approach detects sub

graph isomorphism for each relationship between classes

separately. In [38] authors are proposed an algorithm for

design pattern mining using “Normalized Cross

Correlation” (NCC) method. The NCC method has been

commonly used to evaluate the degree of similarity or

dissimilarity between two images. Moreover, this algorithm

applying relationship graph and their corresponding matrix

for both UML design. For calculating the value of NCC, the

algorithm finds match between design pattern matrix and

existing software matrix. If value of NCC for specific

design pattern is matched with value of NCC of sub-graph

of existing software than an occurrence of that design

pattern is found in existing software. In [39], detection

method is based on graph decomposition. Graph

decomposition is applied on existing software graph and

decomposes it into two node or three node sub-graph and

find out that any sub-graph of existing software graph is

isomorphic to candidate design pattern graph. In [40],

detection algorithm is based on “Boolean function”. Here

both graphs are converts into “Boolean Function” in “sum

of product” (SOP) form. If the value of “SOP” of design

pattern graph matched with any sub-graph of existing

software graph than algorithm identify an instance of that

specific design pattern. This algorithm cannot identify those

design pattern which have a relationship within class and

also consider one graph for each relationship i.e. more than

one graph for specific design pattern. Manjari Gupta and

Rajwant Singh Rao are also proposed some detection

algorithm [41], [42] and [43] based on same concept. In

[41], they are proposed a detection algorithm which is based

on “inexact graph matching”. This algorithm considers

situations where design pattern graph is not exact matched

with sub-graph of existing software. Moreover, the “inexact

graph matching” concept tolerates some missing node or

relationship in graph matching and it is called “error

correcting” or “error accepting sub-graph isomorphism”

where error is define in term of distance between two

graphs. Now, algorithm calculates error in two phases, first

phase calculates error in node mapping in both graphs and

second phase calculates error in edge mapping between

both graphs. Finally it listed least error mapping in both

graphs and identified design pattern instances. Both authors

are suggested another approach in [42], the detection

method is combination of “genetic algorithm” and

“multilayer perceptron”. Here this method is find out

whether design pattern graph matched (completely or

incompletely) to any sub-graph of existing software graph

by using “multilayer genetic algorithm”. “Chromosome”

structure of this “genetic algorithm” is defined by node to

node mapping between existing software graph and design

pattern graph. The main aim of this algorithm is to find out

“chromosomes” that signify “sub-graph isomorphism”

between both graph. The fitness of “chromosomes” is

calculates by cost of node mapping and cost of edge

mapping. Moreover, the value of “fitness function” shows

how much the mapping is close to the “sub graph

isomorphism” between the design pattern graph and the

existing software graph. After “crossover” and “mutation”

operations, the terminating condition may be chosen as

number of generations and find out best mapped

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 956

“chromosomes” as instances of candidate design pattern. In

[43], the detection algorithm calculates the value of some

attributes of both graphs such that 1) “Predecessors of

node” (n): set of nodes of graph from which a branch

originate that ends in n. 2) “Successors of node” (n) : set of

nodes of graph that are the destination of a branch starting

from n. 3) “Out terminal set”: the set of nodes of graph that

are not in mapping but are successors of a node in mapping.

4) “In terminal set”: the set of nodes of graph that are not in

mapping but are predecessors of a node in a mapping.

Moreover, algorithm also calculates four states for

following condition.1) “Out-terminal set” of both graphs are

not empty. 2) “Out-terminal set” of both graphs are empty

but in-terminal set are not empty. 3) All in-terminal and out-

terminal sets of both graphs are empty.4) If only one of the

in-terminal set or only one of the out-terminal set is empty

then state(s) cannot be part of a matching. Afterwards, the

matching algorithm calculates a function under these states

for all nodes of design pattern graph are matched to nodes

of sub-graph of existing software graph. If such nodes are

matched then algorithm checks in and out edge relationship

of design pattern graph nodes are matched with in and out

edge relationship of corresponding nodes of existing

software graph. Majari Gupta also proposed a “greedy”

algorithm [44] based on “multi-labeled directed graph”,

using same idea. This algorithm also finds out mapping that

covers all the nodes of design pattern graph in the existing

software graph. The benefit of this algorithm is that it can

find out all occurrences of a design pattern and it may

determine their variants also.

In paper [46] authors are proposed a design pattern

detection algorithm using graphs. Here properties of

candidate design pattern (which is detected) are describe in

DSL (“Domain Specific Language”) and convert it into

graph. Also existing software source code represents in

“AST” and then converts into graph. After generating the

graphs for both existing software and design pattern, this

process apply a graph matching algorithm based on “sub-

graph isomorphism” followed by “depth first search”. As a

result this algorithm finds out the instance of design pattern

in existing software.

IV. CONCLUSION

There has been a lot of research in the area of design pattern

detection over the last years. In this paper we summarize

design pattern detection method and tools.

Design pattern detection is one of the most important

problems in reverse engineering. Reusable design may

reduce design time, development cost and implementation

time if detected in existing software and used properly in

new application development. Furthermore ample

possibility exit in research to improve software

development paradigm to organize and harmonize the use

of design pattern in more efficient manner to promote reuse

and reusability in design phase, based on certain

transformation rules and constraints, so that new software

not only easy to design from design point of view but also

developed software is easy to enhance.

REFERENCE

[1] S. Khwaja and M. Alshayeb, “A framework for evaluating

software design pattern specification languages”, In 12th

International Conference on Computer and Information Science

(ICIS), IEEE/ACIS, pp. 41-45, 2013.

[2] N.Nahar and K.Sakib, “ACDPR: A Recommendation System for

the Creational Design Patterns Using Anti-patterns”, In 23rd

International Conference on Software Analysis, Evolution, and

Reengineering (SANER), IEEE, Vol. 4, pp. 4-7, 2016.

[3] A.K.Dwivedi, A.Tirkey, R. B. Ray and S.K.Rath, “Software design

pattern recognition using machine learning techniques”,

In Region 10 Conference (TENCON), IEEE, pp. 222-227, 2016.

[4] I.Issaoui, N.Bouassida and H. Ben-Abdallah, “A new approach for

interactive design pattern recommendation”, Lecture Notes on

Software Engineering, Vol.3.3, pp.173, 2015.

[5] S. Wenzel and U. Kelter, “Model-driven design pattern detection

using difference calculation”, In Workshop on Pattern Detection

for Reverse Engineering, 2006.

[6] G.Rasool and P.Mader, “Flexible Design Pattern Detection Based

on Feature Types”, In Proceedings of the 26th IEEE/ACM

International Conference on Automated Software Engineering,

pp. 243-252, 2011.

[7] G.Rasool and H. akhtar, “Discovering Variants of Design

Patterns”, In Journalof Basic and Applied Scientific Research,

3.1, pp. 139-147, 2013.

[8] A.Waheed, G.Rasool and S. Ubaid, “Discovery of Design Patterns

Variants for Quality Software Development”, In International

Conference on Intelligent Systems Engineering (ICISE), IEEE,

pp. 185-191, 2016.

[9] R. Ferenc, A. Beszedes, L. Fulop, and J. Lele, “Design pattern

mining enhanced by machine learning”, In Proceedings of the

21st IEEE International Conference on Software Maintenance,

(ICSM'05), pp.295-304, 2005.

[10] J.Dong, Y. Sun and Y. Zhao, “Design pattern detection by

template matching”, In Proceedings of the 2008 ACM

Symposium on Applied Computing, pp. 765-769, 2008.

[11] Y.G. Guéhéneuc, H. Sahraoui and F. Zaidi, “Fingerprinting

design patterns”, In 11th Working Conference on Reverse

Engineering, Proceedings of IEEE, pp.172-181, 2004.

[12] S. Uchiyama, H. Washizaki, Y. Fukazawa, and A. Kubo. “Design

pattern detection using software metrics and machine learning”,

In First International Workshop on Model-Driven Software

Migration (MDSM), pp. 38 ,2011.

[13] W. Ren and W. Zaho, “An observer design-pattern detection

technique”, In IEEE International Conference on Computer

Science and Automation Engineering (CSAE), Vol.3, pp.544-

547, 2012.

[14] D. Kirasić and D.Basch, “Ontology-based design pattern

recognition”, In International Conference on Knowledge-Based

and Intelligent Information and Engineering Systems, pp. 384-39,

Springer, Berlin, Heidelberg, 2008.

[15] M. Thongrak and W. Vatanawood, “Detection of design pattern in

class diagram using ontology”, In International Conference on

Computer Science and Engineering , IEEE, pp.97-102, 2014.

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 957

[16] F. Arcelli and L. Christina, “Enhancing software evolution

through design pattern detection”, In Third International IEEE

Workshop on Software Evolvability, pp. 7-14, 2007.

[17] J. Dong, S. Dushyant Lad and Z. Yajing, “DP-Miner: Design

pattern discovery using matrix”, In 14th Annual IEEE

International Conference and Workshops on the Engineering of

Computer-Based Systems (ECBS'07), pp. 371-380, 2007.

[18] F.A. Fontana, M. Zanoni, and S. Maggioni, “Using Design

Pattern Clues to Improve the Precision of Design Pattern

Detection Tools”, In Journal of Object Technology, Vol.10.4, pp.

1-31, 2011.

[19] G. Antoniol, R. Fiutem and L. Cristoforetti, “Design pattern

recovery in object-oriented software”, 6th International

Workshop on Program Comprehension, (IWPC'98), Proceedings

In IEEE, pp. 153-160,1998.

[20] Y. G. Gueheneuc, “Ptidej: Promoting patterns with patterns”,

In Proceedings of the 1st ECOOP workshop on Building a

System using Patterns. Springer-Verlag, July 2005.

[21] Fontana, A. Francesca and M. Zanoni, “A tool for design pattern

detection and software architecture reconstruction”, In

Information sciences, Vol. 181.7, pp.1306-1324, 2011.

[22] N. Shi, and R.A. Olsson, “Reverse engineering of design patterns

from java source code”, In 21st IEEE/ACM International

Conference on Automated Software Engineering, (ASE'06), pp.

123-134, 2006.

[23] J. M. Smith, and D. Stotts, “SPQR: Flexible automated design

pattern extraction from source code”, In 18th IEEE International

Conference on Automated Software Engineering, Proceedings.of

IEEE, pp.215-224, 2003.

[24] R.K. Keller, R. Schauer, S. Robitaille and P. Page, “Pattern-based

reverse-engineering of design components”, In Proceedings of

the 21st international conference on Software engineering, ACM,

pp. 226-235, 1999.

[25] A De Lucia, V. Deufemia, C. Gravino and M. Risi, “Behavioral

pattern identification through visual language parsing and code

instrumentation”, In 13th European Conference on Software

Maintenance and Reengineering, (CSMR'09), IEEE, pp.99-108,

2009.

[26] Stefan Burger, Oliver Hummel. “Towards Automated Design

Smell detection”, The Ninth International Conference on

Software Engineering Advances (ICSEA2014), pp. 428, October

12 - 16, 2014

[27] P. S. Sandhu, P.P. Singh and A. K. Verma. “Evaluating quality of

software systems by design patterns detection”, International

Conference on Advanced Computer Theory and Engineering,

(ICACTE'08) , IEEE, pp. 3-7, 2008

[28] A. Ampatzoglou, A. Kritikos, G. Kakarontzas and I. Stamelos.

“An empirical investigation on the reusability of design patterns

and software packages”, In Journal of Systems and Software,

Vol. 84.12, pp. 2265-2283, 2011

[29] A. K. Gautam and T. Gayen, “Recovery of Design Pattern from

source code”, 2010.

[30] H. Lee, H. Youn and E. Lee, “A design pattern detection

technique that aids reverse engineering”, In International Journal

of Security and its Applications, 2.1, pp. 1-12, 2008.

[31] D,Yu, Y. Zhang and Z. Chen, “A comprehensive approach to the

recovery of design pattern instances based on sub-patterns and

method signatures”, In Journal of Systems and Software, 103,

pp.1-16, 2015.

[32] M. Oruc, F. Akal and H. sever, “Detecting Design Patterns in

Object-Oriented Design Models by Using a Graph Mining

Approach”, In 4th International Conference in Software

Engineering Research and Innovation (CONISOFT), IEEE,

pp.115-12, 2016.

[33] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides and S. T.

Halkidis, “Design pattern detection using similarity scoring”, In

IEEE transactions on software engineering, Vol. 32.11, 2006.

[34] A.Pande, M. Gupta and A. K. Tripathi, “A decision tree approach

for design patterns detection by subgraph isomorphism”, In

International Conference on Advances in Information and

Communication Technologies. Springer Berlin Heidelberg, 2010.

[35] A.Pande, M.Gupta and A.K.Tripathi, “DNIT--A new approach

for design pattern detection”, In International Conference on

Computer and Communication Technology (ICCCT), IEEE, pp.

545-550, 2010

[36] A. Pande, M. Gupta and A.K. Tripathi, “Design pattern mining

for GIS application using graph matching techniques”, In 3rd

IEEE International Conference on Computer Science and

Information Technology (ICCSIT), Vol. 3, pp. 477-482, 2010.

[37] M.Gupta and A. Pande, “Design Pattern Mining Using Sub-

Graph Isomorphism: Relational View”, In International Journal

of Software Engineering and its Application, 5.2, 2011

[38] M.Gupta, A. Pande, R.S. Rao and A.K. Tripathi, “Design pattern

detection by normalized cross correlation”, In International

Conference on Methods and Models in Computer Science

(ICM2CS), pp. 81-84. IEEE, 2010.

[39] A.Pande, M. Gupta and A.K. Tripathi, “A new approach for

detecting design patterns by graph decomposition and graph

isomorphism”, In International Conference on Contemporary

Computing, pp. 108-119, Springer, Berlin, Heidelberg, 2010.

[40] M.Gupta, A.Pande and A.K. Tripathi, “Design patterns detection

using SOP expressions for graphs”, In ACM SIGSOFT Software

Engineering Notes, 36.1, pp.1-5, 2011.

 [41] M. Gupta, R. S. Rao and A. K. Tripathi, “Design pattern

detection using inexact graph matching”, In International

Conference on Communication and Computational Intelligence

(INCOCCI), IEEE, 2010.

[42] R.S. Rao, M, Gupta, “Design Pattern Detection By Multilayer

Neural Genetic Algorithm”, In International Journal of Computer

Science and Network (IJCSN), Vol. 3, Issue 1, pp. 9-14, 2014.

[43] M. Gupta, R.S. Rao, A. Pande and A.K. Tripathi, “Design pattern

mining using state space representation of graph matching”, In

Advances in Computer Science and Information Technology,

pp.318-328, 2011.

[44] M. Gupta, “Design pattern mining using greedy algorithm for

multi-labelled graphs”, International Journal of Information and

Communication Technology, Vol. 3.4, pp. 314-323, 2011.

[45] T. Diamantopoulos, A. Noutsos and A. Symeonidis, “DP-CORE:

A Design Pattern Detection Tool for Code Reuse”.

[46] M.L.Bernardi, M. Cimitile, and G.A. Di Lucca, “A model-driven

graph-matching approach for design pattern detection”, In 20th

Working Conference on Reverse Engineering (WCRE), IEEE,

pp.172-181, 2013.

[47] L. wen-Jin, P.Ju-long and W.Kang-Jian, “Research on detecting

design pattern variants from source code based on constraints”,

International Journal of Hybrid Information Technology, Vol.

8.5, pp.63-72,

[48] E. Gamma, R. Helm, R.Johnson, and J. Vlissides, Design Patterns

Elements of Reusable Object-Oriented Software, Addison-

Wesley, 1995.

[49] M. Smolarova and P. Navrat, “Software reuse: Principles,

patterns, prospects”, In Journal of Computing and Information

Technology, 5.1, pp. 33-49, 1997.

[50] K.M. Hasan and M. S. Hasan, “A Parsing Scheme for Finding the

Design Pattern and Reducing the Development Cost of Reusable

Object Oriented Software”, In International Journal of Computer

Science and Information Technology, Vol. 2.3, June 2010.

 International Journal of Computer Sciences and Engineering Vol.6(8), Aug 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 958

[51] G. Rasool and D. Streitfdert, “A survey on design pattern

recovery techniques”, In International Journal of Computer

Science Issues (IJCSI), Vol. 8.2, pp.251-260, 2011.

[52] R.K. Priya, “A survey: Design pattern detection approaches with

metrics”, In IEEE National Conference on Emerging Trends In

New & Renewable Energy Sources And Energy Management

(NCET NRES EM), pp.22-26, December 2014.

[53] H. Alshira and H. Mohammad, “Integrating user knowledge into

design pattern detection”, (Doctoral dissertation, Department of

Computer Science), 2015.

 [54] U. Tekin, U. Erdemir and F. Buzluca, “Mining object-oriented

design models for detecting identical design structures”,

In Proceedings of the 6th International Workshop on Software

Clones, IEEE Press, pp. 43-49, 2012.

[55] A. Nagy and B. Kovari, “Programming language neutral design

pattern detection”, In 16th IEEE International Symposium

on Computational Intelligence and Informatics (CINTI), pp.215-

219, 2015.

[56] D. Beyer and C. Lewerentz, “CrocoPat: Efficient pattern analysis

in object-oriented programs”, In 11th IEEE International

Workshop on Program Comprehension, pp. 294-295, 2003.

[57] M. Vokac, “An efficient tool for recovering Design Patterns from

C++ Code”, In Journal of Object Technology, Vol.5.1, pp. 139-

157, 2006.

[58] A.K. Gautam and S.Diwakar, “Automatic Detection of Software

Design Patterns from Reverse Engineering”, In Issues and

Challenges in Networking, Intelligence and Computing

Technologies-ICNICT 2012, Special Issue of International

Journal of Computer Application, November 2012.

[59] G. Costagliola, A. De Lucia, V. Deufemia, C. Gravino and M.

Risi, “Design pattern recovery by visual language parsing”, In

Ninth European Conference on Software Maintenance and

Reengineering, CSMR, IEEE, pp.102-111, 2005.

[60] A. Blewitt, A. Bundy and I. Stark, “Automatic verification of

design patterns in Java”, In Proceedings of the 20th IEEE/ACM

international Conference on Automated software engineering,

ACM, pp. 224-232, 2005.

