

 © 2019, IJCSE All Rights Reserved 99

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-1, Jan 2019 E-ISSN: 2347-2693

Bio-Inspired Gradient Genetic Optimization for Test Suite Generation

T. Ramasundaram
1*

, V.Sangeetha
2

1
Department of Computer Science, Periyar University, Salem, Tamil Nadu, India

2
Department of Computer Science, Periyar University Constituent College, Pappireddipatti, Tamil Nadu, India

*Corresponding Author: profram01@yahoo.in

Available online at: www.ijcseonline.org

Accepted: 13/Jan/2019, Published: 31/Jan/2019

Abstract— Software testing is an essential process during the software development process. Test suite generation process is

employed to detect test cases with sources. Recently, many research works have been developed for automatically generate the

software test suites. However, software testing is a time consuming and unable to obtain high coverage rate. In this paper,

Gradient Advanced Genetic Parameter Control Based Test Suite Generation (GAGPC-TSG) technique is proposed. Based on

the fitness value, the best test case is selected using roulette wheel selection. Later, the gradient approach is applied to obtain

the optimal test case to generate the test suites for increasing the software quality. This enhances the better performance in

terms of optimal test suite generation with minimum time and maximum fault coverage rate.

Keywords— Software testing, test cases, roulette wheel selection, gradient approach

I. INTRODUCTION

Testing is the most significant parts of the software

development process but is normally manual, error-prone and

expensive. Software testing is the process of creating

reliable, robust, and trustworthy software by executing a

system to detect failures. However, it is still time- consuming

process. In some testing circumstances, many faults are

detected over a period of time. In software testing,

automatically generating a test suite with high coverage plays

a significant concern to software engineers for improving the

software quality. But it is delayed by the optimal tests suites

generation. A collection of test cases are often called a test

suite for testing the software programs with some specified

behaviors. In general, a software developer has less

knowledge about the test suites generation. Therefore the

controlling of some parameters is the demanding issues to

obtain high coverage rate and improve the software quality.

The several research works have been developed for software

test suite generation. In this work, the search based technique

is used to generate high coverage test suites.

A test case minimization approach was introduced for

reducing the test cases in configuration-aware structural

software testing [1]. The approach uses a cuckoo search (CS)

along with a combinatorial approach for generating the test

suites with optimal test cases. The approach consumes higher

computational time for creating the optimal test suites.

Artificial Bee Colony (ABC) Optimization Based on Markov

Approach was developed to achieve software code coverage

with the optimal test suites [2]. The coverage rate of the ABC

optimization was not improved effectively to improve

software quality.

A regeneration genetic algorithm (RGA) was introduced for

generating the software test data with high coverage [3]. The

algorithm does not obtain optimal test suites with minimum

time. A High-Level Hyper-Heuristic Tabu search strategy

was introduced for t-way test suite generation [4]. The

strategy does not improve the test suite generation with the

optimal test cases.

An improved Ant Colony Optimization technique was

developed for creating the optimal test cases and also

improving the coverage capability [5]. The technique does

not select the optimal test cases with minimum time.

Archive-based Whole Test Suite Generation was performed

in [6]. The approach failed to cover more faults during the

software testing.

A new and effective approach called fuzzy-based adaptive

swarm optimization algorithm was designed for software-

testing activities [7]. The performance of the algorithm does

not improve significantly by designing an effective data

structure to enable the strategy for the specific combination.

Complete Controllable test suites were generated for

distributed software testing based on the size of pairwise

differentiates test suites in [8]. The generated test suite does

not satisfy user requirements.

An intelligent water drop (IWD) optimization algorithm was

introduced for improving the entire software code coverage

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 100

with the number of test cases [9]. The algorithm does not

optimize the test case using some other meta-heuristic

approach. An efficient Cuckoo search Algorithm (CA) was

designed for optimizing the test data with minimum time

[10]. The algorithm does not apply to large datasets with

various constraints.

The several issues are identified from the above said issues

are less fault coverage capability, failure to improve software

quality, more computational time for test suite generation

and so on. Such kind of problems is overcome by introducing

a novel technique called Gradient Advanced Genetic

Parameter Control Based Test Suite Generation (GAGPC-

TSG) technique is introduced.

The major contribution of the proposed GAGPC-TSG

technique is described as follows:

1. First, the GAGPC-TSG technique generates the

population of test cases for testing the given software

program. The fitness is verified for each test case to

generate the optimal test suites. Based on the fitness

value, optimal test cases are selected among the

populations.

2. The fitness criterion is not satisfied, then the GAGPC-

TSG technique uses roulette wheel selection to choose

the current best test cases among the population based

on the fitness value using wheel pointer. Then the two-

point crossover is applied to swap the two strings and

creating the two offspring. Then the bit flip mutation

changes the one bit randomly in the offspring.

3. The gradient approach is applied to control the crossover

and mutation probability value to get an optimal test

case for generating the test suite using adjustment

coefficients. This helps to improve the high fault

coverage rate and improve the precision of test suite

generation with minimum time.

The rest of the paper is organized as follows. The works

related to our objective is discussed in Section 2. Section 3

provides a detail explanation of the proposed GAGPC-TSG

technique with neat diagram. Section 4 provides the

experimental evaluation with the dataset. Results and

discussion of the proposed and existing methods are

described in section 5 for showing the performance of the

proposed method. Finally, the conclusion of the research

work is presented in section 6.

II. RELATED WORK

A new model was introduced for generating the whole test

suites with the aim of increasing the covering rate in [11].

The model does not generate the optimal test suite with

minimum time. A hybrid intelligent algorithm was developed

for obtaining efficient software test data [12]. The algorithm

failed to reach the high coverage capability in software

testing.

A Simulated Annealing (SA) and Greedy Algorithms were

developed to find the combinatorial interaction testing (CIT)

test suites [13]. The algorithm has less fault coverage

capability. An ant colony algorithm was designed for

automatically generating graphical user interface (GUI) test

cases in [14]. The algorithm does not have the high fault

detection capability with the help of generated GUI test

cases. A new model based test design architecture (MBTDA)

was introduced for test suite creation with minimum time and

cost [15]. The model failed to improve the accuracy of the

optimal test suite generation.

A Neuro-fuzzy modeling-based approach was developed to

optimize the regression test suite and also provides better

performance with less execution time of the test suite

generation in [16]. The method failed to generate optimal test

cases for improving the coverage rate. Artificial Bee Colony

(ABC) based search method was presented for generating the

software test suite and achieves the entire test coverage [17].

The optimization technique consumes more time for

generating the test suites.

Two multi-objective optimization algorithms namely Swarm

Optimization and harmony search algorithm were developed

for multi-objective test case selection [18]. The optimization

algorithms failed to use the number of programs for software

testing with the selected test cases. A Hierarchical clustering

approach was designed for minimizing the test suite and

increasing the coverage rate in [19]. The approach takes

more time for test suite generation. A Fuzzy clustering

approach was developed for optimizing the software test

suite and also obtaining high coverage [20]. The fuzzy

clustering approach does not reduce the software test suite

generation time.

Correlation feature subset algorithm was developed to

increase software quality using micro interaction metrics

[21]. But, the developed algorithm was unable to generate

optimal test suites. Adaptive neuro-fuzzy inference system

was introduced for identifying software faults and reducing

the cost of software implementation [22]. However, the time

taken for predicting software defects was failed to reduce.

Open source software technology was developed to increase

the quality and reliability of the software system [23]. But,

fault coverage ratio remained unaddressed.

The issues identified by the above-said techniques are higher

test suite generation time, less fault detection capability and

coverage rate and so on. In order to overcome the issues, the

Gradient Advanced Genetic Parameter Control Based Test

Suite Generation (GAGPC-TSG) technique is developed and

it explained in the following sections.

III. METHODOLOGY

Software testing is the process of executing a system to

detect failures and improve software quality. Software test

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 101

suite optimization is the significant concern in software

testing with the optimal test cases. During test suite

generation, a different optimization method has been

developed to unit test generation. Specifically, the search-

based unit test suite generation is obtained based on the

number of test cases. In software testing, a test suite is a

validation suite to test software programs. The optimal test

suites are generated with the number of test cases. Then

testing is performed with these test suites to improve the

software quality. An efficient technique called Gradient

Advanced Genetic Parameter Control Based Test Suite

Generation (GAGPC-TSG) technique is developed. The

architecture diagram of the GAGPC-TSG technique is shown

in figure 1.

Figure1: Architecture Diagram of GAGPC-TSG Technique

Figure 1 shows the architecture diagram of the GAGPC-TSG

technique to generate the best test suite for testing the

software programs with the optimal test cases. During the

test suite generation, the genetic parameter value is

controlled by applying a search based technique. Initially, the

software programs are extracted from the dataset for testing

purposes. Then the test cases are selected for generating the

test cases for testing the software programs with optimal test

cases. In general, the selected test cases are used for

satisfying the user requirements like total test duration, total

test effort cost, Number of modules tested, number of faults

detection and so on. Based on these requirements, the test

suites are generated using gradient advanced genetic

parameter control.

A gene optimization is a bio-inspired meta-heuristic search

technique. It is often developed to resolve search and

optimization problems. It is generally more feasible to

evaluate the entire input space and it is used to generate good

solutions in reasonable time by evaluating the input space.

The first step in the functioning of a proposed GAGPC-TSG

technique is an initial population generation. A population of

candidate solutions also termed as an individual (i.e. the

number of test cases) is initialized. Let us consider the

software program SC, taken from the dataset and the

population of test cases are randomly initialized for

generating the test suites are expressed as follows,

}.......,,,{ 321 ntctctctc

(1)

From (1), T denotes a set of test cases

}.......,,,{ 321 ntctctctc . Among the several test cases, the

optimal test cases are selected through the optimization to

generate the best test suite for testing the software program.

In GAGPC-TSG technique, the fitness of each individual in

the population is calculated. The fitness function is an

objective function which provides the optimal solution. It

also produces the output solution to attain high coverage rate.

It means the optimal value of the parameter is chosen

depends on the user test requirements. The fitness of each

individual (i.e. test case) is calculated as follows,

 URFF maxarg (2)

From (2), FF denotes a fitness function, at which

the function outputs (i.e. user required test cases) are as large

as possible. It means the selected test case maximize the user

test requirements. Based on the fitness calculation, the

optimal test cases are selected and generate the unit test suit

and it satisfies the user requirements. Therefore, proposed

GAGPC-TSG technique generates test suites with higher

coverage capability for testing the software program. If the

optimal value of the parameters is not obtained, then the

genetic operators such as selection, crossover, and mutation

are performed.

A. Roulette wheel test case selection

Roulette wheel test case selection is used for choosing the

best individual based on the fitness value. Let us consider a

circular wheel for selecting the best individuals from the

population. The circular wheel is partitioned into ‘n’ number

of segments, where ‘n’ is the number of test cases in the

population. In this selection, all the test cases in the

population are positioned on the roulette wheel based on

their fitness value. The selection of the best individual is

shown in figure 2.

Figure 2: Roulette Wheel Based Test Case Selection

Figure 2 shows the best individual selection using a roulette

wheel with the help of the wheel pointer. From the figure, the

a

b

c

d

e

Dataset

Extract number of

software programs

Select the
number of

test cases

Obtain high-quality

software

Perform software

testing

Generate
optimal

test suite

Wheel pointer

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 102

different segment color indicates the fitness value of the

different individuals a, b, c, d, and e. The roulette wheel is

rotated. The individual of the wheel which comes in front of

the wheel pointer is selected and it has the high fitness

function. As a result, a test case with high fitness has a high

chance for selection. The probability of selecting the best

individuals from the population is expressed as follows,

 


n
j FF j

FFiP

1

(3)

From (3), P denotes a selection probability, jFF denotes a

fitness of individual ‘i’ in the population ‘j’. ‘n’ is the

number of individuals in the population. Based on the above

probability, individuals with high fitness are selected for

recombination.

B. Two-point crossover for offspring generation

Chromosome encoding is the representation of an individual.

In the test suite generation, the bit string encoding methods

are used for the recombination process. Let us consider the

bit string representation of the individual is denoted as ‘1’

and ‘0’. The proposed technique uses two-point crossovers

for generating the offspring. Let us consider two parents

 1111101010=a and .0100100111=b Then the offspring

is generated as sown in figure 3.

Figure 3: Two-point Crossover Based Offspring Generation

Figure 3 shows the process of two-point crossover based

offspring generation. The two offspring are generated with

the two cross point
1P

 and
2P . Based on the crossover

results, the two individuals are recombined with their string

values to get new off-springs. After creating the new

offspring’s, the string length of offspring is similar to the

total string length of both the parents. Crossover is the

significant process which helps to generate the test suites

using a number of test cases. The value of the two-point

crossover probability tcP is controlled by introducing the

gradient approach. The probability of the crossover is

defined as follows,

2
)]([

2
)]([s

l
hs

l
gtcP  (4)

From (4), tcP denotes a two-point crossover probability

)(s
l

g is the similar strings in the length of the two offspring

are generated and)(s
l

h denotes a dissimilar string in the

length of the two offspring are generated. Based on the

results, mutation probability is measured. As a result of

crossover, the process is not able to create diversity within a

population. Therefore, diversity is preserved by using

mutation operators.

C. Bit flips Mutation

Once the new offspring are generated, the other genetic

operator called mutation is performed. Mutation is a process

of random variation in the given string. It is also used to

preserve genetic diversity from one generation of a

population to the next generation. The proposed GAGPC-

TSG technique uses bit-flip mutation is used for randomly

interchanging the bit. This mutation operator takes the newly

generated offspring’s from the two-point crossover and

inverts the bits ‘1' to ‘0' and vice versa at a random position.

The bit flip mutation is shown in figure 4.

Figure 4: Bit Flip Mutation

Figure 4 shows the process of bit flip mutation to obtain a

new solution. The above figure shows that the bit ‘1’ is

randomly changed into a bit ‘0’. The probability of the

mutation rate is denoted as BMP . The bit flip mutation

probability is calculated as follows,

100** Ptc
l

N a
PBM



(5)

From (5), aN denotes a population size in integer

denotes a length of the string in integer, tcP represents a two-

point crossover probability. Finally, the crossover and

mutation rates are controlled using the gradient approach.

The Gradient approach is a repair operator to provide

feasible solutions in problems with equality constraints (i.e.

the probability value of the crossover and mutation is equal

to 1).

After mutation

Newly generated

offspring

Flip the bit 1 to 0

1 1 1 0 1 0 1 0 1 0

1 1 1 0 1 0 0 0 1 0

P1 P2

a

b

Offspring’s

1 1 1 0 0 1 1 0 1 0

0 1 0 1 1 0 0 1 0 1

1 1 1 1 1 0 1 0 1 0

0 1 0 0 0 1 0 1 0 1

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 103

1 PtcPBM


(6)

From (6), denotes a sum function of both crossover and

mutation probability. The adjustment of genetic parameters

using the gradient operator is described as follows,














1;

1;





if

if

(7)

From (7),  denotes a gradient operator  denotes an

adjustment coefficient of the control parameters. By applying

the gradient approach, the genetic parameters crossover and

mutation are controlled. After that, the old individual is

replaced into a new one. Then the fitness is calculated for a

new individual (i.e. test case) based on the user requirements.

Then the Fitness criterion is verified to obtain optimal

solutions.

Figure 5: Flow Process of GAGPC-TSG Technique

This process is continued for all possible test cases in an

initial population and generates a new test suite. The flow

process of the proposed GAGPC-TSG technique is described

as shown in figure 5.

Figure 5 shows the flow process of a proposed GAGPC-TSG

technique to generate a test suite with the optimal test cases

for testing the given software programs based on user test

requirements. Initialize the number of test cases to generate

the optimal test suite. For each individual, the fitness

criterion is verified with the user requirements. As a result,

efficient test cases are identified and these collections of the

test cases are used to generate the test suite. If the fitness

criterion is not satisfied, then the selection, crossover, and

mutation are carried out to find the optimal test cases.

Then the crossover and mutation value are controlled by

applying a gradient approach. This process generates the best

test suites for software quality testing. This also helps to

improve the coverage rate of faults in a software program.

The algorithmic description of the proposed GAGPC-TSG

technique is described as follows,

Input: Number of cases }.......,,,{ 321 ntctctctc

Output: Generate test suite with optimal test cases

Begin

1. Initialize number of test cases ntc

2. For each tc

3. calculate the fitness FF

4. if criterionfitnessthe is satisfied then

5. select optimal test case

6. else

7. Select the individuals from the population based on

probability P

8. Swap two individuals to generate offspring’s

9. Invert the input bit using mutation probability

10. Adjust BMP and tcP using a gradient operator 

11. Replace old individual

12. Go to step 3

13. end if

14. end for

15. Obtain optimal test suites

end

Algorithm 1.Gradient Advanced Genetic Parameter Control

Based Test Suite Generation

The algorithmic process of proposed GAGPC-TSG

technique is described to generate the test suite for covering

the number of faults with the generated optimal test cases. In

order to test the software quality, the program is taken from

the dataset. The population of a number of test cases is

randomly initialized. Then the fitness of each test case is

calculated with the user requirements. If the selected test

cases are not satisfied the user requirements, the roulette

wheel selection is applied to choose the individual from the

population based on the fitness probability. Based on the

selected individual, the recombination is carried out to create

the new offspring’s. Then the random bit flip mutation is

performed to interchange the bit and is used for obtaining the

Initialize number of

test cases

Calculate the fitness of each

individual

Fitness

criterion

is satisfied

No

Yes

End

Roulette wheel

selection

Two-point crossover

Bit flips Mutation

Gradient approach

Start

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 104

global optimal solution. After mutating the bits, the gradient

approach is applied to control the crossover and mutation

probability rate based on the adjustment coefficient. Then the

fitness function is measured and selects the user required test

cases. As a result, the test suites are generated with the

optimal test cases.

IV. EXPERIMENTAL SETTINGS

Experimental evaluation of the proposed Gradient Advanced

Genetic Parameter Control Based Test Suite Generation

(GAGPC-TSG) technique is implemented using JAVA

programming with Webchess dataset

http://sourceforge.net/projects/webchess/. The Webchess

dataset comprises 28 PHP Programs for software testing with

the generated test suites. The input program is taken from

this dataset. Then the generated test suites used for testing

the input program. Each and every line in the source program

is monitored to cover the more faults and increase the

software quality.

Experimental evaluation is performed with three different

methods namely GAGPC-TSG technique, Test case

minimization approach [1] and Artificial Bee Colony

Optimization (ABC) [2]. The different parametric values are

obtained and the discussions are explained in the following

sections.

V. RESULTS AND DISCUSSION

Results and discussion of the proposed GAGPC-TSG

technique are performed with the existing methods namely

Test case minimization approach [1] and Artificial Bee

Colony Optimization (ABC) [2] with certain parameters such

as precision, test suite generation time and coverage rate with

the given input program. The performance is evaluated

according to the following metrics with the help of table and

graph values.

A. Impact of precision

Precision is defined as the ratio of the number of optimal test

suites generated from the total test suites generated. The

precision is measured as follows,

100*

.
Pr

n

generatedsuitestestoptimalofno
ecision 

 (8)

From the equation (8), where ‘n’ denotes the number of the

test suite. The precision is measured in terms of percentage

(%).

Sample calculation for precision

GAGPC-TSG: no. of optimal test suites generated is 8 and

the number of the test suite is 10, then,

%80100*
10

8
Pr ecision

Test case minimization approach: no. of optimal test suites

generated is 7 and the number of the test suite is 10, then the

%70100*
10

7
Pr ecision

ABC optimization technique: no. of optimal test suites

generated is 6 and the number of the test suite is 10, then the

precision is measured as,

%60100*
10

6
Pr ecision

Table 1: Tabulation for Precision

No. of test

suites

Precision (%)

GAGPC-TSG

Test case

minimization

approach

ABC

optimization

technique

10 80 70 60

20 85 75 65

30 83 73 67

40 80 70 60

50 90 80 72

60 93 85 75

70 89 79 71

80 95 89 84

90 94 88 81

100 96 90 82

Table 1 describes the performance results of precision with

the number of test suites. The precision is the accuracy of

optimal test suites generation. The above table clearly shows

that the performance result of precision is significantly

improved using GAGPC-TSG technique when compared to

existing methods. This improvement is achieved by applying

gradient advanced gene parameter control based high

coverage test suite generation. By applying advanced gene

parameter control method, the number of test cases is

selected from the population. Initially, the population of test

cases is randomly initialized. Then the test cases are verified

with the fitness condition. It means the test case satisfies the

user requirements are selected to generate the optimal test

suite. If the condition is not satisfied, the operators such as

selection, crossover, and mutation are carried out. The

selection is performed using the circular wheel. The circular

wheel selects the test cases with the high fitness. The wheel

pointer indicates the current best individual from the

population. Then the two-point crossover is applied to

interchange the chromosome values. As a result of

interchanging, the new offspring’s are generated from the

parent chromosome. After that, the mutation probability is

calculated. The bit flip mutation is used to randomly

changing the bit from the newly generated offspring’s. Then

the probability of the mutation is computed with the

crossover probability rate. Finally, the gradient approach is

http://sourceforge.net/projects/webchess/

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 105

applied to control the crossover and mutation probability

rate. Then they obtained test cases are verified with the

fitness condition and select the test suites. This process is

repeated for each test case in the population. Finally, the

selected test cases are combined to generate the number of

optimal and high coverage test suites. This optimal test suite

is more suitable for software testing. Totally ten runs are

carried out to show the results of proposed and existing

methods. The results reveal that the GAGPC-TSG technique

considerably improves the precision by 11% and 24% than

the existing methods Test case minimization approach [1]

ABC optimization technique [2].

B. Impact of test suite generation time

Test suite generation time is the amount of time required for

generating the optimal test suites. Test suite generation time

is calculated using the following mathematical equations,

)(* generationsuitetestoptimalTnTSGT  (9)

From (9), denotes a test suite generation time, ‘n'

denotes the number of test suites, T represents a time. Test

suite generation time is measured in terms of milliseconds

(ms).

Sample calculation for test suite generation time:

GAGPC-TSG: no. of optimal test suites generated is 10 and

the time for one optimal test suite generation is 0.1ms, then

msTSGT 101*10 

Test case minimization approach: no. of optimal test suites

generated is 10 and the time for one optimal test suite

generation is 1.6ms, then the

msTSGT 166.1*10 

ABC optimization technique: no. of optimal test suites

generated is 10 and the time for one optimal test suite

generation is 1.9ms, then the

msTSGT 199.1*10 

Figure 6: Performance Results of Test Suite Generation Time

Figure 6 shows the performance results of test suite

generation time versus a number of test suites. The numbers

of test suites are varied from 10 to 100. While varying the

number of test suites, the generation time gets varies as

shown in figure 6. The above graphical representation shows

that the test suite generation time is considerably minimized

using proposed GAGPC-TSG when compared to existing

methods. This significant improvement is obtained using

gradient advanced gene parameter control. This optimization

technique takes minimum time for test suites generation with

the number of optimal test cases. The process of selecting the

test cases which helps to find faults in the software programs

based on the user requirements. Let us consider, the software

program is tested with the generated test suites. This test

suite satisfies the user requirements like a number of faults

are correctly detected, minimum testing duration and so on.

The gradient advanced gene parameter control technique

calculates the fitness for selecting the test cases among the

population. If the fitness criterion is not satisfied, the roulette

wheel selection is applied to choose the current best fitness

test cases. Then the crossover is used to swap the two

individuals to provide the offspring. Then the offspring’s are

mutated to obtain the diversity. The gradient approach

controls the crossover and mutation probability rate. These

processes are used to generate the optimal test suites with

minimum time. As a result, the user required test cases are

selected and generated the optimal test suites. The input

program is tested with this optimal test suite for improving

the software quality. The optimal test suite generation time is

significantly reduced by 16% and 27% when compared to the

existing Test case minimization approach [1] ABC

optimization technique [2] respectively.

C. Impact of the coverage rate

Coverage rate is defined as the ratio of the number of test

suites covers the faults in the given program. Coverage rate

is measured as follows,

100*
cov

cov
n

programinfaultsmoreersthatsuitestestoptimalofno
rateerage 

 (10)

From (10), where ‘n’ denotes the number of generated test

suites. Coverage rate is measured in terms of percentage (%).

Sample calculation for coverage rate:

GAGPC-TSG: no. of optimal test suites that covers more

faults in a given time is 7 and the total number of test suite

generated is 10, then

%70100*
10

7
cov rateerage

Test case minimization approach: no. of optimal test suites

that covers more faults in a given time is 6 and the total

number of test suite generated is 10, then

%60100*
10

6
cov rateerage .

0

5

10

15

20

25

30

35

40

45

10 20 30 40 50 60 70 80 90 100

T
e
st

 s
u

it
e
 g

e
n

e
r
a

ti
o
n

 t
im

e
 (

m
s)

No. of test suites

GAGPC-TSG

Test case minimization approach

ABC optimization technique

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 106

ABC optimization technique: no. of optimal test suites that

covers more faults in a given time is 5 and the total number

of test suite generated is 10, then

%50100*
10

5
cov rateerage

Table 2: Tabulation for Coverage Rate

No. of test

suites

Coverage rate (%)

GAGPC-TSG

Test case

minimization

approach

ABC

optimization

technique

10 70 60 50

20 75 65 55

30 77 67 57

40 78 68 55

50 82 72 60

60 87 77 68

70 84 73 66

80 90 81 75

90 88 79 74

100 92 80 77

Table 2 describes the coverage rate versus a number of test

suites. The number of test suites taken for experimental

evaluation is varied from 10 to 100. Table 2 shows the

coverage rate of three methods namely GAGPC-TSG

technique and existing Test case minimization approach [1]

Artificial Bee Colony Optimization (ABC) technique [2].

The above table value clearly shows that the coverage rate of

the proposed GAGPC-TSG technique is considerably

improved than the other existing methods. This is because

the GAGPC-TSG technique uses the gradient approach

during the optimization. The gradient approach effectively

generates the test suites with optimal test cases. The numbers

of test cases are taken as population for the optimization. The

gradient approach controls the two gene parameters with

their probability value. The probability value of the mutation

and crossover rate is controlled by using a gradient operator.

If probability value is either lesser or greater one, then the

adjustment coefficient controls the operators. After that, the

fitness of the test cases is calculated with their user

requirements. Similarly, the test cases are selected from the

populations. The selected test cases are combined to generate

the test suite which is the optimal one. This helps to cover

the entire defects in the software program. The comparison

results show that the coverage rate of proposed GAGPC-

TSG technique is considerably improved by 14% and 30%

when compared to existing Test case minimization approach

[1] ABC optimization technique [2] respectively.

VI. CONCLUSION

In this paper the proposed GAGPC-TSG technique for

improving software quality. The analysis and experimental

results show that efficient GAGPC-TSG technique has the

maximum performance in generating optimal test suites than

test case minimization approach and artificial bee colony

optimization. Here, Webchess dataset has been used in

which 10 to 100 test suites are considered for evaluating the

GAGPC-TSG technique. The proposed GAGPC-TSG

technique improves the precision by 18% and fault coverage

rate by 22% and reduces the test suite generation time by

22%.

REFERENCES

[1] Bestoun S. Ahmed, “Test case minimization approach using fault
detection and combinatorial optimization techniques for
configuration-aware structural testing”, Engineering Science and
Technology, an International Journal, Elsevier, Vol.19, pp. 737–
753, 2016.

[2] Muthusamy Boopathi, Ramalingam Sujatha, Chandran Senthil
Kumar, Srinivasan Narasimman, “Quantification of Software Code
Coverage Using Artificial Bee Colony Optimization Based on
Markov Approach”, Arabian Journal for Science and Engineering,
Springer, Vol.42, Issue. 8, pp. 3503–3519, 2017.

[3] Shunkun Yang, Tianlong Man, Jiaqi Xu, Fuping Zeng, Ke Li,
"RGA: A lightweight and effective regeneration genetic algorithm
for coverage-oriented software test data generation", Information
and Software Technology, Elsevier, Vol.76, pp. 19–30, 2016.

[4] Kamal Z. Zamlia, Basem Y. Alkazemib, Graham Kendall, “A
Tabu Search hyper-heuristic strategy for t-way test suite
generation”, Applied Soft Computing, Elsevier, Vol.44, pp. 57–
74, 2016.

[5] Shunkun Yang, Tianlong Man, and Jiaqi Xu, “Improved Ant
Algorithms for Software Testing Cases Generation”, The Scientific
World Journal, Hindawi Publishing Corporation, Vol.2014, May
pp. 1-9, 2014.

[6] José Miguel Rojas, Mattia Vivanti, Andrea Arcuri, Gordon Fraser,
“A detailed investigation of the effectiveness of whole test suite
generation”, Empirical Software Engineering, Springer, Vol.22,
Issue. 2, pp. 852–893, 2017.

[7] Thair Mahmoud and Bestoun S.Ahmed, “An efficient strategy for
covering array construction with fuzzy logic-based adaptive
swarm optimization for software testing use”, Expert Systems with
Applications, Elsevier, Vol.42, Issue. 22, pp. 8753-8765, 2015.

[8] Robert M. Hierons, “Generating Complete Controllable Test
Suites for Distributed Testing”, IEEE Transactions on Software
Engineering, Vol.41, Issue. 3, pp. 279 – 293, 2015.

[9] Komal Agarwal, Manish Goyal, and Praveen Ranjan Srivastava,
"Code coverage using intelligent water drop (IWD)", International
Journal of Bio-Inspired Computation, Vol.4, Issue. 6, pp. 392-402,
2012.

[10] Manju Khari and Prabhat Kumar, “An Effective Meta-Heuristic
Cuckoo Search Algorithm for Test Suite Optimization”, Vol.41,
Issue. 3, pp. 363–377, 2017.

[11] G. Fraser and A. Arcuri, “Whole Test Suite Generation", IEEE
Transactions on Software Engineering, Vol.39, Issue. 2, pp. 276 –
291, 2013.

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 107

[12] Ying Xing, Yun-Zhan Gong, Ya-Wen Wang, and Xu-Zhou Zhang,
“A Hybrid Intelligent Search Algorithm for Automatic Test Data
Generation”, Mathematical Problems in Engineering, Hindawi
Publishing Corporation, Vol.2015, pp. 1-15, 2014.

[13] Justyna Petke, Myra B. Cohen, Mark Harman, Shin Yoo,
"Practical Combinatorial Interaction Testing: Empirical Findings
on Efficiency and Early Fault Detection", IEEE Transactions on
Software Engineering, Vol.41, Issue. 9, pp. 901 – 924, 2015.

[14] Y. Huang and L. Lu, "Apply ant colony to event-flow model for
graphical user interface test case generation", IET Software,
Vol.6, Issue: 1, pp. 50 – 60, 2012.

[15] Saurabh Karsoliya, Prof.Amit Sinhal, Er.Amit Kanungo,
“Combined Architecture for Early Test Case Generation and Test
suit Reduction”, International Journal of Computer Science Issues,
Vol. 10, Issue. 1, pp. 484-489, 2013.

[16] Zeeshan Anwar, Ali Ahsan, and Cagatay Catal, "Neuro-Fuzzy
Modeling for Multi-Objective Test Suite Optimization", Journal of
Intelligent Systems, Vol.25, Issue. 2, pp.1-24, 2015.

[17] Soma Sekhara Babu Lam, M L Hari Prasad Raju, Uday Kiran M,
Swaraj Ch Praveen Ranjan Srivastav, “Automated Generation of
Independent Paths and Test Suite Optimization Using Artificial
Bee Colony”, Procedia Engineering, Elsevier, Vol.30, pp. 191-200,
2012.

[18] Luciano Soares de Souza, Ricardo Bastos Cavalcante Prudencio
and Flavia A. de Barros, “A hybrid particle swarm optimization
and harmony search algorithm approach for multi-objective test
case selection”, Journal of the Brazilian Computer Society,
Vol.21, Issue. 19, pp. 1-20, 2015.

[19] Fayaz Ahmad Khan, Anil Kumar Gupta, Dibya Jyoti Bora, “An
Efficient Technique to Test Suite Minimization using Hierarchical
Clustering Approach”, International Journal of Emerging Science
and Engineering, Vol.3 Issue. 11, pp. 1-10, 2015.

[20] Gaurav Kumar, Pradeep Kumar Bhatia, “Software testing

optimization through test suite reduction using fuzzy clustering”,

CSI Transactions on ICT, Springer, Vol.1, Issue. 3, pp. 253–260,

2013.

[21] A. Sreepradha, “Measuring Software Quality Using Micro

Interaction Metrics”, International Journal of Scientific Research

in Computer Science, Engineering and Information Technology,

Vol.2, Issue. 5, pp.1-4, 2017.

[22] G. Rajendra, Dr. M. Babu Reddy, “Application of Adaptive Neural

Fuzzy Inference System for the Prediction of Software Defects”,

International Journal of Scientific Research in Computer Science,

Engineering and Information Technology, Vol.2, Issue. 3, pp.1-5,

2017.

[23] Kumari Seema Rani, “Open Source Software: A Prominent

Requirement of Information Technology”, International Journal of

Scientific Research in Network Security and Communication,

Vol.6, Issue. 2, pp.1-6, 2018.

