
 

     © 2019, IJCSE All Rights Reserved                                                                                                                                  99 

International Journal of Computer Sciences and Engineering    Open Access 

Research Paper                                              Vol.-7, Issue-1, Jan 2019                               E-ISSN: 2347-2693 

                 

Bio-Inspired Gradient Genetic Optimization for Test Suite Generation 
 

T. Ramasundaram
1*

, V.Sangeetha
2 

 
1
Department of Computer Science, Periyar University, Salem, Tamil Nadu, India 

2
Department of Computer Science, Periyar University Constituent College, Pappireddipatti, Tamil Nadu, India  

 
*Corresponding Author:  profram01@yahoo.in 

 

Available online at: www.ijcseonline.org  

Accepted: 13/Jan/2019, Published: 31/Jan/2019 

Abstract— Software testing is an essential process during the software development process. Test suite generation process is 

employed to detect test cases with sources. Recently, many research works have been developed for automatically generate the 

software test suites. However, software testing is a time consuming and unable to obtain high coverage rate. In this paper, 

Gradient Advanced Genetic Parameter Control Based Test Suite Generation (GAGPC-TSG) technique is proposed. Based on 

the fitness value, the best test case is selected using roulette wheel selection. Later, the gradient approach is applied to obtain 

the optimal test case to generate the test suites for increasing the software quality. This enhances the better performance in 

terms of optimal test suite generation with minimum time and maximum fault coverage rate. 
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I.  INTRODUCTION  

 

Testing is the most significant parts of the software 

development process but is normally manual, error-prone and 

expensive. Software testing is the process of creating 

reliable, robust, and trustworthy software by executing a 

system to detect failures. However, it is still time- consuming 

process. In some testing circumstances, many faults are 

detected over a period of time. In software testing, 

automatically generating a test suite with high coverage plays 

a significant concern to software engineers for improving the 

software quality. But it is delayed by the optimal tests suites 

generation. A collection of test cases are often called a test 

suite for testing the software programs with some specified 

behaviors. In general, a software developer has less 

knowledge about the test suites generation. Therefore the 

controlling of some parameters is the demanding issues to 

obtain high coverage rate and improve the software quality. 

The several research works have been developed for software 

test suite generation. In this work, the search based technique 

is used to generate high coverage test suites. 

 

A test case minimization approach was introduced for 

reducing the test cases in configuration-aware structural 

software testing [1]. The approach uses a cuckoo search (CS) 

along with a combinatorial approach for generating the test 

suites with optimal test cases. The approach consumes higher 

computational time for creating the optimal test suites.  

 

Artificial Bee Colony (ABC) Optimization Based on Markov 

Approach was developed to achieve software code coverage  

 

with the optimal test suites [2]. The coverage rate of the ABC 

optimization was not improved effectively to improve 

software quality.  

 

A regeneration genetic algorithm (RGA) was introduced for 

generating the software test data with high coverage [3]. The 

algorithm does not obtain optimal test suites with minimum 

time. A High-Level Hyper-Heuristic Tabu search strategy 

was introduced for t-way test suite generation [4]. The 

strategy does not improve the test suite generation with the 

optimal test cases.  
 

An improved Ant Colony Optimization technique was 

developed for creating the optimal test cases and also 

improving the coverage capability [5]. The technique does 

not select the optimal test cases with minimum time. 

Archive-based Whole Test Suite Generation was performed 

in [6]. The approach failed to cover more faults during the 

software testing.  
 

A new and effective approach called fuzzy-based adaptive 

swarm optimization algorithm was designed for software-

testing activities [7]. The performance of the algorithm does 

not improve significantly by designing an effective data 

structure to enable the strategy for the specific combination. 

Complete Controllable test suites were generated for 

distributed software testing based on the size of pairwise 

differentiates test suites in [8]. The generated test suite does 

not satisfy user requirements. 

 

An intelligent water drop (IWD) optimization algorithm was 

introduced for improving the entire software code coverage 
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with the number of test cases [9]. The algorithm does not 

optimize the test case using some other meta-heuristic 

approach. An efficient Cuckoo search Algorithm (CA) was 

designed for optimizing the test data with minimum time 

[10]. The algorithm does not apply to large datasets with 

various constraints.  

 

The several issues are identified from the above said issues 

are less fault coverage capability, failure to improve software 

quality, more computational time for test suite generation 

and so on. Such kind of problems is overcome by introducing 

a novel technique called Gradient Advanced Genetic 

Parameter Control Based Test Suite Generation (GAGPC-

TSG) technique is introduced.  

The major contribution of the proposed GAGPC-TSG 

technique is described as follows: 

1. First, the GAGPC-TSG technique generates the 

population of test cases for testing the given software 

program. The fitness is verified for each test case to 

generate the optimal test suites. Based on the fitness 

value, optimal test cases are selected among the 

populations. 

2. The fitness criterion is not satisfied, then the GAGPC-

TSG technique uses roulette wheel selection to choose 

the current best test cases among the population based 

on the fitness value using wheel pointer. Then the two-

point crossover is applied to swap the two strings and 

creating the two offspring. Then the bit flip mutation 

changes the one bit randomly in the offspring.  

3. The gradient approach is applied to control the crossover 

and mutation probability value to get an optimal test 

case for generating the test suite using adjustment 

coefficients. This helps to improve the high fault 

coverage rate and improve the precision of test suite 

generation with minimum time.  

 

The rest of the paper is organized as follows. The works 

related to our objective is discussed in Section 2. Section 3 

provides a detail explanation of the proposed GAGPC-TSG 

technique with neat diagram. Section 4 provides the 

experimental evaluation with the dataset. Results and 

discussion of the proposed and existing methods are 

described in section 5 for showing the performance of the 

proposed method. Finally, the conclusion of the research 

work is presented in section 6.  

 

II. RELATED WORK  

 

A new model was introduced for generating the whole test 

suites with the aim of increasing the covering rate in [11]. 

The model does not generate the optimal test suite with 

minimum time. A hybrid intelligent algorithm was developed 

for obtaining efficient software test data [12]. The algorithm 

failed to reach the high coverage capability in software 

testing. 

A Simulated Annealing (SA) and Greedy Algorithms were 

developed to find the combinatorial interaction testing (CIT) 

test suites [13]. The algorithm has less fault coverage 

capability. An ant colony algorithm was designed for 

automatically generating graphical user interface (GUI) test 

cases in [14]. The algorithm does not have the high fault 

detection capability with the help of generated GUI test 

cases. A new model based test design architecture (MBTDA) 

was introduced for test suite creation with minimum time and 

cost [15]. The model failed to improve the accuracy of the 

optimal test suite generation.  
 

A Neuro-fuzzy modeling-based approach was developed to 

optimize the regression test suite and also provides better 

performance with less execution time of the test suite 

generation in [16]. The method failed to generate optimal test 

cases for improving the coverage rate. Artificial Bee Colony 

(ABC) based search method was presented for generating the 

software test suite and achieves the entire test coverage [17]. 

The optimization technique consumes more time for 

generating the test suites.  
 

Two multi-objective optimization algorithms namely Swarm 

Optimization and harmony search algorithm were developed 

for multi-objective test case selection [18]. The optimization 

algorithms failed to use the number of programs for software 

testing with the selected test cases. A Hierarchical clustering 

approach was designed for minimizing the test suite and 

increasing the coverage rate in [19]. The approach takes 

more time for test suite generation. A Fuzzy clustering 

approach was developed for optimizing the software test 

suite and also obtaining high coverage [20]. The fuzzy 

clustering approach does not reduce the software test suite 

generation time.  
 

Correlation feature subset algorithm was developed to 

increase software quality using micro interaction metrics 

[21]. But, the developed algorithm was unable to generate 

optimal test suites. Adaptive neuro-fuzzy inference system 

was introduced for identifying software faults and reducing 

the cost of software implementation [22]. However, the time 

taken for predicting software defects was failed to reduce. 

Open source software technology was developed to increase 

the quality and reliability of the software system [23]. But, 

fault coverage ratio remained unaddressed.   
 

The issues identified by the above-said techniques are higher 

test suite generation time, less fault detection capability and 

coverage rate and so on. In order to overcome the issues, the 

Gradient Advanced Genetic Parameter Control Based Test 

Suite Generation (GAGPC-TSG) technique is developed and 

it explained in the following sections. 

 

III. METHODOLOGY 
 

Software testing is the process of executing a system to 

detect failures and improve software quality. Software test 
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suite optimization is the significant concern in software 

testing with the optimal test cases. During test suite 

generation, a different optimization method has been 

developed to unit test generation. Specifically, the search-

based unit test suite generation is obtained based on the 

number of test cases. In software testing, a test suite is a 

validation suite to test software programs. The optimal test 

suites are generated with the number of test cases. Then 

testing is performed with these test suites to improve the 

software quality. An efficient technique called Gradient 

Advanced Genetic Parameter Control Based Test Suite 

Generation (GAGPC-TSG) technique is developed. The 

architecture diagram of the GAGPC-TSG technique is shown 

in figure 1. 

 

Figure1: Architecture Diagram of GAGPC-TSG Technique 

Figure 1 shows the architecture diagram of the GAGPC-TSG 

technique to generate the best test suite for testing the 

software programs with the optimal test cases. During the 

test suite generation, the genetic parameter value is 

controlled by applying a search based technique. Initially, the 

software programs are extracted from the dataset for testing 

purposes. Then the test cases are selected for generating the 

test cases for testing the software programs with optimal test 

cases. In general, the selected test cases are used for 

satisfying the user requirements like total test duration, total 

test effort cost, Number of modules tested, number of faults 

detection and so on. Based on these requirements, the test 

suites are generated using gradient advanced genetic 

parameter control. 

 

A gene optimization is a bio-inspired meta-heuristic search 

technique. It is often developed to resolve search and 

optimization problems. It is generally more feasible to 

evaluate the entire input space and it is used to generate good 

solutions in reasonable time by evaluating the input space. 

The first step in the functioning of a proposed GAGPC-TSG 

technique is an initial population generation. A population of 

candidate solutions also termed as an individual (i.e. the 

number of test cases) is initialized. Let us consider the 

software program SC, taken from the dataset and the 

population of test cases are randomly initialized for 

generating the test suites are expressed as follows,  

}.......,,,{ 321 ntctctctc
 

(1) 

From (1), T denotes a set of test cases 

}.......,,,{ 321 ntctctctc . Among the several test cases, the 

optimal test cases are selected through the optimization to 

generate the best test suite for testing the software program. 

In GAGPC-TSG technique, the fitness of each individual in 

the population is calculated. The fitness function is an 

objective function which provides the optimal solution. It 

also produces the output solution to attain high coverage rate. 

It means the optimal value of the parameter is chosen 

depends on the user test requirements. The fitness of each 

individual (i.e. test case) is calculated as follows,  

 URFF maxarg          (2) 

From (2), FF  denotes a fitness function,         at which 

the function outputs (i.e. user required test cases) are as large 

as possible. It means the selected test case maximize the user 

test requirements. Based on the fitness calculation, the 

optimal test cases are selected and generate the unit test suit 

and it satisfies the user requirements. Therefore, proposed 

GAGPC-TSG technique generates test suites with higher 

coverage capability for testing the software program. If the 

optimal value of the parameters is not obtained, then the 

genetic operators such as selection, crossover, and mutation 

are performed.  

 

A. Roulette wheel test case selection 

Roulette wheel test case selection is used for choosing the 

best individual based on the fitness value. Let us consider a 

circular wheel for selecting the best individuals from the 

population. The circular wheel is partitioned into ‘n’ number 

of segments, where ‘n’ is the number of test cases in the 

population. In this selection, all the test cases in the 

population are positioned on the roulette wheel based on 

their fitness value. The selection of the best individual is 

shown in figure 2. 

 
Figure 2: Roulette Wheel Based Test Case Selection 

Figure 2 shows the best individual selection using a roulette 

wheel with the help of the wheel pointer. From the figure, the 
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different segment color indicates the fitness value of the 

different individuals a, b, c, d, and e. The roulette wheel is 

rotated. The individual of the wheel which comes in front of 

the wheel pointer is selected and it has the high fitness 

function. As a result, a test case with high fitness has a high 

chance for selection. The probability of selecting the best 

individuals from the population is expressed as follows,

  

 


n
j FF j

FFiP

1

(3) 

From (3), P denotes a selection probability, jFF denotes a 

fitness of individual ‘i’ in the population ‘j’. ‘n’ is the 

number of individuals in the population. Based on the above 

probability, individuals with high fitness are selected for 

recombination. 

 

B. Two-point crossover for offspring generation  

Chromosome encoding is the representation of an individual. 

In the test suite generation, the bit string encoding methods 

are used for the recombination process. Let us consider the 

bit string representation of the individual is denoted as ‘1’ 

and ‘0’. The proposed technique uses two-point crossovers 

for generating the offspring. Let us consider two parents 

 1111101010=a and .0100100111=b  Then the offspring 

is generated as sown in figure 3. 

 

Figure 3: Two-point Crossover Based Offspring Generation 

Figure 3 shows the process of two-point crossover based 

offspring generation. The two offspring are generated with 

the two cross point 
1P

 and
2P . Based on the crossover 

results, the two individuals are recombined with their string 

values to get new off-springs. After creating the new 

offspring’s, the string length of offspring is similar to the 

total string length of both the parents. Crossover is the 

significant process which helps to generate the test suites 

using a number of test cases. The value of the two-point 

crossover probability tcP is controlled by introducing the 

gradient approach. The probability of the crossover is 

defined as follows,   

2
)]([

2
)]([ s

l
hs

l
gtcP    (4) 

From (4), tcP  denotes a two-point crossover probability 

)(s
l

g  is the similar strings in the length of the two offspring 

are generated and )(s
l

h  denotes a dissimilar string in the 

length of the two offspring are generated. Based on the 

results, mutation probability is measured. As a result of 

crossover, the process is not able to create diversity within a 

population. Therefore, diversity is preserved by using 

mutation operators.  

 

C. Bit flips Mutation  

Once the new offspring are generated, the other genetic 

operator called mutation is performed. Mutation is a process 

of random variation in the given string. It is also used to 

preserve genetic diversity from one generation of a 

population to the next generation. The proposed GAGPC-

TSG technique uses bit-flip mutation is used for randomly 

interchanging the bit. This mutation operator takes the newly 

generated offspring’s from the two-point crossover and 

inverts the bits ‘1' to ‘0' and vice versa at a random position. 

The bit flip mutation is shown in figure 4. 

 

Figure 4: Bit Flip Mutation 

 

Figure 4 shows the process of bit flip mutation to obtain a 

new solution. The above figure shows that the bit ‘1’ is 

randomly changed into a bit ‘0’. The probability of the 

mutation rate is denoted as BMP . The bit flip mutation 

probability is calculated as follows,   

100** Ptc
l

N a
PBM



 

(5) 

From (5), aN denotes a population size in integer   

denotes a length of the string in integer, tcP represents a two-

point crossover probability. Finally, the crossover and 

mutation rates are controlled using the gradient approach. 

The Gradient approach is a repair operator to provide 

feasible solutions in problems with equality constraints (i.e. 

the probability value of the crossover and mutation is equal 

to 1). 

After mutation 

Newly generated 

offspring 

Flip the bit 1 to 0 

1 1 1 0 1 0 1 0 1 0 

1 1 1 0 1 0 0 0 1 0 

P1 P2 

a 

b 

Offspring’s 

1 1 1 0 0 1 1 0 1 0 

0 1 0 1 1 0 0 1 0 1 

1 1 1 1 1 0 1 0 1 0 

0 1 0 0 0 1 0 1 0 1 
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1 PtcPBM


 
(6) 

From (6),  denotes a sum function of both crossover and 

mutation probability. The adjustment of genetic parameters 

using the gradient operator is described as follows, 














1;

1;





if

if

 

(7) 

 

From (7),  denotes a gradient operator   denotes an 

adjustment coefficient of the control parameters. By applying 

the gradient approach, the genetic parameters crossover and 

mutation are controlled. After that, the old individual is 

replaced into a new one. Then the fitness is calculated for a 

new individual (i.e. test case) based on the user requirements. 

Then the Fitness criterion is verified to obtain optimal 

solutions.  

 

Figure 5: Flow Process of GAGPC-TSG Technique 

This process is continued for all possible test cases in an 

initial population and generates a new test suite. The flow 

process of the proposed GAGPC-TSG technique is described 

as shown in figure 5. 

Figure 5 shows the flow process of a proposed GAGPC-TSG 

technique to generate a test suite with the optimal test cases 

for testing the given software programs based on user test 

requirements. Initialize the number of test cases to generate 

the optimal test suite. For each individual, the fitness 

criterion is verified with the user requirements. As a result, 

efficient test cases are identified and these collections of the 

test cases are used to generate the test suite. If the fitness 

criterion is not satisfied, then the selection, crossover, and 

mutation are carried out to find the optimal test cases. 

Then the crossover and mutation value are controlled by 

applying a gradient approach. This process generates the best 

test suites for software quality testing. This also helps to 

improve the coverage rate of faults in a software program. 

The algorithmic description of the proposed GAGPC-TSG 

technique is described as follows, 

Input: Number of cases }.......,,,{ 321 ntctctctc  

Output: Generate test suite with optimal test cases 

Begin 

1. Initialize number of test cases ntc   

2. For each tc  

3.   calculate the fitness FF  

4. if criterionfitnessthe  is satisfied then 

5.    select optimal test case  

6. else 

7. Select the individuals from the population based on  

probability P  

8.    Swap two individuals to generate offspring’s 

9.    Invert the input bit using mutation probability 

10.  Adjust  BMP and tcP  using a gradient operator   

11.   Replace old individual  

12.  Go to step 3 

13. end if 

14. end for 

15. Obtain optimal test suites 

end  

Algorithm 1.Gradient Advanced Genetic Parameter Control 

Based Test Suite Generation 

The algorithmic process of proposed GAGPC-TSG 

technique is described to generate the test suite for covering 

the number of faults with the generated optimal test cases. In 

order to test the software quality, the program is taken from 

the dataset. The population of a number of test cases is 

randomly initialized. Then the fitness of each test case is 

calculated with the user requirements. If the selected test 

cases are not satisfied the user requirements, the roulette 

wheel selection is applied to choose the individual from the 

population based on the fitness probability. Based on the 

selected individual, the recombination is carried out to create 

the new offspring’s. Then the random bit flip mutation is 

performed to interchange the bit and is used for obtaining the 

Initialize number of 

test cases  

Calculate the fitness of each 

individual 

Fitness 
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is satisfied 

No 

Yes 

End 
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Bit flips Mutation 
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global optimal solution. After mutating the bits, the gradient 

approach is applied to control the crossover and mutation 

probability rate based on the adjustment coefficient. Then the 

fitness function is measured and selects the user required test 

cases. As a result, the test suites are generated with the 

optimal test cases.  

 

IV. EXPERIMENTAL SETTINGS 

 

Experimental evaluation of the proposed Gradient Advanced 

Genetic Parameter Control Based Test Suite Generation 

(GAGPC-TSG) technique is implemented using JAVA 

programming with Webchess dataset 

http://sourceforge.net/projects/webchess/. The Webchess 

dataset comprises 28 PHP Programs for software testing with 

the generated test suites. The input program is taken from 

this dataset. Then the generated test suites used for testing 

the input program. Each and every line in the source program 

is monitored to cover the more faults and increase the 

software quality.  

 

Experimental evaluation is performed with three different 

methods namely GAGPC-TSG technique, Test case 

minimization approach [1] and Artificial Bee Colony 

Optimization (ABC) [2]. The different parametric values are 

obtained and the discussions are explained in the following 

sections. 

 

V. RESULTS AND DISCUSSION  

 

Results and discussion of the proposed GAGPC-TSG 

technique are performed with the existing methods namely 

Test case minimization approach [1] and Artificial Bee 

Colony Optimization (ABC) [2] with certain parameters such 

as precision, test suite generation time and coverage rate with 

the given input program. The performance is evaluated 

according to the following metrics with the help of table and 

graph values. 

A. Impact of precision  

Precision is defined as the ratio of the number of optimal test 

suites generated from the total test suites generated. The 

precision is measured as follows,

 
100*

.
Pr

n

generatedsuitestestoptimalofno
ecision      

      (8) 

From the equation (8), where ‘n’ denotes the number of the 

test suite. The precision is measured in terms of percentage 

(%).  

Sample calculation for precision  

GAGPC-TSG: no. of optimal test suites generated is 8 and 

the number of the test suite is 10, then, 

%80100*
10

8
Pr ecision   

Test case minimization approach: no. of optimal test suites 

generated is 7 and the number of the test suite is 10, then the 

%70100*
10

7
Pr ecision  

ABC optimization technique: no. of optimal test suites 

generated is 6 and the number of the test suite is 10, then the 

precision is measured as,  

%60100*
10

6
Pr ecision  

 

Table 1: Tabulation for Precision 

No. of test 

suites 

Precision (%) 

GAGPC-TSG 

Test case 

minimization 

approach 

ABC 

optimization 

technique 

10 80 70 60 

20 85 75 65 

30 83 73 67 

40 80 70 60 

50 90 80 72 

60 93 85 75 

70 89 79 71 

80 95 89 84 

90 94 88 81 

100 96 90 82 

Table 1 describes the performance results of precision with 

the number of test suites. The precision is the accuracy of 

optimal test suites generation. The above table clearly shows 

that the performance result of precision is significantly 

improved using GAGPC-TSG technique when compared to 

existing methods. This improvement is achieved by applying 

gradient advanced gene parameter control based high 

coverage test suite generation. By applying advanced gene 

parameter control method, the number of test cases is 

selected from the population. Initially, the population of test 

cases is randomly initialized. Then the test cases are verified 

with the fitness condition. It means the test case satisfies the 

user requirements are selected to generate the optimal test 

suite. If the condition is not satisfied, the operators such as 

selection, crossover, and mutation are carried out. The 

selection is performed using the circular wheel. The circular 

wheel selects the test cases with the high fitness. The wheel 

pointer indicates the current best individual from the 

population. Then the two-point crossover is applied to 

interchange the chromosome values. As a result of 

interchanging, the new offspring’s are generated from the 

parent chromosome. After that, the mutation probability is 

calculated. The bit flip mutation is used to randomly 

changing the bit from the newly generated offspring’s. Then 

the probability of the mutation is computed with the 

crossover probability rate. Finally, the gradient approach is 

http://sourceforge.net/projects/webchess/
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applied to control the crossover and mutation probability 

rate. Then they obtained test cases are verified with the 

fitness condition and select the test suites. This process is 

repeated for each test case in the population. Finally, the 

selected test cases are combined to generate the number of 

optimal and high coverage test suites. This optimal test suite 

is more suitable for software testing. Totally ten runs are 

carried out to show the results of proposed and existing 

methods. The results reveal that the GAGPC-TSG technique 

considerably improves the precision by 11% and 24% than 

the existing methods Test case minimization approach [1] 

ABC optimization technique [2].  

 

B.  Impact of test suite generation time  

Test suite generation time is the amount of time required for 

generating the optimal test suites. Test suite generation time 

is calculated using the following mathematical equations, 

)(* generationsuitetestoptimalTnTSGT  (9) 

From (9),      denotes a test suite generation time, ‘n' 

denotes the number of test suites, T represents a time. Test 

suite generation time is measured in terms of milliseconds 

(ms). 

 

Sample calculation for test suite generation time: 

GAGPC-TSG: no. of optimal test suites generated is 10 and 

the time for one optimal test suite generation is 0.1ms, then  

msTSGT 101*10   

 

Test case minimization approach: no. of optimal test suites 

generated is 10 and the time for one optimal test suite 

generation is 1.6ms, then the 

msTSGT 166.1*10   

 

ABC optimization technique: no. of optimal test suites 

generated is 10 and the time for one optimal test suite 

generation is 1.9ms, then the 

msTSGT 199.1*10   

 

Figure 6: Performance Results of Test Suite Generation Time 

Figure 6 shows the performance results of test suite 

generation time versus a number of test suites. The numbers 

of test suites are varied from 10 to 100. While varying the 

number of test suites, the generation time gets varies as 

shown in figure 6. The above graphical representation shows 

that the test suite generation time is considerably minimized 

using proposed GAGPC-TSG when compared to existing 

methods. This significant improvement is obtained using 

gradient advanced gene parameter control. This optimization 

technique takes minimum time for test suites generation with 

the number of optimal test cases. The process of selecting the 

test cases which helps to find faults in the software programs 

based on the user requirements. Let us consider, the software 

program is tested with the generated test suites. This test 

suite satisfies the user requirements like a number of faults 

are correctly detected, minimum testing duration and so on. 

The gradient advanced gene parameter control technique 

calculates the fitness for selecting the test cases among the 

population. If the fitness criterion is not satisfied, the roulette 

wheel selection is applied to choose the current best fitness 

test cases. Then the crossover is used to swap the two 

individuals to provide the offspring. Then the offspring’s are 

mutated to obtain the diversity. The gradient approach 

controls the crossover and mutation probability rate. These 

processes are used to generate the optimal test suites with 

minimum time. As a result, the user required test cases are 

selected and generated the optimal test suites. The input 

program is tested with this optimal test suite for improving 

the software quality. The optimal test suite generation time is 

significantly reduced by 16% and 27% when compared to the 

existing Test case minimization approach [1] ABC 

optimization technique [2] respectively. 

 

C.  Impact of the coverage rate  

Coverage rate is defined as the ratio of the number of test 

suites covers the faults in the given program. Coverage rate 

is measured as follows,  

100*
cov

cov
n

programinfaultsmoreersthatsuitestestoptimalofno
rateerage 

 

      (10) 

From (10), where ‘n’ denotes the number of generated test 

suites. Coverage rate is measured in terms of percentage (%).  

 

Sample calculation for coverage rate: 

GAGPC-TSG: no. of optimal test suites that covers more 

faults in a given time is 7 and the total number of test suite 

generated is 10, then 

%70100*
10

7
cov rateerage  

Test case minimization approach: no. of optimal test suites 

that covers more faults in a given time is 6 and the total 

number of test suite generated is 10, then 

%60100*
10

6
cov rateerage . 
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ABC optimization technique: no. of optimal test suites that 

covers more faults in a given time is 5 and the total number 

of test suite generated is 10, then 

%50100*
10

5
cov rateerage  

 

Table 2: Tabulation for Coverage Rate 

No. of test 

suites 

Coverage rate (%) 

GAGPC-TSG 

Test case 

minimization 

approach 

ABC 

optimization 

technique 

10 70 60 50 

20 75 65 55 

30 77 67 57 

40 78 68 55 

50 82 72 60 

60 87 77 68 

70 84 73 66 

80 90 81 75 

90 88 79 74 

100 92 80 77 

Table 2 describes the coverage rate versus a number of test 

suites. The number of test suites taken for experimental 

evaluation is varied from 10 to 100. Table 2 shows the 

coverage rate of three methods namely GAGPC-TSG 

technique and existing Test case minimization approach [1] 

Artificial Bee Colony Optimization (ABC) technique [2]. 

The above table value clearly shows that the coverage rate of 

the proposed GAGPC-TSG technique is considerably 

improved than the other existing methods. This is because 

the GAGPC-TSG technique uses the gradient approach 

during the optimization. The gradient approach effectively 

generates the test suites with optimal test cases. The numbers 

of test cases are taken as population for the optimization. The 

gradient approach controls the two gene parameters with 

their probability value. The probability value of the mutation 

and crossover rate is controlled by using a gradient operator. 

If probability value is either lesser or greater one, then the 

adjustment coefficient controls the operators. After that, the 

fitness of the test cases is calculated with their user 

requirements. Similarly, the test cases are selected from the 

populations. The selected test cases are combined to generate 

the test suite which is the optimal one. This helps to cover 

the entire defects in the software program. The comparison 

results show that the coverage rate of proposed GAGPC-

TSG technique is considerably improved by 14% and 30% 

when compared to existing Test case minimization approach 

[1] ABC optimization technique [2] respectively.  

VI. CONCLUSION 

In this paper the proposed GAGPC-TSG technique for 

improving software quality. The analysis and experimental 

results show that efficient GAGPC-TSG technique has the 

maximum performance in generating optimal test suites than 

test case minimization approach and artificial bee colony 

optimization.  Here, Webchess dataset has been used in 

which 10 to 100 test suites are considered for evaluating the 

GAGPC-TSG technique. The proposed GAGPC-TSG 

technique improves the precision by 18% and fault coverage 

rate by 22% and reduces the test suite generation time by 

22%. 
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