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Abstract— There are several methods available; analytical (Exact), approximate and numerical; for solving differential 

equations. Most of these methods are computationally exhaustive because they require a lot of time and space. The Zhou’s 

differential transform technique has an edge over the traditional methods as it uses the polynomial as the approximation to 

exact solution. In this paper differential transform technique is employed to solve some nonlinear nonhomogeneous, initial 

value problems in system of differential equations which are often encountered in applied sciences and engineering. The 

solutions produced by differential transform method are compared with the exact solutions achieved by Laplace transform 

technique. It is observed that numerical results obtained by differential transform method are in good agreements with the 

analytical solutions. 

 

Keywords: Differential transform technique, System of differential equations, Laplace transforms technique, Exact solution. 

 

I.  INTRODUCTION  

 

The differential transformation method (DTM) is 

the numerical technique based on Taylor’s series expansion. 

This method assumes the polynomial as an exact solution of 

given differential equation. This is one of the numerical 

methods for solving initial value problem of ordinary 

differential equation, linear differential equations and 

nonlinear, nonhomogeneous system of differential equations. 

This method was first proposed by J.K. Zhou [1] in 1986 to 

solve electrical engineering problems. Chen and Liu [2] have 

used DTM technique for solving non-linear heat conduction 

problems and extended the study to obtain solution of two 

point boundary value problems [3].  Chen and Ho [4] applied 

DTM to eigenvalue problems. Chen and Liu [5] used DTM 

method for solving two point boundary value problems. 

Ayaz [6, 7] has applied DTM for solving differential 

algebraic equations and wave equations. Ravi Kanth and 

Aruna [8] found the solutions of linear and non-linear 

Schrodinger equation by DTM. Arikoglu and Ozkol [9] show 

that how DTM is applicable for solving fractional differential 

equation. Biazar and Eslami [10] solved Riccati equation by 

DTM. Jang et. al. [11] used this method for solving initial 

value problems. Chang and Chang [12] have designed a new 

algorithm for calculating one-dimensional differential 

transform of nonlinear functions. 

 In this paper, three systems of nonlinear and 

nonhomogeneous, initial value problems in system of 

differential equations are considered by a differential 

transformation technique, an approximate solution is 

obtained and the numerical solutions are compared with the 

exact solutions that are calculated from the Laplace 

transform method. The basic definitions and fundamental 

properties of DTM are adopted from [13, 14].  

 

II. DEFINITION OF ZDTM  

 

An arbitrary function p (t) can be expanded in Taylor series 

about t = 0 

P (t)  =    

DTM of p (t) is  

P (k)  =     

 

III. THEOREMS ON DTM METHOD   

 

Original Function         Transformation  

x(t) + y(t)                          X (k) + Y (k) 

  (t)                                (k) 

                             ( k + 1) X(k + 1) 
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          (k + 1) (k + 2) …(k + m)X (k + m) 

t
m

                  (k – m)  =1, if   k = m 

                                  = , if   k  m 

                                   

sin ( t + )                         sin   

cos ( t + )                         cos  

x(t) . y (t)                          

(1 + t)
m      

                 

 

IV. EXPERIMENTATION OF THEOREMS DTM 

 

Example 1 

In a heat exchange, temperature u and v of two liquids satisfy 

the equations 

    

Subject to  

u (0) = 20 

v (0) = 100 

Exact solution by Laplace transform technique is given by 

u = -60+80  

v= -60+160  

By taking differential transformation of both sides of the 

resulting equation using above stated results, the following 

recurrence relations are obtained: Differential transformation 

method for solving differential equations:  

4(K + 1)   U (K + 1) =V (K) – U (K)  

2 (K + 1) V (K + 1) = V (K) – U (K) 

Put K = 0, 1, 2, 3, 4 …………………. 

U (0) =20 and  V (0)=100 

U (1)  =20           V (1)=40 

U (2) =5/2          V (2)=  5 

U (3) =5/24           V (3)=5/12 

U (4) =5/384            V (4)=5/192 

U (5) = -1/1536                     V (5)  =   -1/768 

U (6) =   -1/12288                  V (6)  =   -1/6144 

Solution by DTM is given by 

u (t) = U(0) + U(1) t + U(2) t
2
 + U(3) t

3
 + … 

        = 20 + 20 t + 5/2 t
2
 +5/24 t

3
 +  t

4
 - -     

  

v (t)=V(0) + V(1) t + V(2) t
2
 + V(3) t

3
 + … 

       =100 + 40 t + 5 t
2
 + 5/12 t

3
 +  t

4
 - -   

The numerical results of DTM for system of differential 

equations 1 is presented in Table 1. 

 

Example 2 

Consider the following non-homogenous differential system: 

  + 2 x - 3y = t 

  - 3x + 2y = e
2t

 

Subject to  

X (0) = 1 

Y (0) = 1 

Exact solution by Laplace transform technique is given by 

x=                        

y= -                                       

By taking differential transformation of both sides of the 

resulting equation using above stated results, the following 

recurrence relations are obtained: Differential transformation 

method for solving differential equations:  

(K + 1)   X (K + 1) + 2 X (K) – 3 Y (K) = (K -1) 

(K + 1)   Y (K + 1) - 3 X (K) + 2 Y (K) =   

Put K = 0, 1, 2, 3, 4 …………………. 

X (0) =1 and  Y (0)=1 

X (1) =1   Y (1) =2 

X (2) =5/2  Y (2) =½  

X (3) =-7/6  Y (3) =17/6 

X (4) =65/24  Y (4) =-47/24 

Solution by DTM is given by 

X (t)  = X (0) + X (1) t + X (2) t
2
 + X (3) t

3
 + …… 

 =1 + t + 5/2 t
2
 – 7/6 t

3
 +  t

4
 + …. 

Y (t) =Y (0) + Y (1) t + Y (2) t
2
 + Y (3) t

3
 + …… 

 =1 + 2t + ½ t
2
 + 17/6 t

3
 -   t

4
 + ….. 

The numerical results of DTM for system of differential 

equations 2 is presented in Table 2. 

 

Example 3 

Consider the following non-homogenous differential system: 

  + v = sin x 

  + u = cos x 

Subject to  

u (0) = 1 

v (0) = 0 

Exact solution by Laplace transform technique is given by 

u = cosh x   

v = sin x – sinh x 

By taking differential transformation of both sides of the 

resulting equations using above stated results, the following 

recurrence relations are obtained: Differential transformation 

method for solving differential equations:  

(K + 1) U (K + 1) + V (K)  =   sin   

(K + 1) V (K + 1) + U (K)=   cos   

Put K = 0, 1, 2, 3, 4 …………… 

U (0) =1   and         V (0) =0 

U (1)  =0   V (1) =0 

U (2) =½   V (2) =0  

U (3) =0  V (3) =-1/3 
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U (4) =1/24   V (4) =0 

U (5) =0   V (5) =0 

Solution by DTM is given by 

U(x)  =U (0) + U (1) x + U (2) x
2
 + U (3) x

3
 + …. 

 =1 + 0x +  + 0x
3
 + x

4
 + …… 

           =1 +  +  + ……  

V(x)   =V (0) + V (1) x + V (2) x
2
 + V(3) x

3
 + …………  

           =0 + 0 x + 0 x
2
 – 1/3 x

3
 + 0x

4
 + 0x

5
 ………… 

 =-1/3x
3
 + …………………. 

The numerical results of  DTM for system of differential 

equations 3 is presented in Table 3. 

 

V. CONCLUSION  

 

In this paper, we extend the application of 

differential transform technique to solve some nonlinear and 

nonhomogeneous, initial value problems in system of 

differential equations. This new technique avoids the 

difficulties and massive computational work that usually 

arise from the standard methods. In the present work, the 

calculated results are exactly the same as those obtained by 

Laplace transform technique, which demonstrate the 

reliability and efficiency of the technique. Moreover, the 

proposed technique offers a computationally easier approach 

to achieve to the exact solution by faster way.  
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APPENDIX 

Table 1 

t 
Exact Solution DTM Solution 

u(t) v(t) u(t) v(t) 

0.0 20.000 100.000 20.000 100.000 

0.1 22.025 104.050 22.025 104.050 

0.2 24.102 168.203 24.102 168.203 

0.3 26.231 112.461 26.231 112.461 

0.4 28.414 116.827 28.414 116.826 

0.5 32.652 121.304 32.652 121.300 

 

Table 2 

t 
Exact Solution DTM Solution 

x(t) y(t) x(t) y(t) 

0.0 1.000 1.000 1.000 1.000 

0.1 1.124 1.208 1.124 1.208 

0.2 1.294 1.440 1.295 1.440 

0.3 1.511 1.711 1.515 1.706 

0.4 1.778 2.031 1.795 2.011 

0.5 2.101 2.415 2.148 2.357 

 

Table 3 

t 
Exact Solution DTM Solution 

u(t) v(t) u(t) v(t) 

0.0 1.000 0.000 1.000 0.000 

0.1 1.005 -0.000 1.005 -0.000 

0.2 1.020 -0.003 1.020 -0.003 

0.3 1.045 -0.009 1.045 -0.009 

0.4 1.081 -0.021 1.081 -0.021 

0.5 1.128 -0.042 1.128 -0.042 

 


