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Abstract— Malware is the acronym of Malicious Software. It has become a big threat in today’s computing world. The threat 

is increasing with a greater pace as the use of Internet in our day to day activities is growing extensively. The number of 

malware creators and websites distributing malware is increasing at an alarming rate which attracts researchers and developers 

to develop a better security solution for it. Developing an efficient malware detection technique is still an ongoing research. 

Understanding malware, features of malware, analysis methods and detection techniques are the prerequisites of malware 

research. In this paper, we have studied a few past research works based on API calls, N-Grams, Opcodes features used in 

malware detection.  A detailed fundamental concept of malware detection is also presented in this paper. Use of Data mining 

algorithms in malware detection, different types of malware detection and analysis methods along with their pros and cons are 

also presented here.  Aim of this paper is to gain prerequisite knowledge of malware research and concepts of malware 

detection techniques. 
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I.  INTRODUCTION  

The definition of malware or malicious software is as 

follows. Malicious software is a program designed to intrude 

and damage a computer system & information without the 

owner’s knowledge and permission, which is a serious threat 

to the security of computer systems from last few decades. 

A. Types of Malware 

There are various types of malware including virus, worm, 

Trojan horse, botnets, rootkit, adware, scareware, spyware, 

ransomware, backdoor, Key loggers, rogue security software 

and browser hijacker. 

1) Virus: The malicious code which attaches itself to 

other programs or software and then replicates itself is 

termed as virus.  

2) Worm: A stand-alone program which replicates itself 

and destroys data and files on the computer. Unlike viruses, 

worms do not require any extra involvement of user to 

replicate and execute.  

3) Trojan horse: It is commonly known as Trojan which 

is malicious software that disguises itself as a useful file or 

program and embedded by its designer in an application or 

system.  

4) Bot: Bots are software programs which are designed 

to perform specific operations automatically and can be 

controlled remotely. Botnets are special form of bots which 

can be used in networks to cause distributed Denial of 

Service attacks. Bots can be used as spambots that may 

produce advertisements on websites, damage server data as 

web spiders and so on. In order to prevent bots, websites use 

CAPTCHA tests which verify users as human. 

5) Rootkit: The malicious software which is designed to 

remotely control and access a computer without being 

detected security programs or users is known as rootkit. 

Adware: Adware is the acronym for advertising-supported 

software which automatically delivers advertisements. 

6) Scareware: Scareware is a malicious program masked 

as trial or free anti-virus software or some other free online 

malicious trick. It gets installed in the system when the user 

downloads fake security software or visits a malicious 

website or opens attachments. 

7) Spyware: Spyware is a malware which monitors user 

activity and gathers personal information like frequently 

visited pages, financial data, credit card no, email address, 

account information, keystrokes and many more. It enters a 

system when free and potentially dangerous software is 

downloaded and installed without the user’s knowledge.  

8) Ransomware: Ransomware is a type of malware that 

holds or blocks a computer system until a demanded ransom 

or sum of money is paid.  

9) Backdoors: Backdoors are similar to trojans or worms, 

except that they open a “backdoor” onto a computer system, 
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providing a network connection for intruders or other 

malware to enter or for viruses or SPAM to be sent. 

10) Keyloggers: Records everything you type on your PC 

in order to gather your log-in credentials and other sensitive 

information and sends it on to the source of the keylogging 

program.  

11) Rogue security software: This kind of software 

deceives or misleads users. It appears to be a good program 

to remove Malware infections, but all the while it is the 

malware.  

12) Browser Hijacker: This kind of malware redirects the 

normal browser search activities and gives the results the 

malware developers want us to see. The major intention of 

browser hijacker is to make money off the user’s web 

surfing.  

B. Malware creators 

The people or organizations that create malware are 

sometimes called as vandals, blackmailers, swindlers and 

cyber-criminals and spammers. Most of the malicious 

programs are designed in order to earn money in an illegal 

manner. In older days, pranksters used to create malware in 

order to avoid boredom and to increase popularity. But, later 

malware were used for criminal purposes like stealing 

financial information, personal information, spying, 

destroying confidential files and many other criminal 

activities. Malware creators may be internal or external to 

organizations. An internal threat is an insider or a trusted 

developer of an organization capable of inserting malicious 

code into software before its release to the market. All other 

persons or organizations may insert the malicious code after 

releases of the product are called as external threat.  

C. Malware Propagation 

Malware may attack a computer or mobile device in a number 

of ways such as through infected email attachments, file 

sharing, instant messaging, use of third-party software during 

social networking, use of pirated software and use of USB & 

other removable media. After entering into the system, 

malware may damage the system’s boot sector, installed 

software, data files and even the system BIOS which leads to 

abnormal behaviour of the system.  

 The main purpose of all malware creators is to insert and 

distribute their malware across as many computers or mobile 

devices as possible. This can be done either by social 

engineering or by infecting a system without the user’s 

knowledge. These methods are often used concurrently and 

usually include processes to evade antivirus programs 

installed in those systems. 

1) Concealment strategies are used by malware creators 

to avoid being detected by anti-malware software. As a result 

of these concealment strategies some malware are changed 

for each propagation and transmission. Some of the malware 

encrypt themselves and their malevolent activities which 

makes it difficult to extract their signature for malware 

detection. A few of the concealment strategies are given 

below.  

a)  Code Obfuscation: In this technique, developers set 

out actions like adding unnecessary jumps, dead-code 

insertion,  use of garbage commands, register reassignment, 

instruction substitution, subroutine reordering and code 

integration/transposition which prevent signature based 

detection techniques to detect their malware.  

b)  Code encryption: This is a defensive mechanism 

which encrypts malware or their malicious activities using 

encryption algorithm and encryption key. During execution, 

the malware copies itself and generates and creates a new 

encrypted version of the malware which contains encryption 

algorithm and the new key. So, even the encryption key and 

the encrypted code are changing constantly, but they may get 

detected because the decoding algorithm is fixed. 

c)  Oligomorphic strategy: This strategy uses 

encryption as a defensive mechanism to encrypt malware but 

uses different decryptor for the new generations. A set of 

decryptors is maintained by each malware and randomly one 

decryptor is selected for decryption.  

d)  Polymorphic strategy: In this strategy millions of 

decryptors can be generated by changing instructions in the 

next variant of the malware to avoid signature based 

detection. In each execution, a new decryptor is created and 

joined with the encrypted malware body to create a new 

variant of the malware. Although a large number of different 

decryptors can be created, but still signature based technique 

can detect the malwares by identifying the original program 

with emulation technique. 

e)  Metamorphic strategy: Metamorphic malware 

change themselves so that the new instance has no similarity 

to the original one. Here, instead of creating new decryptor, a 

new instance or body is created without changing its actions. 

The malware does not contain any coding engine and  

automatic changes occur in the malware source code in each 

transmission. 

D. Malware Symptoms 

Malware may differ in the way of propagation and infection 

but, they all can produce similar symptoms. Malware infected 

computers may exhibit any of the following symptoms: 

 Slow computer processing speed. 

 Slow web browser speed. 

 Network connection problems. 

 Increased CPU usage. 

 Appearance of strange programs, files or icons. 

 Programs running, terminating or reconfiguring 

themselves. 

 System Freezing or crashing. 
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 Automatic Modification or deletion of files. 

 Emails/messages being sent automatically without 

user’s consent.  

Section I presents definition of malware, types of malware, 

malware creators, symptoms, concealment strategies. Section 

II contains different malware analysis and detection methods. 

Section III presents a theoretical literature survey of malware 

detection strategies based on different malware features. 

Section IV presents a summarized discussion of the literature 

survey and section V concludes the paper. 

II. MALWARE ANALYSIS AND DETECTION METHODS 

A. Malware Analysis 

The process of determining purpose, functionality, associated 

risks and attack lifecycle of malware is known as malware 

analysis. Malware analysis is an essential step required to 

develop effective malware detection techniques. 

1) Static analysis: Analysing malicious code without 

executing it is called static analysis. The detection patterns 

used in static analysis include byte-sequence, n-grams, 

system call analysis, syntactic library call, data flow graph, 

control flow graph and opcode (operational code) frequency 

distribution etc. Before performing static analysis the 

executable is unpacked, disassembled and decrypted using 

different disassembler/debugger tools like OllyDbg, IDAPro, 

HXD, Hexdump and Netwide command to understand the 

structure of the malware. The disassembler tools display 

malware code as assembly instructions using which we can 

observe the intensions, functionalities and patterns to identify 

the attacker. Packed executables which are difficult to 

disassemble can be analysed using memory dumper tools like 

LordPE and OllyDump  to obtain protected code located in 

the system’s memory and dump it to a file[1].  

Binary obfuscation techniques, which transform the malware 

binaries into self-compressed and uniquely structured binary 

files, are designed to resist reverse engineering and thus 

make the static analysis very expensive and unreliable[1]. 

The extensive use of evasion techniques by malware creators 

to spoil static analysis process has become the motivation to 

develop dynamic analysis technique.  

2) Dynamic Analysis:  The process of analysing the 

behaviour of malicious code while executing it is called 

dynamic analysis. Dynamic analysis is done in a controlled 

environment using virtual machine, emulator, simulator, 

sandbox etc. Before executing the malware sample, the 

appropriate monitoring tools like Process Monitor, and 

Capture BAT (for file system and registry monitoring), 

Process Explorer and Process Hackerreplace (for process 

monitoring), Wireshark (for network monitoring) and 

Regshot (for system change detection) are installed and 

activated [1]. Various techniques that can be applied to 

perform dynamic analysis include function call monitoring, 

function parameter analysis, information flow tracking, 

instruction traces and autostart extensibility points etc. [2]. 

Dynamic analysis is more effective than static analysis 

because it reveals the malwares’ natural behaviour which is 

difficult to find in static analysis. On the other hand, it is 

resource consuming and time intensive because it requires an 

appropriate controlled environment to execute and analyse 

the file. The virtual environment used in dynamic analysis 

may be different from the real system environment hence, 

sometimes malware may act artificially which differs from 

the original behaviour. Online automated tools used in 

dynamic analysis are CW-Sandbox, Norman Sandbox, TT-

Analyser, Ether, Anubis and Threat expert. The reports of 

dynamic analysis generated by the tools provide details of 

malware behaviour and actions performed by them. Then the 

analysis system represents the report outcomes in an 

organized way which is later used for classification either by 

feature vectors or similarity vectors. 

3) Hybrid Analysis: This technique is proposed to 

overcome the limitations of static and dynamic analysis 

techniques. It firstly analyses the signature specification of 

any malware code & then combines it with the other 

behavioural parameters for enhancement of complete 

malware analysis. Due to this approach hybrid analysis 

overcomes the limitations of both static and dynamic analysis 

[3]. 

B. Malware Detection: 

Malware detection techniques are used to detect the malware 

and prevent the computer system from being infected, 

protecting it from potential information loss and system 

compromise. They can be categorized as shown in figure 1. 

Each of these detection techniques may use one of the three 

analysis approaches: static, dynamic and hybrid. 

 
 

Figure 1.  Types of malware detection & Analysis Methods 

1) Signature-Based Detection 

     It is also called as Misuse detection. It maintains the 

signature database and compares the patterns against 

database to detect malware. The signatures are created by 

examining the disassembled code of malware binary.   

Disassembled code is analysed and features are extracted. 

These features are used to construct the signature of 

particular malware family. A library of known code 
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signatures is updated and refreshed constantly by the 

antivirus software vendor so this technique can detect the 

known instances of malware accurately. The main 

advantages of this technique is that it can detect known 

instances of malware accurately, less amount of resources are 

required to detect the malware and it mainly focus on 

signature of attack. The major drawback is that it can’t detect 

the new, unknown instances of malware as no signature is 

available for such type of malware. 

2) Heuristic-Based Detection 

     It is also called as behaviour-based or anomaly-based 

detection. The main purpose is to analyse the behaviour of 

known or unknown malwares. Behavioural parameter 

includes various factors such as source or destination address 

of malware, types of attachments, and other countable 

statistical features. It usually occurs in two phases: Training 

phase and detection phase. During training phase the 

behaviour of system is observed in the absence of attack and 

machine learning technique is used to create a profile of such 

normal behaviour. In detection phase this profile is compared 

against the current behaviour and differences are considered 

as potential attacks [4].  

The advantage of this technique is that it can detect known as 

well as new, unknown instances of malware and it focuses on 

the behaviour of system to detect unknown attack or zero-

day attack. The disadvantage of this technique is that it needs 

to update the data describing the system behaviour and the 

statistics in normal profile but it tends to be large. It needs 

more resources like CPU time, memory and disk space. 

Other limitations include high false positive rate and 

difficulty in selecting features to be learned in the training 

phase. 

3) Specification-Based Detection 

     It is derivative of behaviour-based detection that tries to 

overcome the typical high false alarm rate associated with it. 

Specification based detection relies on program 

specifications that describe the intended behaviour of 

security critical programs [4]. It involves monitoring 

program executions and detecting deviation of their 

behaviour from the specification, rather than detecting the 

occurrence of specific attack patterns. This technique is 

similar to anomaly detection but the difference is that instead 

of relying on machine learning techniques, it will be based 

on manually developed specifications that capture legitimate 

system behaviour [4]. The advantage of this technique is that 

it can detect known and unknown instances of malware and 

level of false positive is low but level of false negative is 

high and not as effective as behaviour based detection in 

detecting new attacks; especially in network probing and 

denial of service attacks. Development of detailed 

specification is time consuming. 

4) Data mining based detection 

     From last decade data mining has been the main focus of 

many malware researcher for detecting the new, unknown 

malwares; hence, data mining can be considered as the fourth 

proposed malware detection technique. Probably the Data 

Mining is now been dominated by Machine Learning 

techniques. In 2001 Schultz et al. [5]  first introduced the 

idea of applying the data mining and machine learning 

method for the detection of new, unknown malware based on 

their respective binary codes. Machine learning algorithms 

are used for detecting patterns or relations in data, which are 

further used to develop a classifier [6]. The common method 

of applying the data mining technique for malware detection 

is to start with generating a feature sets. These feature sets 

include instruction sequence, API/System call sequence, 

hexadecimal byte code sequence (n-gram) etc. The numbers 

of extracted features are very high so various text 

categorization techniques are applied to select consistent 

features and generate the training and test feature sets. Then 

classification algorithms are applied on the consistent 

training feature set to generate and train the classifier and test 

feature set is examined by using these trained classifiers. The 

performance of each classifier is evaluated by identifying the 

rate of False Positive, False Negative, True Positive, True 

Negative and calculate the TPR, FPR, Recall, precision and 

F1-measure. The advantage of data mining based detection is 

that detection rate is high as compared to signature based 

detection method [5]. It detects the known as well as 

unknown, new instances of malware. 

III. LITERATURE SURVEY 

Heuristic malware detection methods use data mining and 

machine learning (ML) techniques to learn the behaviour of 

an executable file. These ML techniques require some 

features like API (Application Programming Interface) calls, 

CFG (Control Flow Graph), N-Gram, Opcodes and Mixed 

features. This section presents a survey of malware detection 

mechanisms based on these features.  

A. API calls  

The behaviour of a piece of code like malware can easily be 

reflected using API sequences because; almost all programs 

send their requests to the Operating System using API calls.  

Hofmeyr et al. [7] were among the first ones who observed 

API call sequences as a feature of a malware. They presented 

an anomaly detection method which used the system call 

sequences as feature. They used Hamming distance with a 

specific threshold for matching system call sequences and to 

identify anomalies. Usually, large Hamming distance value 

reported as anomalies. Yuxin Ding et al. [8] proposed an API-

based Object oriented association mining method for malware 

detection. They have used many strategies to improve the rule 

quality, API selection criteria to remove the rules which are 

redundant which in turn increases the running speed of the 

OOA malware detection.      

Jeong and Lee [9] used system call sequences for both 

malicious and benign executables to build a topological graph 

which is called code graph. This graph is extracted for every 

binary program and is compared with the code graph of 
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malicious and benign programs. Based on this comparison, a 

program is classified as malware or benign. Ye et al. [10] 

proposed an interpretable classifier based on the analysis of 

API calls by a PE file for detecting malware from large and 

imbalanced gray-list. They have studied around 8,000,000 

malware and benign files with 100,000 samples from the 

gray-list collected from lab of King Soft Corporation and built 

effective associative classifier based on several post 

processing methods like rule pruning and rule reordering. 

Then, to make the classifier less sensitive to the imbalance 

dataset and improve its performance, they developed the 

Hierarchical Associative Classifier (HAC).  

      Wespi et al. [11] proposed an improved version with 

variable length system call sequences. A detection method 

based on the frequency of system calls has been proposed by 

Sato et al. [12]. Manzoor et al. [13] collect some Windows 

malicious executable from VX Heavens and their API call 

sequences are monitored by API Monitor. The DCA 

(Dendritic Cell Algorithm) [14] is applied for detection. 

Later, Ahmed et al. [15] use statistical features which 

extracted from both spatial (arguments) and temporal 

(sequences) information available in Windows API calls for 

malware detection. All these methods use system calls or API 

calls to monitor program behaviour. Seifert et al. [16] 

compared three popular event-based techniques that can 

monitor program behaviour: user mode API hooking, kernel 

mode API hooking, and kernel mode call backs. 

    M. K. Shankarapani et al. [17] presented two techniques 

such as, Static Analyser for Vicious Executables (SAVE) and 

Malware Examiner using disassembled Code (MEDiC). 

MEDiC uses assembly calls for analysis and SAVE uses API 

calls for analysis. They presented that assembly can be 

superior to API calls as it allows a more detailed comparison 

of executables. On the other hand, API calls can be superior 

to Assembly for its speed and its smaller signature. They 

proved that both these proposed techniques can provide a 

better detection performance against obfuscated malware. 

Dolly Uppal et. Al. [18] have used a feature selection 

algorithm based on Fisher Score to select distinct APIs. Then 

they have applied machine learning techniques like SVM, 

Naïve Bayes, J-48, Random Forest, KNN, ANN and Voted 

Perceptron on the selected feature vector. They claimed that 

SVM shows the highest accuracy of 98.4 and ANN shows 

lowest accuracy of 78.2 among these 7 selected algorithms. 

Ehab M. Alkhateeb [19] has proposed a dynamic malware 

detection method based on API similarity. He used API 

filtration method to remove all duplicate and repeated API 

calls and then created different patterns for different malware. 

The patterns were then matched to find groups of malware 

having similar patterns. He proposed API similarity algorithm 

to find similarity among the files by finding distance between 

strings present in those files.    

B. OpCode  

     An Opcode (Operational Code) is the part of a ML 

instruction that identifies the operation to be executed. More 

specifically, instructions of a program are defined as a pair 

composed of an operational code and an operand or a list of 

operands. The most significant research on Opcode has been 

done by Bilar [20]. He showed the ability of single Opcode to 

use as a feature in malware detection. Santos et al. [21] 

presented various type of malware detection techniques based 

on Opcode sequences. In their first work, they presented an 

approach focused on detecting obfuscated malware variants 

using the appearance frequency of Opcode sequences in order 

to build a representation of executable files. To do so, they 

had applied the disassembly process on exe files and built an 

opcode profile containing a list of Opcodes from the 

generated assembly files and then they computed the 

relevance of each Opcode based on the frequency of 

appearance of each of them in both malware and benign 

datasets using mutual information [22]. Finally they used 

Weighted Term Frequency (WTF) [23] to make suitable 

feature vector extracted from executables. They calculated the 

Cosine similarity measure between new instance feature 

vector and malware variants feature vector for detection. 

Later, in their next work, Santos et al. [23] presented a new 

feature extraction method based on Opcode sequences and 

trained several machine learning classifiers by embedding the 

extracted features.  

As we know, the machine learning based classifiers requires 

high number of samples for each of the concept classes they 

try to detect and it is quite difficult to obtain this amount of 

labelled data in real world. So, Santos et al., in their next 

research, proposed several methods to eliminate this 

limitation such as Collective classification [24], Single class 

learning [25], and Semi supervised learning [26]. Runwal et 

al. [27] proposed a new approach based on Opcodes and used 

this method for detecting unknown and also metamorphic 

malware families based on a simple graph similarity 

measurement. They extracted Opcodes from both file types 

(i.e. malware and benign), count the number of each pair 

Opcodes appeared in them and based on the numbers, make a 

graph of Opcodes and after that can predict the maliciousness 

of a new executable by calculating the similarity of graph 

obtained from the executable and both file types and finally 

the file will be classified either as benign or malware. More 

similar work was done by Shabtai et al. [28] who tried to 

detect unknown malicious codes by applying classification 

techniques on Opcode patterns. They created a dataset of 

malicious and benign executables for the Windows operating 

system. After disassembling the executables, they calculated 

the normalized term frequency (TF) and TF Inverse 

Document Frequency (TF-IDF) representations as a feature 

for each file. Finally, they used several classical classification 

techniques such as Support Vector Machine (SVM), Logistic 
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Regression (LR), Artificial Neural Networks (ANN) etc. to 

evaluate the proposed feature selection method. 

Hamid Divandari et. Al. [29] presented an opcode based 

method which used  Markov Blanket algorithm as a feature 

selection method to reduce the number of features. They have 

5 classes of malware such as: Worms, Backdoors, Trojan 

horses, Viruses and Rootkits. For each class of malware, one 

special Hidden Markov Model was developed and trained.  

Cheng Wang et. al. [30] proposed a model to extract opcodes 

profiles of sample files through static analysis and selected 

the sequences having higher entropy value as representation 

of malware instance. Then they have used a Fast Density-

Based Clustering algorithm for clustering similar malware 

instance which determine whether an unknown instance is 

malware or benign according to the cluster.  

Jixin Zhang et.al. [31] have used image detection mechanism 

in which images are reconstructed by opcodes sequences of 

length two. They have used histogram normalization, dilation 

and erosion to enhance the contrast between malware variant 

images and benign images. Then convolutional neural 

network (CNN) is used as a learning approach to recognize 

malware variant images. A much similar work was done by 

Tingting Wang, Ning Xu in the paper [32].  

C. N-grams   

  N-grams are all substrings of a larger string with a length of 

N [28]. For example, the string “TOMATO” can be 

segmented into several 3-grams: “TOM”, “OMA”, “MAT” 

and “ATO”. Tesauro et al. [33] were the first who try to use 

N-Grams as a feature for malware detection domain. They 

used N-Grams to detect Boot Sector Viruses using Artificial 

Neural Networks (ANN). A Boot Sector Virus is a malware 

variant which infects DOS Boot Sector or Master Boot 

Record (MBR). When a system has infected, the MBR is 

usually ruined and the computer boot order is changed The N-

Grams was selected from most frequent sections in malware 

and benign executables. They used a specific feature 

reduction algorithm such that each malware must consist of at 

least four N-Grams from existing N-Grams set. Tesauro et al. 

[34], in their next study, used N-Grams to build several 

classifiers based on ANN and also used a specific voting 

strategy to achieve final results. In that research a simple 

threshold value was used to reduce the number of N-Grams. 

 Abou-Assaleh et al. [35] presented a framework that uses the 

Common N-Gram method and the K-Nearest-Neighbour 

(KNN) classifier for malware detection. For both classes (i.e. 

malicious and benign) a delegate profile was built. A new 

instance was matched with the profiles of both classes and 

was assigned to the most similar one. Kolter and Maloof [36] 

used byte N-Gram representation to detect unknown malware. 

Though the vector of N-Gram features was binary, presenting 

the attendance or non-attendance of a feature in the file. In an 

extension of their previous study, Kolter and Maloof [37] 

classified malware into several families based on the 

functions in their respective payload attempting to 

approximate their capability to detect malicious codes based 

on their subject dates.  

Wang et al. [38] proposed a method which uses data mining 

as detection category to classify various file types based upon 

their file prints. An n-gram analysis method was used and the 

distribution of n-grams in a file was used as its file print. The 

distribution was given by byte value frequency distribution 

and standard deviation. These file prints represented the 

normal profile of the files and were compared against file 

prints taken at a later time using simplified Mahalanobis 

distance. A large distance indicated a different n-gram 

distribution and hence maliciousness. Schultz et al. [5] 

proposed a static misuse detection method using data mining 

as detection category where strings data were used to fit a 

naive-Bayes classifier while n-grams were used to train a 

multi naive Bayes classifier with a voting strategy. Dataset 

partitioning and 6-Naive-Bayes classifier trained on each 

partition of data. They used different feature classifiers that do 

not pose a fair comparison among the classifiers. Naive-Bayes 

using strings gave the best accuracy in their model. Extending 

the same idea, Schultz et al. [39] created MEF, Malicious 

Email Filter, that integrated the scheme described in [5] into a 

Unix email server where a large dataset containing 3301 

malicious and benign program was used to train and test a 

Naive-Bayes classifier. For feature reduction, the dataset was 

partitioned into 16 subsets. Each subset is differently trained 

on a different classifier and a voting strategy was used to 

obtain final outcome. InSeon Yoo [40] proposed a static 

misuse detection using data mining where they used Self 

Organizing Maps (SOM). N-grams are extracted from the 

infected programs and SOM’s were trained on this data. They 

claimed that each Virus has its own DNA like character that 

changes the SOM projection of the program that it infects. 

The method looks for change in the SOM projection as a 

result of Virus infection. Hence, it is able to detect 

Polymorphic and metamorphic malwares. 

Zhang Fuyong & ZhaoTiezhu [41] proposed a malware 

classification method based on n-grams attribute similarity.  

They have extracted all n-grams of byte codes from training 

samples and selected the most relevant as attributes.  They 

used similarity analysis method to determine the sample 

either as malware or benign. They have presented a 

comparative study of their method with 4 other   machine 

learning methods such as: Naïve Bayes, Bayesian Networks, 

Support Vector Machine and C4.5 Decision Tree. They 

claimed that their method outperforms the other four methods. 

D. Control Flow Graph (CFG)  

CFG is a directed graph, where each node represents a 

statement of the program and each edge represents control 

flow between the statements. Statements may be assignments, 

copy statements, branches etc. In [42], authors performed a 
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set of normalization operation after disassembling an 

executable program for reducing effects of mutation 

techniques and unveiling the flow connections between 

benign and malicious code. Then they generated 

corresponding CFG for the program. CFG compared against 

the CFG of a normalized malware in order to know whether 

CFG contains a sub graph which is isomorphic to CFG of the 

normalized one. Thus, the problem of detecting malware is 

changed to the sub-graph isomorphism problem. Zhao [43] 

proposed a detection method based on features of the control 

flow graph for PE files. At first, he created CFG for each 

executable file. Then, he used features which extracted from 

CFG as the train data. These features are information about 

nodes, edges and sub graphs. After feature selection, some 

data mining algorithm have been used for classification based 

on these features such as Decision Tree, Bagging and 

Random Forest. Bonfante et al. [44] built CFG based on six 

types of nodes such as, jmp, jcc, call, ret, inst and end.  Then, 

they reduced these nodes in this way: for any node of kind 

inst or jmp, they removed the node from the graph and linked 

all its predecessors to its unique successor. After reduction, 

they used this graph as a signature for each file. 

 B. Anderson et al. [45] introduced a novel malware detection 

algorithm based on the analysis of graphs constructed from 

dynamically collected instruction traces of the target 

executable. These graphs represent Markov chains, where the 

vertices are the instructions and the transition probabilities are 

estimated by the data contained in the trace. They used a 

combination of graph kernels to create a similarity matrix 

between the instruction trace graphs. The resulting graph 

kernel measures similarity between graphs on both local and 

global levels. Finally, the similarity matrix is sent to a support 

vector machine to perform classification. They used the data 

representation to perform classification in graph space rather 

than using n-gram data. Ming Xu et al. [46] have used 

disassembled codes of program, the caller–callee relationships 

of functions and the opcode information about functions to 

create the function-call graph and graph colouring techniques 

were used to measure the similarity metric between two 

function-call graphs. The similarity metric was used to 

identify the malware variants from known malwares.  

Shahid Alam [47] presented a method named, named 

Annotated Control Flow Graph (ACFG) to efficiently detect 

metamorphic malware. ACFG is built by annotating CFG of a 

binary program and is used for graph and pattern matching to 

analyse and detect metamorphic malware. They claimed that 

ACFG is more accurate than CFG.  

E. Mixed Features 

Mikhail Zolotukhin and Timo Hamaainen [48] have analysed 

executable files to get opcodes sequences and then applied n-

gram models to find essential features from those sequences. 

They used a clustering algorithm based on the iterative usage 

of support vector machines to build a benign software 

behaviour model which is used to detect malicious 

executables within new files. They claimed that their scheme 

can detect unseen malware with a greater accuracy. 

Ding Yuxin et. Al. [49] have constructed the opcode running 

tree to simulate the dynamic execution of a program, and 

extracted opcode n-grams to represent the features of an 

executable. They have used three classifiers such as: KNN, 

decision tree (C4.5) and support vector machine to classify 

malicious and benign files. 

Yuxin Ding et. al. [50] used the n-gram model to generate the 

opcode n-grams of different lengths and then used 

information gain and document frequency to select opcode-

based features. They have applied Deep Belief Networks to 

detect malware which was claimed as a better malware 

detector as compared to other classification techniques like 

SVM, decision tree and KNN.  

IV. DISCUSSION  

Malware detection is a continuous research. Though several 

techniques have been evolved, we can’t completely eliminate 

malware from this internet based digital world. But definitely 

we can minimize its harmful effect by continuously working 

on it, to develop new, robust and effective detection 

techniques with higher accuracy rate.   Data mining and 

Machine learning techniques play a vital role in this regard. 

In addition to this, best malware features should also be 

extracted from different types of malware before the machine 

learning model is implemented. Zero-day attack is the 

biggest headache for malware researchers because the new 

malware may possess new feature and behaviour that, the 

current anti-malware may not understand. Hence, a strong 

future malware prediction system which will build a model 

not only on present behaviour and feature of malware but 

also on future behaviour and features. Artificial Intelligence 

techniques along with machine learning may help the 

researchers to develop such a system.        

V. CONCLUSION  

 In this paper, we have presented basic definition of malware, 

its types and its propagation strategy. Further we have 

presented advantages and disadvantages of different ways the 

malware can be analysed and detected. Then in the literature 

survey we have surveyed a number of malware detection 

strategies based on APIs, OPCODE, n-grams, Control Flow 

Graph and mixed features. The main aim and objective of 

this paper is to understand the basics of malware detection 

which will be very helpful in further research. In the next 

work, we will focus on practical approaches of malware 

analysis and how the static & dynamic analysis methods can 

be merged to model an efficient and robust malware 

detection technique. Different classification algorithms of 

machine learning can be applied with different-sized 

malware datasets. A comparison analysis of the above 

process will also be included in our next work.  
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