

 © 2018, IJCSE All Rights Reserved 879

International Journal of Computer Sciences and Engineering Open Access

Review Paper Vol.-6, Issue-12, Dec 2018 E-ISSN: 2347-2693

A Theoretical Feature-wise Study of Malware Detection Techniques

Om Prakash Samantray

1*
, Satya Narayana Tripathy

2
, Susant Kumar Das

3

1
Department of Computer Science, Berhampur University, Odisha, India

2
Department of Computer Science, Berhampur University, Odisha, India

3
Department of Computer Science, Berhampur University, Odisha, India

*Corresponding Author: om.prakash02420@gmail.com, Tel.: +91-9705172290

Available online at: www.ijcseonline.org

 Accepted: 18/Dec/2018, Published: 31/Dec/2018

Abstract— Malware is the acronym of Malicious Software. It has become a big threat in today’s computing world. The threat

is increasing with a greater pace as the use of Internet in our day to day activities is growing extensively. The number of

malware creators and websites distributing malware is increasing at an alarming rate which attracts researchers and developers

to develop a better security solution for it. Developing an efficient malware detection technique is still an ongoing research.

Understanding malware, features of malware, analysis methods and detection techniques are the prerequisites of malware

research. In this paper, we have studied a few past research works based on API calls, N-Grams, Opcodes features used in

malware detection. A detailed fundamental concept of malware detection is also presented in this paper. Use of Data mining

algorithms in malware detection, different types of malware detection and analysis methods along with their pros and cons are

also presented here. Aim of this paper is to gain prerequisite knowledge of malware research and concepts of malware

detection techniques.

Keywords—Malware detection, API call Sequence, Malware feature, Opcode sequence, n-grams, Data mining

I. INTRODUCTION

The definition of malware or malicious software is as

follows. Malicious software is a program designed to intrude

and damage a computer system & information without the

owner’s knowledge and permission, which is a serious threat

to the security of computer systems from last few decades.

A. Types of Malware

There are various types of malware including virus, worm,

Trojan horse, botnets, rootkit, adware, scareware, spyware,

ransomware, backdoor, Key loggers, rogue security software

and browser hijacker.

1) Virus: The malicious code which attaches itself to

other programs or software and then replicates itself is

termed as virus.

2) Worm: A stand-alone program which replicates itself

and destroys data and files on the computer. Unlike viruses,

worms do not require any extra involvement of user to

replicate and execute.

3) Trojan horse: It is commonly known as Trojan which

is malicious software that disguises itself as a useful file or

program and embedded by its designer in an application or

system.

4) Bot: Bots are software programs which are designed

to perform specific operations automatically and can be

controlled remotely. Botnets are special form of bots which

can be used in networks to cause distributed Denial of

Service attacks. Bots can be used as spambots that may

produce advertisements on websites, damage server data as

web spiders and so on. In order to prevent bots, websites use

CAPTCHA tests which verify users as human.

5) Rootkit: The malicious software which is designed to

remotely control and access a computer without being

detected security programs or users is known as rootkit.

Adware: Adware is the acronym for advertising-supported

software which automatically delivers advertisements.

6) Scareware: Scareware is a malicious program masked

as trial or free anti-virus software or some other free online

malicious trick. It gets installed in the system when the user

downloads fake security software or visits a malicious

website or opens attachments.

7) Spyware: Spyware is a malware which monitors user

activity and gathers personal information like frequently

visited pages, financial data, credit card no, email address,

account information, keystrokes and many more. It enters a

system when free and potentially dangerous software is

downloaded and installed without the user’s knowledge.

8) Ransomware: Ransomware is a type of malware that

holds or blocks a computer system until a demanded ransom

or sum of money is paid.

9) Backdoors: Backdoors are similar to trojans or worms,

except that they open a “backdoor” onto a computer system,

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 880

providing a network connection for intruders or other

malware to enter or for viruses or SPAM to be sent.

10) Keyloggers: Records everything you type on your PC

in order to gather your log-in credentials and other sensitive

information and sends it on to the source of the keylogging

program.

11) Rogue security software: This kind of software

deceives or misleads users. It appears to be a good program

to remove Malware infections, but all the while it is the

malware.

12) Browser Hijacker: This kind of malware redirects the

normal browser search activities and gives the results the

malware developers want us to see. The major intention of

browser hijacker is to make money off the user’s web

surfing.

B. Malware creators

The people or organizations that create malware are

sometimes called as vandals, blackmailers, swindlers and

cyber-criminals and spammers. Most of the malicious

programs are designed in order to earn money in an illegal

manner. In older days, pranksters used to create malware in

order to avoid boredom and to increase popularity. But, later

malware were used for criminal purposes like stealing

financial information, personal information, spying,

destroying confidential files and many other criminal

activities. Malware creators may be internal or external to

organizations. An internal threat is an insider or a trusted

developer of an organization capable of inserting malicious

code into software before its release to the market. All other

persons or organizations may insert the malicious code after

releases of the product are called as external threat.

C. Malware Propagation

Malware may attack a computer or mobile device in a number

of ways such as through infected email attachments, file

sharing, instant messaging, use of third-party software during

social networking, use of pirated software and use of USB &

other removable media. After entering into the system,

malware may damage the system’s boot sector, installed

software, data files and even the system BIOS which leads to

abnormal behaviour of the system.

 The main purpose of all malware creators is to insert and

distribute their malware across as many computers or mobile

devices as possible. This can be done either by social

engineering or by infecting a system without the user’s

knowledge. These methods are often used concurrently and

usually include processes to evade antivirus programs

installed in those systems.

1) Concealment strategies are used by malware creators

to avoid being detected by anti-malware software. As a result

of these concealment strategies some malware are changed

for each propagation and transmission. Some of the malware

encrypt themselves and their malevolent activities which

makes it difficult to extract their signature for malware

detection. A few of the concealment strategies are given

below.

a) Code Obfuscation: In this technique, developers set

out actions like adding unnecessary jumps, dead-code

insertion, use of garbage commands, register reassignment,

instruction substitution, subroutine reordering and code

integration/transposition which prevent signature based

detection techniques to detect their malware.

b) Code encryption: This is a defensive mechanism

which encrypts malware or their malicious activities using

encryption algorithm and encryption key. During execution,

the malware copies itself and generates and creates a new

encrypted version of the malware which contains encryption

algorithm and the new key. So, even the encryption key and

the encrypted code are changing constantly, but they may get

detected because the decoding algorithm is fixed.

c) Oligomorphic strategy: This strategy uses

encryption as a defensive mechanism to encrypt malware but

uses different decryptor for the new generations. A set of

decryptors is maintained by each malware and randomly one

decryptor is selected for decryption.

d) Polymorphic strategy: In this strategy millions of

decryptors can be generated by changing instructions in the

next variant of the malware to avoid signature based

detection. In each execution, a new decryptor is created and

joined with the encrypted malware body to create a new

variant of the malware. Although a large number of different

decryptors can be created, but still signature based technique

can detect the malwares by identifying the original program

with emulation technique.

e) Metamorphic strategy: Metamorphic malware

change themselves so that the new instance has no similarity

to the original one. Here, instead of creating new decryptor, a

new instance or body is created without changing its actions.

The malware does not contain any coding engine and

automatic changes occur in the malware source code in each

transmission.

D. Malware Symptoms

Malware may differ in the way of propagation and infection

but, they all can produce similar symptoms. Malware infected

computers may exhibit any of the following symptoms:

 Slow computer processing speed.

 Slow web browser speed.

 Network connection problems.

 Increased CPU usage.

 Appearance of strange programs, files or icons.

 Programs running, terminating or reconfiguring

themselves.

 System Freezing or crashing.

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 881

 Automatic Modification or deletion of files.

 Emails/messages being sent automatically without

user’s consent.

Section I presents definition of malware, types of malware,

malware creators, symptoms, concealment strategies. Section

II contains different malware analysis and detection methods.

Section III presents a theoretical literature survey of malware

detection strategies based on different malware features.

Section IV presents a summarized discussion of the literature

survey and section V concludes the paper.

II. MALWARE ANALYSIS AND DETECTION METHODS

A. Malware Analysis

The process of determining purpose, functionality, associated

risks and attack lifecycle of malware is known as malware

analysis. Malware analysis is an essential step required to

develop effective malware detection techniques.

1) Static analysis: Analysing malicious code without

executing it is called static analysis. The detection patterns

used in static analysis include byte-sequence, n-grams,

system call analysis, syntactic library call, data flow graph,

control flow graph and opcode (operational code) frequency

distribution etc. Before performing static analysis the

executable is unpacked, disassembled and decrypted using

different disassembler/debugger tools like OllyDbg, IDAPro,

HXD, Hexdump and Netwide command to understand the

structure of the malware. The disassembler tools display

malware code as assembly instructions using which we can

observe the intensions, functionalities and patterns to identify

the attacker. Packed executables which are difficult to

disassemble can be analysed using memory dumper tools like

LordPE and OllyDump to obtain protected code located in

the system’s memory and dump it to a file[1].

Binary obfuscation techniques, which transform the malware

binaries into self-compressed and uniquely structured binary

files, are designed to resist reverse engineering and thus

make the static analysis very expensive and unreliable[1].

The extensive use of evasion techniques by malware creators

to spoil static analysis process has become the motivation to

develop dynamic analysis technique.

2) Dynamic Analysis: The process of analysing the

behaviour of malicious code while executing it is called

dynamic analysis. Dynamic analysis is done in a controlled

environment using virtual machine, emulator, simulator,

sandbox etc. Before executing the malware sample, the

appropriate monitoring tools like Process Monitor, and

Capture BAT (for file system and registry monitoring),

Process Explorer and Process Hackerreplace (for process

monitoring), Wireshark (for network monitoring) and

Regshot (for system change detection) are installed and

activated [1]. Various techniques that can be applied to

perform dynamic analysis include function call monitoring,

function parameter analysis, information flow tracking,

instruction traces and autostart extensibility points etc. [2].

Dynamic analysis is more effective than static analysis

because it reveals the malwares’ natural behaviour which is

difficult to find in static analysis. On the other hand, it is

resource consuming and time intensive because it requires an

appropriate controlled environment to execute and analyse

the file. The virtual environment used in dynamic analysis

may be different from the real system environment hence,

sometimes malware may act artificially which differs from

the original behaviour. Online automated tools used in

dynamic analysis are CW-Sandbox, Norman Sandbox, TT-

Analyser, Ether, Anubis and Threat expert. The reports of

dynamic analysis generated by the tools provide details of

malware behaviour and actions performed by them. Then the

analysis system represents the report outcomes in an

organized way which is later used for classification either by

feature vectors or similarity vectors.

3) Hybrid Analysis: This technique is proposed to

overcome the limitations of static and dynamic analysis

techniques. It firstly analyses the signature specification of

any malware code & then combines it with the other

behavioural parameters for enhancement of complete

malware analysis. Due to this approach hybrid analysis

overcomes the limitations of both static and dynamic analysis

[3].

B. Malware Detection:

Malware detection techniques are used to detect the malware

and prevent the computer system from being infected,

protecting it from potential information loss and system

compromise. They can be categorized as shown in figure 1.

Each of these detection techniques may use one of the three

analysis approaches: static, dynamic and hybrid.

Figure 1. Types of malware detection & Analysis Methods

1) Signature-Based Detection

 It is also called as Misuse detection. It maintains the

signature database and compares the patterns against

database to detect malware. The signatures are created by

examining the disassembled code of malware binary.

Disassembled code is analysed and features are extracted.

These features are used to construct the signature of

particular malware family. A library of known code

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 882

signatures is updated and refreshed constantly by the

antivirus software vendor so this technique can detect the

known instances of malware accurately. The main

advantages of this technique is that it can detect known

instances of malware accurately, less amount of resources are

required to detect the malware and it mainly focus on

signature of attack. The major drawback is that it can’t detect

the new, unknown instances of malware as no signature is

available for such type of malware.

2) Heuristic-Based Detection

 It is also called as behaviour-based or anomaly-based

detection. The main purpose is to analyse the behaviour of

known or unknown malwares. Behavioural parameter

includes various factors such as source or destination address

of malware, types of attachments, and other countable

statistical features. It usually occurs in two phases: Training

phase and detection phase. During training phase the

behaviour of system is observed in the absence of attack and

machine learning technique is used to create a profile of such

normal behaviour. In detection phase this profile is compared

against the current behaviour and differences are considered

as potential attacks [4].

The advantage of this technique is that it can detect known as

well as new, unknown instances of malware and it focuses on

the behaviour of system to detect unknown attack or zero-

day attack. The disadvantage of this technique is that it needs

to update the data describing the system behaviour and the

statistics in normal profile but it tends to be large. It needs

more resources like CPU time, memory and disk space.

Other limitations include high false positive rate and

difficulty in selecting features to be learned in the training

phase.

3) Specification-Based Detection

 It is derivative of behaviour-based detection that tries to

overcome the typical high false alarm rate associated with it.

Specification based detection relies on program

specifications that describe the intended behaviour of

security critical programs [4]. It involves monitoring

program executions and detecting deviation of their

behaviour from the specification, rather than detecting the

occurrence of specific attack patterns. This technique is

similar to anomaly detection but the difference is that instead

of relying on machine learning techniques, it will be based

on manually developed specifications that capture legitimate

system behaviour [4]. The advantage of this technique is that

it can detect known and unknown instances of malware and

level of false positive is low but level of false negative is

high and not as effective as behaviour based detection in

detecting new attacks; especially in network probing and

denial of service attacks. Development of detailed

specification is time consuming.

4) Data mining based detection

 From last decade data mining has been the main focus of

many malware researcher for detecting the new, unknown

malwares; hence, data mining can be considered as the fourth

proposed malware detection technique. Probably the Data

Mining is now been dominated by Machine Learning

techniques. In 2001 Schultz et al. [5] first introduced the

idea of applying the data mining and machine learning

method for the detection of new, unknown malware based on

their respective binary codes. Machine learning algorithms

are used for detecting patterns or relations in data, which are

further used to develop a classifier [6]. The common method

of applying the data mining technique for malware detection

is to start with generating a feature sets. These feature sets

include instruction sequence, API/System call sequence,

hexadecimal byte code sequence (n-gram) etc. The numbers

of extracted features are very high so various text

categorization techniques are applied to select consistent

features and generate the training and test feature sets. Then

classification algorithms are applied on the consistent

training feature set to generate and train the classifier and test

feature set is examined by using these trained classifiers. The

performance of each classifier is evaluated by identifying the

rate of False Positive, False Negative, True Positive, True

Negative and calculate the TPR, FPR, Recall, precision and

F1-measure. The advantage of data mining based detection is

that detection rate is high as compared to signature based

detection method [5]. It detects the known as well as

unknown, new instances of malware.

III. LITERATURE SURVEY

Heuristic malware detection methods use data mining and

machine learning (ML) techniques to learn the behaviour of

an executable file. These ML techniques require some

features like API (Application Programming Interface) calls,

CFG (Control Flow Graph), N-Gram, Opcodes and Mixed

features. This section presents a survey of malware detection

mechanisms based on these features.

A. API calls

The behaviour of a piece of code like malware can easily be

reflected using API sequences because; almost all programs

send their requests to the Operating System using API calls.

Hofmeyr et al. [7] were among the first ones who observed

API call sequences as a feature of a malware. They presented

an anomaly detection method which used the system call

sequences as feature. They used Hamming distance with a

specific threshold for matching system call sequences and to

identify anomalies. Usually, large Hamming distance value

reported as anomalies. Yuxin Ding et al. [8] proposed an API-

based Object oriented association mining method for malware

detection. They have used many strategies to improve the rule

quality, API selection criteria to remove the rules which are

redundant which in turn increases the running speed of the

OOA malware detection.

Jeong and Lee [9] used system call sequences for both

malicious and benign executables to build a topological graph

which is called code graph. This graph is extracted for every

binary program and is compared with the code graph of

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 883

malicious and benign programs. Based on this comparison, a

program is classified as malware or benign. Ye et al. [10]

proposed an interpretable classifier based on the analysis of

API calls by a PE file for detecting malware from large and

imbalanced gray-list. They have studied around 8,000,000

malware and benign files with 100,000 samples from the

gray-list collected from lab of King Soft Corporation and built

effective associative classifier based on several post

processing methods like rule pruning and rule reordering.

Then, to make the classifier less sensitive to the imbalance

dataset and improve its performance, they developed the

Hierarchical Associative Classifier (HAC).

 Wespi et al. [11] proposed an improved version with

variable length system call sequences. A detection method

based on the frequency of system calls has been proposed by

Sato et al. [12]. Manzoor et al. [13] collect some Windows

malicious executable from VX Heavens and their API call

sequences are monitored by API Monitor. The DCA

(Dendritic Cell Algorithm) [14] is applied for detection.

Later, Ahmed et al. [15] use statistical features which

extracted from both spatial (arguments) and temporal

(sequences) information available in Windows API calls for

malware detection. All these methods use system calls or API

calls to monitor program behaviour. Seifert et al. [16]

compared three popular event-based techniques that can

monitor program behaviour: user mode API hooking, kernel

mode API hooking, and kernel mode call backs.

 M. K. Shankarapani et al. [17] presented two techniques

such as, Static Analyser for Vicious Executables (SAVE) and

Malware Examiner using disassembled Code (MEDiC).

MEDiC uses assembly calls for analysis and SAVE uses API

calls for analysis. They presented that assembly can be

superior to API calls as it allows a more detailed comparison

of executables. On the other hand, API calls can be superior

to Assembly for its speed and its smaller signature. They

proved that both these proposed techniques can provide a

better detection performance against obfuscated malware.

Dolly Uppal et. Al. [18] have used a feature selection

algorithm based on Fisher Score to select distinct APIs. Then

they have applied machine learning techniques like SVM,

Naïve Bayes, J-48, Random Forest, KNN, ANN and Voted

Perceptron on the selected feature vector. They claimed that

SVM shows the highest accuracy of 98.4 and ANN shows

lowest accuracy of 78.2 among these 7 selected algorithms.

Ehab M. Alkhateeb [19] has proposed a dynamic malware

detection method based on API similarity. He used API

filtration method to remove all duplicate and repeated API

calls and then created different patterns for different malware.

The patterns were then matched to find groups of malware

having similar patterns. He proposed API similarity algorithm

to find similarity among the files by finding distance between

strings present in those files.

B. OpCode

 An Opcode (Operational Code) is the part of a ML

instruction that identifies the operation to be executed. More

specifically, instructions of a program are defined as a pair

composed of an operational code and an operand or a list of

operands. The most significant research on Opcode has been

done by Bilar [20]. He showed the ability of single Opcode to

use as a feature in malware detection. Santos et al. [21]

presented various type of malware detection techniques based

on Opcode sequences. In their first work, they presented an

approach focused on detecting obfuscated malware variants

using the appearance frequency of Opcode sequences in order

to build a representation of executable files. To do so, they

had applied the disassembly process on exe files and built an

opcode profile containing a list of Opcodes from the

generated assembly files and then they computed the

relevance of each Opcode based on the frequency of

appearance of each of them in both malware and benign

datasets using mutual information [22]. Finally they used

Weighted Term Frequency (WTF) [23] to make suitable

feature vector extracted from executables. They calculated the

Cosine similarity measure between new instance feature

vector and malware variants feature vector for detection.

Later, in their next work, Santos et al. [23] presented a new

feature extraction method based on Opcode sequences and

trained several machine learning classifiers by embedding the

extracted features.

As we know, the machine learning based classifiers requires

high number of samples for each of the concept classes they

try to detect and it is quite difficult to obtain this amount of

labelled data in real world. So, Santos et al., in their next

research, proposed several methods to eliminate this

limitation such as Collective classification [24], Single class

learning [25], and Semi supervised learning [26]. Runwal et

al. [27] proposed a new approach based on Opcodes and used

this method for detecting unknown and also metamorphic

malware families based on a simple graph similarity

measurement. They extracted Opcodes from both file types

(i.e. malware and benign), count the number of each pair

Opcodes appeared in them and based on the numbers, make a

graph of Opcodes and after that can predict the maliciousness

of a new executable by calculating the similarity of graph

obtained from the executable and both file types and finally

the file will be classified either as benign or malware. More

similar work was done by Shabtai et al. [28] who tried to

detect unknown malicious codes by applying classification

techniques on Opcode patterns. They created a dataset of

malicious and benign executables for the Windows operating

system. After disassembling the executables, they calculated

the normalized term frequency (TF) and TF Inverse

Document Frequency (TF-IDF) representations as a feature

for each file. Finally, they used several classical classification

techniques such as Support Vector Machine (SVM), Logistic

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 884

Regression (LR), Artificial Neural Networks (ANN) etc. to

evaluate the proposed feature selection method.

Hamid Divandari et. Al. [29] presented an opcode based

method which used Markov Blanket algorithm as a feature

selection method to reduce the number of features. They have

5 classes of malware such as: Worms, Backdoors, Trojan

horses, Viruses and Rootkits. For each class of malware, one

special Hidden Markov Model was developed and trained.

Cheng Wang et. al. [30] proposed a model to extract opcodes

profiles of sample files through static analysis and selected

the sequences having higher entropy value as representation

of malware instance. Then they have used a Fast Density-

Based Clustering algorithm for clustering similar malware

instance which determine whether an unknown instance is

malware or benign according to the cluster.

Jixin Zhang et.al. [31] have used image detection mechanism

in which images are reconstructed by opcodes sequences of

length two. They have used histogram normalization, dilation

and erosion to enhance the contrast between malware variant

images and benign images. Then convolutional neural

network (CNN) is used as a learning approach to recognize

malware variant images. A much similar work was done by

Tingting Wang, Ning Xu in the paper [32].

C. N-grams

 N-grams are all substrings of a larger string with a length of

N [28]. For example, the string “TOMATO” can be

segmented into several 3-grams: “TOM”, “OMA”, “MAT”

and “ATO”. Tesauro et al. [33] were the first who try to use

N-Grams as a feature for malware detection domain. They

used N-Grams to detect Boot Sector Viruses using Artificial

Neural Networks (ANN). A Boot Sector Virus is a malware

variant which infects DOS Boot Sector or Master Boot

Record (MBR). When a system has infected, the MBR is

usually ruined and the computer boot order is changed The N-

Grams was selected from most frequent sections in malware

and benign executables. They used a specific feature

reduction algorithm such that each malware must consist of at

least four N-Grams from existing N-Grams set. Tesauro et al.

[34], in their next study, used N-Grams to build several

classifiers based on ANN and also used a specific voting

strategy to achieve final results. In that research a simple

threshold value was used to reduce the number of N-Grams.

 Abou-Assaleh et al. [35] presented a framework that uses the

Common N-Gram method and the K-Nearest-Neighbour

(KNN) classifier for malware detection. For both classes (i.e.

malicious and benign) a delegate profile was built. A new

instance was matched with the profiles of both classes and

was assigned to the most similar one. Kolter and Maloof [36]

used byte N-Gram representation to detect unknown malware.

Though the vector of N-Gram features was binary, presenting

the attendance or non-attendance of a feature in the file. In an

extension of their previous study, Kolter and Maloof [37]

classified malware into several families based on the

functions in their respective payload attempting to

approximate their capability to detect malicious codes based

on their subject dates.

Wang et al. [38] proposed a method which uses data mining

as detection category to classify various file types based upon

their file prints. An n-gram analysis method was used and the

distribution of n-grams in a file was used as its file print. The

distribution was given by byte value frequency distribution

and standard deviation. These file prints represented the

normal profile of the files and were compared against file

prints taken at a later time using simplified Mahalanobis

distance. A large distance indicated a different n-gram

distribution and hence maliciousness. Schultz et al. [5]

proposed a static misuse detection method using data mining

as detection category where strings data were used to fit a

naive-Bayes classifier while n-grams were used to train a

multi naive Bayes classifier with a voting strategy. Dataset

partitioning and 6-Naive-Bayes classifier trained on each

partition of data. They used different feature classifiers that do

not pose a fair comparison among the classifiers. Naive-Bayes

using strings gave the best accuracy in their model. Extending

the same idea, Schultz et al. [39] created MEF, Malicious

Email Filter, that integrated the scheme described in [5] into a

Unix email server where a large dataset containing 3301

malicious and benign program was used to train and test a

Naive-Bayes classifier. For feature reduction, the dataset was

partitioned into 16 subsets. Each subset is differently trained

on a different classifier and a voting strategy was used to

obtain final outcome. InSeon Yoo [40] proposed a static

misuse detection using data mining where they used Self

Organizing Maps (SOM). N-grams are extracted from the

infected programs and SOM’s were trained on this data. They

claimed that each Virus has its own DNA like character that

changes the SOM projection of the program that it infects.

The method looks for change in the SOM projection as a

result of Virus infection. Hence, it is able to detect

Polymorphic and metamorphic malwares.

Zhang Fuyong & ZhaoTiezhu [41] proposed a malware

classification method based on n-grams attribute similarity.

They have extracted all n-grams of byte codes from training

samples and selected the most relevant as attributes. They

used similarity analysis method to determine the sample

either as malware or benign. They have presented a

comparative study of their method with 4 other machine

learning methods such as: Naïve Bayes, Bayesian Networks,

Support Vector Machine and C4.5 Decision Tree. They

claimed that their method outperforms the other four methods.

D. Control Flow Graph (CFG)

CFG is a directed graph, where each node represents a

statement of the program and each edge represents control

flow between the statements. Statements may be assignments,

copy statements, branches etc. In [42], authors performed a

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 885

set of normalization operation after disassembling an

executable program for reducing effects of mutation

techniques and unveiling the flow connections between

benign and malicious code. Then they generated

corresponding CFG for the program. CFG compared against

the CFG of a normalized malware in order to know whether

CFG contains a sub graph which is isomorphic to CFG of the

normalized one. Thus, the problem of detecting malware is

changed to the sub-graph isomorphism problem. Zhao [43]

proposed a detection method based on features of the control

flow graph for PE files. At first, he created CFG for each

executable file. Then, he used features which extracted from

CFG as the train data. These features are information about

nodes, edges and sub graphs. After feature selection, some

data mining algorithm have been used for classification based

on these features such as Decision Tree, Bagging and

Random Forest. Bonfante et al. [44] built CFG based on six

types of nodes such as, jmp, jcc, call, ret, inst and end. Then,

they reduced these nodes in this way: for any node of kind

inst or jmp, they removed the node from the graph and linked

all its predecessors to its unique successor. After reduction,

they used this graph as a signature for each file.

 B. Anderson et al. [45] introduced a novel malware detection

algorithm based on the analysis of graphs constructed from

dynamically collected instruction traces of the target

executable. These graphs represent Markov chains, where the

vertices are the instructions and the transition probabilities are

estimated by the data contained in the trace. They used a

combination of graph kernels to create a similarity matrix

between the instruction trace graphs. The resulting graph

kernel measures similarity between graphs on both local and

global levels. Finally, the similarity matrix is sent to a support

vector machine to perform classification. They used the data

representation to perform classification in graph space rather

than using n-gram data. Ming Xu et al. [46] have used

disassembled codes of program, the caller–callee relationships

of functions and the opcode information about functions to

create the function-call graph and graph colouring techniques

were used to measure the similarity metric between two

function-call graphs. The similarity metric was used to

identify the malware variants from known malwares.

Shahid Alam [47] presented a method named, named

Annotated Control Flow Graph (ACFG) to efficiently detect

metamorphic malware. ACFG is built by annotating CFG of a

binary program and is used for graph and pattern matching to

analyse and detect metamorphic malware. They claimed that

ACFG is more accurate than CFG.

E. Mixed Features

Mikhail Zolotukhin and Timo Hamaainen [48] have analysed

executable files to get opcodes sequences and then applied n-

gram models to find essential features from those sequences.

They used a clustering algorithm based on the iterative usage

of support vector machines to build a benign software

behaviour model which is used to detect malicious

executables within new files. They claimed that their scheme

can detect unseen malware with a greater accuracy.

Ding Yuxin et. Al. [49] have constructed the opcode running

tree to simulate the dynamic execution of a program, and

extracted opcode n-grams to represent the features of an

executable. They have used three classifiers such as: KNN,

decision tree (C4.5) and support vector machine to classify

malicious and benign files.

Yuxin Ding et. al. [50] used the n-gram model to generate the

opcode n-grams of different lengths and then used

information gain and document frequency to select opcode-

based features. They have applied Deep Belief Networks to

detect malware which was claimed as a better malware

detector as compared to other classification techniques like

SVM, decision tree and KNN.

IV. DISCUSSION

Malware detection is a continuous research. Though several

techniques have been evolved, we can’t completely eliminate

malware from this internet based digital world. But definitely

we can minimize its harmful effect by continuously working

on it, to develop new, robust and effective detection

techniques with higher accuracy rate. Data mining and

Machine learning techniques play a vital role in this regard.

In addition to this, best malware features should also be

extracted from different types of malware before the machine

learning model is implemented. Zero-day attack is the

biggest headache for malware researchers because the new

malware may possess new feature and behaviour that, the

current anti-malware may not understand. Hence, a strong

future malware prediction system which will build a model

not only on present behaviour and feature of malware but

also on future behaviour and features. Artificial Intelligence

techniques along with machine learning may help the

researchers to develop such a system.

V. CONCLUSION

 In this paper, we have presented basic definition of malware,

its types and its propagation strategy. Further we have

presented advantages and disadvantages of different ways the

malware can be analysed and detected. Then in the literature

survey we have surveyed a number of malware detection

strategies based on APIs, OPCODE, n-grams, Control Flow

Graph and mixed features. The main aim and objective of

this paper is to understand the basics of malware detection

which will be very helpful in further research. In the next

work, we will focus on practical approaches of malware

analysis and how the static & dynamic analysis methods can

be merged to model an efficient and robust malware

detection technique. Different classification algorithms of

machine learning can be applied with different-sized

malware datasets. A comparison analysis of the above

process will also be included in our next work.

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 886

REFERENCES

[1] Ekta Gandotra, Divya Bansal, Sanjeev Sofat, “Malware Analysis

and Classification: A Survey”, Journal of Information Security,

April 2014, pp: 56-64

[2] Egele, M., Scholte, T., Kirda, E. and Kruegel, C. , “A Survey on

Automated Dynamic Malware-Analysis Techniques and Tools”,

Journal in ACM Computing Surveys, 44,2012, Article No. 6.

[3] Kirti Mathur, Saroj Hiranwal, “A Survey on Techniques in

Detection and Analyzing Malware Executables”, International

Journal of Advanced Research in Computer Science and Software

Engineering, April 2013, Volume 3, Issue 4, ISSN: 2277 128X.

[4] Robiah Y, Siti Rahayu S., Mohd Zaki M, Shahrin S., Faizal M. A.,

Marliza R., “A New Generic Taxonomy on Hybrid Malware

Detection Technique, (IJCSIS)International Journal of Computer

Science and Information Security”, Vol. 5, No. 1, 2009.

[5] Matthew G. Schultz, Eleazar Eskin, Erez Zadok, and Salvatore J.

Stolfo, “Data Mining Methods for Detection of New Malicious

Executables”, in Proceedings of the Symposium on Security and

Privacy, 2001, pp. 38-49.

[6] Raja Khurram Shahzad, Niklas Lavesson, Henric Johnson,

“Accurate Adware Detection using Opcode Sequence extraction”,

in Proc. of the 6th International Conference on Availability,

Reliability and Security (ARES11),Prague, Czech Republic. IEEE,

2011, pp. 189-195.

[7] S. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection

using sequences of system calls.” Journal of Computer Security, ,

1998, pp. 151–180.

[8] Yuxin Ding , Xuebing Yuan, Ke Tang, Xiao Xiao, Yibin Zhang,”

A fast malware detection algorithm based on objective-oriented

association mining”, computers & s e c u rity 3 9, 2013, pp: 3 1 5 -

3 2 4, Elsevier.

[9] K. Jeong and H. Lee, “Code graph for malware detection. In

Information Networking.” ICOIN. International Conference on,.

Jan 2008.

[10] Y. Ye, T. Li, K. Huang, Q. Jiang and Y. Chen, “Hierarchical

associative classifier (HAC) for malware detection from the large

and imbalanced gray list”. Journal of Intelligent Information

Systems, 35(1),2010, pp.1-20.

[11] Wespi, A., Dacier, M., Debar, H.: Intrusion detection using

variable- length audit trail patterns. In: Proceedings of the Recent

Advances in Intrusion Detection, 2000 , pp. 110–129. Springer,

France

[12] Sato, I., Okazaki, Y., Goto, S.: An improved intrusion detection

method based on process profiling. IPSJ J. 43,2002, 3316–3326

(2002).

[13] Manzoor, S., Shafiq, M.Z., Tabish, S.M., Farooq, M.: A sense of

‘danger’ for windows processes. In: ICARIS. LNCS, vol.

5666,2009, pp. 220–233. Springer, Heidelberg .

[14] Greensmith, J., Aickelin, U.: The deterministic dendritic cell

algorithm. In: Proceedings of the ICARIS. LNCS, vol. 5132,2008,

pp. 291– 303. Springer, Heidelberg.

[15] Ahmed, F., Hameed, H., Shafiq, M.Z., Farooq, M.: Using spatio-

temporal information in API calls ith machine learning algorithms

for malware detection. In: Proceedings of the ACM Conference on

Computer and Communications Security, 2009, pp. 55–62.

[16] Seifert, C., Steenson, R., Welch, I., Komisarczuk, P., Endicott-

Popovsky, B.: Capture-a behavioral analysis tool for applications

and documents. Digit. Investig. 4(Suppl. 1), 2007, S23–S30 .

[17] Madhu K. Shankarapani · Subbu Ramamoorthy , Ram S. Movva ·

Srinivas Mukkamala, “Malware detection using assembly and

API call sequences”, J Comput Virol ,2011, Springer, pp:107–119

[18] Dolly Uppal, Rakhi Sinha, vishakha Mehra and Vinesh Jain,

“Exploring Behavioural Aspects of API calls for Malware

Identification and Categorization”, 6th int. conf. on computational

intelligene and comm. Networks,IEEE,2014,pp:824-828.

[19] Ehab M. Alkhateeb, “Dynamic Malware Detection using API

Similarity”, International Conference on Computer and

Information Technology ,IEEE, 2017, pp:297-301

[20] D. Bilar, “OpCodes as predictor for malware,” International

Journal of Electronic Security and Digital Forensics, vol. 1, no. 2,

2007, pp. 156.

[21] I. Santos, F. Brezo, J. Nieves, and Y. Penya, “Idea: OpCode-

sequence based malware detection,”, Engineering Secure

Software and System , 2010.

[22] C. Peng, H. Long and F. Ding, “Feature selection based on mutual

information: cri-teria of max-dependency, max-relevance, and

minredundancy.,” in IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2005.

[23] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas,

“OpCode sequences as representation of executables for data-

mining-based unknown malware detection,” Information Sciences,

Aug. 2011.

[24] I. Santos, C. Laorden, and P. Bringas, “Collective classification

for unknown malware detection,” Proceedings of the 6th ACM

Symposium on Information, Computer and Communications

Security, 2011.

[25] I. Santos, F. Brezo, B. Sanz, C. Laorden, and P. G. Bringas,

“Using opCode sequences in single-class learning to detect

unknown malware,” IET Information Security, vol. 5, no. 4, 2011,

p. 220.

[26] I. Santos, B. Sanz, and C. Laorden, “OpCode-sequence-based

semi-supervised unknown malware detection,”, Computational

Intelligence in Security for Information Systems , 2011.

[27] N. Runwal, R. M. Low, and M. Stamp, “OpCode graph similarity

and metamorphic detection,” Journal in Computer Virology, vol.

8, no. 1–2, Apr. 2012, pp. 37–52.

[28] A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y. Elovici,

“Detecting unknown malicious code by applying classification

techniques on OpCode patterns,” Security Informatics, vol. 1, no.

1, p. 1, 2012.

[29] Cheng Wang et.al. ,” A malware variants detection methodology

with an opcode based feature method and a fast density based

clustering algorithm”, 12th International Conference on Natural

Computation, Fuzzy Systems and Knowledge Discovery

,IEEE,2016,pp:481-487.

[30] Yuxin Ding et. al., Application of Deep Belief Networks for

Opcode Based Malware Detection, International Joint Conference

on Neural Networks (IJCNN),IEEE,2016,pp:3901-3908.

[31] Jixin Zhang et.al. “IRMD: Malware variant Detection using

opcode Image Recognition”, 22nd International Conference on

Parallel and Distributed Systems, IEEE, 2016,pp:1175-1180.

[32] Tingting Wang, Ning Xu, “Malware Variants Detection Based on

Opcode Image Recognition in Small Training Set”, 2nd

International Conference on Cloud Computing and Big Data

Analysis,IEEE,2017, pp:328-332.

[33] G. B. S. Gerald, J. Tesauro, Jeffrey O. Kephart, “Neural Network

for Computer Virus Recognition.” IEEE Expert, 1996.

[34] W. A. and G. Tesauro, “Automatically Generated Win32 Heuristic

Virus Detection,” in Virus Bulletin Conference, 2000.

[35] T. Abou-assaleh, N. Cercone, V. Keselj, and R. Sweidan, “N-

gram-based Detection of New Malicious Code,” Proceedings of

the 28th Annual International Computer Software and

Applications Conference, 2004. COMPSAC 2004.

[36] M. M. Kolter JZ, “Learning to detect malicious executables in the

wild.” in roc of the 10th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, 2006.

[37] J. Z. Kolter and M. A. Maloof, “Learning to Detect and Classify

Malicious Executables in the Wild,” vol. 7, pp. 2721–2744, 2006.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9304
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9304
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9304

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 887

[38] K.Wang W. Li and, S. Stolfo, , and B. Herzog. “Fileprints:

Identifying File Types by n-gram Analysis.” In 6th IEEE

Information Assurance Workshop, 2005.

[39] Matthew G. Schultz, Eleazar Eskin, Erez Zadok, Manasi

Bhattacharya, and Salvatore J. Stolfo. “MEF: Malicious Email

Filter: A UNIX mail Filter That Detects Malicious Windows

Executables.” pp. 245–252, 2001.

[40] InSeon Yoo. “Visualizing windows executable viruses using self-

organizing maps.” In Proceedings of the 2004 ACM workshop on

Visualization and data mining for computer security, pp. 82–89,

2004.

[41] Zhang Fuyong & ZhaoTiezhu, “Malware Detection and

Classification Based on ngrams Attribute Similarity”,

International Conference on Computational Science and

Engineering (CSE) and IEEE International Conference on

Embedded and Ubiquitous Computing (EUC), IEEE, 2017,pp:

793-796.

[42] D. Bruschi, L. Martignoni and M. Monga “Detecting self-mutating

malware using control-flow graph matching,” In: Büschkes, R.

And Laskov, P. (eds) Detection of Intrusions and Malware &

Vulnerability Assessment, volume 4064 of LNCS, pp 129–143.

Springer, Berlin. 2006.

[43] Z. Zhao, “A virus detection scheme based on features of Control

Flow Graph.” 2nd International Conference on Artificial

Intelligence, Management Science and Electronic Commerce

(AIMSEC), pages 943- 947, 2011.

[44] G. Bonfante, M. Kaczmarek, J.Y. Marion. ‘‘Control Flow Graphs

as Malware Signatures.’’ WTCV, May, 2007.

[45] Blake Anderson, Daniel Quist, Joshua Neil, Curtis Storlie, Terran

Lane “Graph-based malware detection using dynamic analysis” J

Comput Virol (2011) 7:247–258, Springer-Verlag France 2011.

[46] Ming Xu, Lingfei Wu, Shuhui Qi , Jian Xu, Haiping Zhang , Yizhi

Ren, Ning Zheng , “A Similarity metric method of obfuscated

malware using function-call graph”, J Comput Virol Hack Tech

(2013) 9,pp :35–47, Springer-Verlag, France, 2013.

[47] Shahid Alam et. al., “Annotated Control Flow Graph for

Metamorphic Malware Detection”, Security in Computer Systems

and Networks , The Computer Journal, 2014.

[48] Mikhail Zolotukhin and Timo Hamaainen , “Detection of Zero-

day Malware Based on the Analysis of Opcode Sequences”, 11th

Annual IEEE CCNC - Security, Privacy and Content Protection,

2014,pp:386-391.

[49] Ding Yuxin et. Al., Malicious Code Detection Using Opcode

Running Tree Representation, Ninth International Conference on

P2P, Parallel, Grid, Cloud and Internet

Computing,IEEE,2014,pp:616-621.

[50] Yuxin Ding et. al., Application of Deep Belief Networks for

Opcode Based Malware Detection, International Joint Conference

on Neural Networks (IJCNN),IEEE,2016,pp:3901-3908.

Authors Profile

Mr. Om Prakash Smantray pursed Bachelor
of Engineering in Information Technology
from Berhampur University, Odisha, India in
2006 and Master of Technology in CSE from
BPUT Odisha in year 2010. He is currently
pursuing Ph.D. in Department of Computer
Science, in Berhampur University, Odisha,
India since 2015. He is a life-member of
ISTE since 2017. His main research work
focuses on Information Security, Data
Mining, Machine Learning and Big Data Analytics, He has 10 years
of teaching experience and 3 years of Research Experience.

Dr. Satya Narayan Tripathy received his
M.C.A. and Ph.D. degrees in Computer
Science from Berhampur University,
Berhampur, Odisha, India in the years 1998
and 2010, respectively. He has been teaching
in the Department of Computer Science,
Berhampur University since 2011.
Currently, he is a Lecturer in the Department
of Computer Science, Berhampur
University. Dr. Tripathy serves on the
advisory boards of several organizations and conferences. He is a
Life Member of Computer Society of India (LMCSI), Life Member
of Orissa Information Technology Society (LMOITS) and Member
of several professional bodies. His research interests include
computer network security, wireless ad hoc network, network
security in wireless communication and data mining.

Dr. Susant Kumar Das received his Ph.D.
degree from Berhampur University, Odisha,
India in 2006. Dr. Das is currently a Reader
at the Department of Computer Science. He
is a life member of IEEE, ISTE, SGAT,
OITS and member of several professional
bodies. His research interests include Data
Communication & Computer Networks,
Computer Security, Internet & Web
Technologies, Database Management
Systems and Mobile Ad- Hoc Networking & Applications.

