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Abstract— In this paper, the algebraic properties of two operations disjunction and conjunction from Lukasiewicz type over 

Pythagorean fuzzy matries are studied. Also, using the relation between disjunction and conjunction certain results are obtained 

using modal operators. 
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I.  INTRODUCTION 

The concept of intuitionistic fuzzy matrix(IFM) was 

introduced by Pal[4] and simultaneously by Im[3] to 

generalize the concept of Thomason's[11] fuzzy matrix. Each 

element in an IFM is expressed by an ordered pair ,ij ija a  

with , [0,1]ij ija a  . The sum 
ij ija a  of each ordered pair 

is less than or equal to 1 . Since the appearance of IFM in 

2001, several researchers [5,9] have importantly contributed 

for the development of IFM theory and its applications. In 

particular, Muthuraji et.al[6] introduced a new composition 

operator and studied their algebraic properties. Also they 

obtained a decomposition of an IFM. Emam and Fndh[2] 

defined some kinds of IFMs, the max-min and min-max 

composition of IFMs. Also they derived several important 

results by these compositions and construct an idempotent 

intuitionistic fuzzy matrix from any given one through the 

min-max composition.  

 

Muthuraji and Sriram[7] introduced two operators 

conjunction and disjunction from Lukasiewic'z type over 

intuitionistic fuzzy matrix(IFM) and investigated their 

algebraic properties. Also in [8], they proved the set of all 

IFMs is a commutative monoid under these operations. 

Venkatesan and Sriram[12,13] defined Multiplicative 

operations of IFMs namely 1 2 3, ,X X X  and 4X  and 

investigated their algebraic properties. 

 

Yager[14] introduced Pythagorean fuzzy set(PFS) 

characterized by a membership degree and a non 

membership degree satisfying the condition that the square 

sum of its membership degree and non membership degree is 

equal to or less than 1, has much stronger ability than 

intuitionistic fuzzy set to model such uncertain information 

in multi-criteria decision making(MCDM) problems. Zhang 

and Xu[15] defined some novel operational laws of PFS and 

discuss its desirable properties. 

 

The motivation of introducing PFSs is that in the real-life 

decision process, the sum of the support degree and the 

against degree to which an alternative satisfying a criterion 

provided by the decision maker may be bigger than 1 but 

their square sum is equal to or less than 1. 

 

Silambarasan and Sriram[10] introduced Pythagorean fuzzy 

matrix(PFM) and its algebraic operations. Atanassov and 

Tcvetkov[1] introduced the operations disjunction and 

conjunction from Lukasiewic'z type over intuitionistic fuzzy 

sets and studied its algebraic properties. We extend these 

operations to PFMs and studied some of the basic properties 

of these operations with other predefined operators. 

 

The remainder of this paper is organized as follows. In 

Section 2, the basic definitions of PFM are given. In Section 

3, we define two new operations disjunction and conjunction 

on PFM and investigate their algebraic properties. The 

operator complement obeys the De Morgan's laws for the 

operations disjunction and conjunction. Also, we established 

the distributive properties of max-min and min-max 

compositions over disjunction and conjunction. In Section 4, 

using the relation between disjunction and conjunction 

certain results are obtained using modal operators. 
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II. PRELIMINARIES  

In this section, we shall briefly review PFMs and their 

operations. 

 

Definition 2.1[14]: Let a set X  be a universe of discourse 

A  Pythagorean fuzzy set (PFS) P  is an object having the 

form  = , ( ( ), ( )) | ( )p pP x P x x x X   , where the 

function : [0,1]p X   and : [0,1]p X   defines the 

degree of membership and non-membership of the element 

x X  to P , respectively, and for every x X , it holds 

that 
2 2( ( )) ( ( )) 1p px x   . 

 

Definition 12.2
([10])

: An PFM is a matrix of pairs 

 = ,ij ijA a a  of a non negative real numbers satisfying 

2 20 1ij ija a    for all , .i j    

 

Definition 2 2.3
([10])

:  For any two PFMs , ,mnA BF
 

 we  have 

(i) A B  iff 
ij ija b  and ,ij ija b   

(ii) =A B  iff =ij ija b  and = ,ij ija b   

(iii)  = , ,C

ij ijA a a  

(iv)  = min( , ),max( , ) ,ij ij ij ijA B a b a b   

(v)  = max( , ),min( , ) ,ij ij ij ijA B a b a b   

(vi)  2 2 2 2= , ,P ij ij ij ij ij ijA B a b a b a b     

(vii)  2 2 2 2= , ) ,P ij ij ij ij ij ijA B a b a b a b    e   

(viii)  2 2

1 = max( , ), ,P ij ij ij ijA B a b a b   

(ix)  2 2

2 = , max( , ) ,P ij ij ij ijA B a b a b    

(x) The m n  zero PFM O  is an PFM all of whose entries   

      are 0,1 ,  The m n  universal PFM J  is an PFM all  

      of whose entries are 1,0 .    

III. ALGEBRAIC PROPERTIES OF LUKASIEWICZ    

DISJUNCTION AND CONJUNCTION OF PFMS 

Atanassov and Tcvetkov[1] introduced the operations 

disjunction and conjunction from Lukasiewicz type over 

intuitionistic fuzzy sets and studied its algebraic properties. 

We extend these operations to PFMs and studied some of the 

basic properties of these operations with other predefined 

operators. 

  

Definition 3.1: 3  Using intuitionistic fuzzy form of 

Lukasiewicz implication,  we will introduce a disjunction  

 2 2 2 2= min(1, ), max(0, 1) .L ij ij ij ijA B a b a b    

We will call the new disjunction Lukasiewicz Pythagorean 

fuzzy disjunction. 

Also, we can construct,  

 2 2 2 2= max(0, 1), min(1, ) .L ij ij ij ijA B a b a b    

We will call the new conjunction Lukasiewicz Pythagorean 

fuzzy conjunction.   

 

Remark 3.2: 4  For both new operations, having in mind that 

disjunction is obtain from conjunction 

 2 2 2 2

( )

= max(0, 1), min(1, )

( ).

C C C

L

ij ij ij ij

L

A B

a b a b

A B



   

 
 

 

Property 3.3:5  For any two PFMs , ,mnA BF  LA B  

and LA B  are PFMs.   

 

Proof.  Let A  and B  be any two PFMs. 

If 
2 2 1ij ija b   , then 

   
2 2

2 2 2 20  min(1, ) max(0, 1)ij ij ij ija b a b       

     
2 2min(1, )ij ija b   

      1 . 

If 
2 2 >1ij ija b  , then 

   
2 2

2 2 2 20  min(1, ) max(0, 1)ij ij ij ija b a b       

     
2 2 2 2 1ij ij ij ija b a b       

      2 1   

      1 . 

Thus LA B  is a PFM. 

Similarly we can prove LA B  also PFM. 

The following properties are obvious.  

 

 Property 3.4: 6  For any PFM ,mnAF  we have 

( ) = ,Li A O A  
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( ) = ,Lii A J J  

( ) = ,Liii A O O  

( ) = .Liv A J A
 

 

The operations disjunction andconjunction are commutative       

as well as associative 

.   

Property 3.5: 7  For any three PFMs , , ,mnA B CF   

we have 

( ) = ,L Li A B B A   

( )( ) = ( ),L L L Lii A B C A B C     

( ) = ,L Liii A B B A   

( )( ) = ( ).L L L Liv A B C A B C   
 

 

The operator complement obey the De Morgan's laws for the 

operations disjunction and conjunction.   

 

 Property 3.6: 8  For any two PFMs , ,mnA BF  we have 

( )( ) = ,C C C

L Li A B A B   

( )( ) = .C C C

L Lii A B A B     

  

Proof. 

 2 2 2 2

( )( )

= max(0, 1), min(1, )

= .

C

L

ij ij ij ij

C C

L

i A B

a b a b

A B



   



 

Hence, ( ) = .C C C

L LA B A B   

The proof (ii) is similar to that of (i).  

 

Property 3.7: 9  For any PFM ,mnAF  we have 

( )( ) = ,C C C

L Li A A A A   

( )( ) = .C C C

L Lii A A A A     

  

Proof. 

 2 2 2 2

( )

= min(1, ), max(0, 1) .

C

L

ij ij ij ij

i A A

a a a a



   
 

 2 2 2 2

( )

= max(0, 1), min(1, )

= .

C C

L

ij ij ij ij

C

L

A A

a a a a

A A



   



 

Hence, ( ) = .C C C

L LA A A A   

The proof (ii) is similar to that of (i). 

The distributive properties of max-min and min-max 

compositions over disjunction and conjunction.  

 

Property 3.8: 10  For any three PFMs , , ,mnA B CF   

we have 

( )( ) = ( ) ( ),L L Li A B C A C B C      

( )( ) = ( ) ( ).L L Lii A B C A C B C        

 

Proof. ( )( ) Li A B C   

   = min( , ),max( , ) ,ij ij ij ij L ij ija b a b c c    

 2 2 2= min(1,min( , ) ),ij ij ija b c
 

       2 2 2max(0,max( , ) 1)ij ij ija b c   
 

 2 2 2 2min(1, , ),ij ij ij ija c b c  
        

       
2 2 2 2max(0, 1, 1)ij ij ij ija c b c      

 

 2 2 2 2= min(1, ), max(0, 1)ij ij ij ija c a c      

      2 2 2 2min(1, ), max(0, 1)ij ij ij ijb c b c     

= ( ) ( )L LA C B C    

Hence, ( ) = ( ) ( ).L L LA B C A C B C      

The proof (ii) is similar to that of (i). 

Similarly, we can prove the following property.  

 

Property 11 3.9: For any three PFMs , , ,mnA B CF
 

 we have 

( )( ) = ( ) ( ),L L Li A B C A C B C      

( )( ) = ( ) ( ).L L Lii A B C A C B C    
 

 

     While, the following equalities are not valid. 

( )( ) = ( ) ( ),L Li A B C A C B C      

( )( ) = ( ) ( ),L Lii A B C A C B C      

( )( ) = ( ) ( ),L Liii A B C A C B C      

( )( ) = ( ) ( ),L Liv A B C A C B C      

( )( ) = ( ) ( ),L L L L Lv A B C A C B C     ,

( )( ) = ( ) ( ).L L L L Lvi A B C A C B C        
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IV. MODAL OPERATORS ON PFM  

Pal[9] defined the necessity and possibility operators(modal 

operators) for IFMs. Murugadas et al.[5] studied the relations 

between W and   operators for IFMs. Analogous to these 

definitions Silambarasan and Sriram[10] defined the 

necessity and possibility operators for PFMs. In this section, 

using the relation between disjunction and conjunction 

certain results are obtained using modal operators. 

  

Definition 4.112 ([10]):  For any PFM 
mnAF , we have 

 2( ) = , 1 ,ij iji A a aW
 

 2( ) 1 , .ij ijii A a a     

.
   

Property 4.2: 13  For any two PFMs , ,mnA BF  we have 

( ) ( ) = ,L Li A B A B W W W

( ) ( ) = ,L Lii A B A B W W W

( ) ( ) = ,L Liii A B A B   

( ) ( ) = .L Liv A B A B       

  

Proof. (i) ( )LA BW  

 2 2 2 2= min(1, ), max(0, 1)ij ij ij ija b a b   W  

 2 2 2 2= min(1, ), 1 min(1, )ij ij ij ija b a b    

 2 2 2 2= min(1, ), max(1 1,1 )ij ij ij ija b a b   
 

 2 2min(1, ),ij ija b
        

       
2 2max(0,(1 ) (1 ) 1)ij ija b   

 

= .LA BW W  

Hence, ( ) = .L LA B A B W W W  

The proof (ii), (iii) and (iv) are similar to that of (i).  

 

 

 

 Property 4.3:14  For any two PFMs , ,mnA BF  we have 

( ) ( ) = ,C C C

L Li A B A B W W W

( ) ( ) = ,C C C

L Lii A B A B W W W

( ) ( ) = ,C C C

L Liii A B A B 

( ) ( ) = .C C C

L Liv A B A B       

  

Proof. ( ) ( )C

Li A BW  

  2 2 2 2= 1 min(1, ), min(1, )ij ij ij ija b a b    

 = C C

LA BW W . 

Hence, ( ) = .C C C

L LA B A B W W W  

The proof (ii), (iii) and (iv) are similar to that of (i).  

 

V. CONCLUSION 

In this paper, we define two new operations disjunction and 

conjunction on PFM and investigate their algebraic 

properties. The operator complement obey the De Morgan's 

laws for the operations disjunction and conjunction. Also, we 

established the distributive properties of max-min and min-

max compositions over disjunction and conjunction. And 

using the relation between disjunction and conjunction 

certain results are obtained using modal operators. 
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