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Abstract- Multi-hop wireless networks and Routing management, it has is a vital and challenging resource allocation technique 

in Scheduling process. A distributed low-complexity scheduling algorithm develops into more challenging tasks, even if taking 

into account a physical interference model. At previous years a number of scheduling algorithms were presented, but pre-

existing scheduling algorithm does not solve the drawbacks to implement in multi hop networks to overcome these issues, 

proposed a new scheduling approach Ant Colony Optimization Max-Weight Scheduling (ACO-MWS) for scheduling 

and routing in multi-hop wireless networks. The combination of proposed approaches such as ACO Algorithm and Max-

Weight Scheduling that overcome the pre-existing scheduling problems and it accomplish maximum throughput at the 

distributed low complexity. The performance evolution of ACO, Max-Weight, and ACOMWS are presented in this paper. 
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I.  INTRODUCTION 

 

In Multi-hop wireless networks, it has significant interest to 

surveying the scheduling issue for performing 

throughput/capacity optimization in wireless networks [1]–

[5]. In the main purpose, this scheduling issue involves to 

determine that node-pairs (links) should communicate and 

transmit and at what modulation, execution times and which 

coding systems must be utilized, and at which power levels 

should communication take place. Even as the optimal 

solution of this scheduling issue has been recognized for a 

long period [6], so that the resultant solution has high 

computational complexity and it is complex to perform 

within multi-hop networks. One of the key considerations in 

a new scheduling policy intended for a queuing network is 

throughput optimality, which is the capability to maintain 

the largest set of traffic rates by a given queuing network. 

Max-weight scheduling [7] and Backpressure [8] are 

recognized to be throughput optimal by using queue length 

based scheduling policies. Therefore, the max-weight of 

scheduling policies receives much consideration in different 

networking circumstances, comprises satellites [10], 

switches [9], optical networks [12] and wireless [11]. The 

familiar maximum weight scheduling algorithm proves 

throughput optimality proposed by Tassiulas in this paper 

[7]. 

 

In wireless network performance, the single-hop 

interference model also called primary interference or the 

node-exclusive model. If two links or node pairs interfere 

with each other only it is performed within single-hop 

distance. The throughput-optimal policy [13] signify a 

Maximum Weighted Matching (MWM) policy and its 

complexity is approximately O (N3) [14], where N is 

considered the entire number of links in the wireless 

networks. At the same time as the single-hop interference 

model is used as a reasonable approximation to Frequency 

Hoping Code Division Multiple Access (FHCDMA) 

networks or Bluetooth device ([13], [16], [15],). A large 

class of systems knows how to be modeled using the more 

general K-hop interference models, wherein any two links 

within K-hop distance does not be activated concurrently. 

For instance, the pervasive IEEE 802.11 Distributed 

Coordination Function (DCF) of wireless networks are 

utilized the two-hop interference model to be effectively 

performed [18], [19]. The complexity of the throughput-

optimal policy of [17] intended for the K-hop interference 

model is NP-Hard problem [15], and for this reason, it is 

complicated to implement. Furthermore, traditional 

scheduling policies are developed under LT (light-tailed) 

traffic assumptions. But, traffic flows of heavy tailed (HT) 

emerges in various network systems in recent empirical 

studies. 
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In this paper, to improve new throughput-optimal scheduling 

techniques perform with LT and hybrid HT traffic flows in 

multi-hop networks, in which classic optimal policies such 

as backpressure/ maximum-weight schemes, enhanced under 

LT assumption, are not throughput-optimal solution to any 

further extent. The notion of delay stability utilizes by the 

performance metric, check whether the steady-state 

expected delay is finite or not in a queue. Max-Weight 

policies perform with excellent stability properties, and as 

well to complete better delay performance under LT traffic 

flow. The Max-Weight policy achieves defectively using 

heavy tails, at the same time as a correctly modified version 

of Max-Weight accomplishes much better overall 

performance. Intended for wireless networks through multi 

hop traffic flows, a tight backlog bound scales as O (N / 

(1  )) in which N carries the number of wireless nodes. A 

novel delay metric used for multi hop wireless networks and 

improve the D-BP algorithm, where a linear relation 

between queue delays and lengths in the fluid limits know 

how to be established. D-BP achieves optimal throughput 

performance of this linear relation. The throughput-

optimality of Q-BP uses fluid limit techniques. In advance, 

to develop a simpler ACO approximation of D-BP performs 

for practical implementation. 

  

1.1 PRELIMINARIES 

 Heavy Tail (HT): In heavy-tailed traffic, a non-negative 

random variable X, even if all  > 0, limx→∞ e   x
 Pr(X > x) 

= ∞, or equivalently, E[e
zX

] = ∞, ∀z > 0. A r.v. is light-

tailed (LT) traffic, even if it is not HT, or equivalently, if 

there exists z > 0 so that E[e
zX

] < ∞. 

 Regulary varying distribution: A random variable X is 

known regularly varying with tail index      denoted 

by       ( )  if Pr(X>x)     L(x), if two real 

functions a(t) and b(t), a(t)   b(t) denote       
 ( )

 ( )
   

and L(x) is a gradually varying function. 

 Steady-state Stability: In queuing system, if pre-exists a 

scheduling policy under the Markov chain of queue 

lengths is positive Harris recurrent (i.e., {Q (t); t   Z+} 

converges in distribution), after that the queuing network 

is steady-state stable position.  

 Strong Stability: A queuing system is strong fully stable, 

when all traffic flows experience bounded average 

queuing delay (i.e., E [Wf ] < ∞, ∀f   F).  

 Network Capacity Region: In network capacity region   

of the queuing system is the set of all traffic admissible 

rate vectors by the system (i.e.,   know how to be covered 

by a convex combination of feasible schedules). 

Mathematically,   := {     R+
F
 |   ≤   component wise, 

for some     Co(S)}, in which Co(S) indicates the convex 

hull of all feasible schedules. 

 Throughput Optimality: The throughput-optimal is one 

of a scheduling policy, if it can accomplish strong stability 

for any admissible rate vector (i.e., any rates within the 

network capacity region). 

 

II. MAX WEIGHT SCHEDULING IN MULTI HOP 

FLOWS 

 

In wireless ad hoc network, as directed graph represent in G 

= (V, E), where E denotes the set of links and V denotes a set 

of wireless nodes. The cardinalities of V and E are N and L, 

respectively. Assume that, is set of multi hop flows F where 

flow f   F has a fixed route from a source node s (f) to a 

destination node d (f). The set of links and nodes signify on 

the route of flow f as L (f) and R (f), in that order. The packet 

arrivals to source nodes of all flows are i.i.d stochastic 

mechanism. 

 

The queue length of flow f represent at node n at the starting 

of time slot t as   
 
 ( )and the number of packets arriving at 

the source node of flow f as   ( )
 

 ( ). The data packets of 

any flow are delivered to the higher layer upon reaching the 

destination node, so   ( )
 

 ( )=0. In addition, let    
 
 ( ) be 

the number of packets of flow f transmitted from node n 

along link (n, m) of its route which is buffered at node m if 

m   d (f). Again, we assume that    
 
 ( ) = 1 if we activate 

link (n, m) on the route of flow f and    
 
 ( ) = 0, otherwise. 

Given the routes for all flows, the maximum weight 

scheduling algorithm is used for data delivery [20]. The 

maximum weight scheduling algorithm is to attain the 

capacity region [20]. A feasible schedule with the maximum 

weight at any time slot which is activated by the Max-

Weight policy. The Max-Weight policy, the scheduling 

vector S (t) belongs to the set: 

 ( )        (    )  
  ∑   ( )      ( )  

 
   .      ....(1) 

 

Specifically, the scheduling is performed in every time slot 

as follows: 

 

Each link (n, m) discovers with the intention of maximum 

differential backlogs as follows: 

   ( )        (   )  ( )    
 
 ( )     

 
 ( )    …(2) 

Depending upon calculated link weights, a maximum weight 

schedule is found as 

 
   (t)          ⃗⃗ ( )  ∑    ( )    ( )(   )    …(3) 

 

One packet transmits from buffer of the flow attaining the 

maximum differential backlog. The queue progresses 

written as, 

  
 (   )     

 ( )     
 ( )    

 ( )    ….(4) 

This equation holds because   
 ( )    only if   

 ( )   . It 

is also considered,   
 ( ) is the number of packets arriving 

to queue   
 ( ) in time slot t that can be written as, 
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 ( )       ( ) 

  
 ( ) =          

 ( )           
 

                                         ……(5) 

2.1 Throughput Optimality of MWS 

In scheduling algorithm, it is throughput-optimal under LT 

and hybrid HT traffic, even if it known how to achieve 

moment stability for any admissible rate vectors (i.e., the 

network capacity region) [21]. The throughput optimality of 

MWS is proved in this section. The queuing evolution 

evolves as an irreducible Discrete-Time Markov Chain 

(DTMC) with infinite countable states. The throughput 

property of MWS is using Lyapunov drift technique. Let 

  (t) = [  ( )   ( )     ( )]   The Lyapunov function is 

designed as 

 (  ( ))   ∑
 

  (   )
  

 ( ) 

 

 

 

Where    = [           ] is picked from  . Theorem 

indicates the throughput optimality of MWS that is the 

cornerstone for achieving delay upper bound. 

Theorem: The MWS algorithm strongly stabilizes the 

system for any load vector  ⃗⃗     . 

Proof: Using the lyapunov function defined in above 

equation, the drift  ( ( ))   [ (  (   ))  

 (  ( ))   ( )] can be calculated by  

  ( ( ))

    ∑
 

  (   )
   [(  ( )    

 ( ))   ( )|  ( )]

 

   

    [ ( )   ( )]  
 

Where f (t) = ∑
 

  (   )
  [  ( )     

 ( )) ]  
    since  ⃗⃗      

based on above equation there exists a positive constant   , 

using negative constant we have negative drift as follows 

  ( ( ))       ∑
 

  (   )
   

 ( )  ( )

 

   

   [ ( )   ( )]  
 

On account of the bounded second moments of the arrival 

process, above final equation proves stability [6]. 

Additionally, it verifies can be easily from above equation 

that the DTMC describing the queuing system is positive 

recurrent and ergodic. 

 

III. ACO (ANT COLONY OPTIMIZATION) 

 

In ACO is considered an iterative algorithm, at each 

iteration, after those artificial ants are created to construct 

solutions from node to node on the network with the 

constraint not visiting any node [22]. Moreover, a certain 

amount of pheromone deposited by ants on the links that 

they traverse. The amount of pheromone Δ  deposited on 

the quality of the path found. An ant chooses to be visited 

the next node according to a stochastic mechanism.  At each 

step of the solution construction, by using the pheromone to 

construct the quality of the results at the end of iteration. 

The pheromone values are updated with the intention of bias 

ants in prospect iterations to build solutions close to the 

better ones before constructed. 

 

In ACO approach, each ant tries to discover a path in the 

network; it is provided that has minimum cost. Ants were 

initiated from a source node s to destination node via 

neighbor repeater nodes represent ri, to reach at a final 

destination node represent as d. Even if a source has to be 

transferred data to the target node that is defined as base 

station or a base, launching of the ants is performed. After 

that launching, the option of the next node r is completed in 

accordance through a probabilistic decision rule: 

 

     (   )           
[ (   )]  [ (   )] 

∑ [ (   )]  [ (   )]   
    

    if k        ….(6) 

0 otherwise 

 

Where Rs is the receiver nodes and   (r, s) is the heuristic 

value,   (r, s) is the pheromone value related to energy. 

Intended for node r, tabu
r
 is the list of identities of received 

data packages formerly. Two parameters are   and   to 

control the relative weight of the heuristic value and 

pheromone trail. Arcs are connected with the support of 

Pheromone trails. Each arc(r, s) has a trail value   (r, 

s)  [0,1] . In view of the fact that the destination d is a stable 

base station, the final node of the path is the same for each 

ant travel. The heuristic value of the node r is expressed by 

equation: 

 (   )   
(    )

  

∑ (    )
  

    

 

Where I denote the initial energy of the source node, and er 

represent the current energy level of receiver node r. Nodes 

notify their neighbors about their energy levels if they sense 

any modification in their energy levels. In traditional ACO, 

a special memory Mk is held in the memory of an ant to 

retain the places visited by that ant (which represent nodes 

in WSNs). In equation (6), the identities of ants (as sequence 

numbers) that visited the node previously, are kept in the 

node’s memories, instead of keeping node identities in ant’s 

memories, so there is no necessitate to carry Mk lists in 

packets during transmission. This approach reduces the size 

of the data to be transmitted and saves energy. Each receiver 

node decides whether to accept the upcoming packet of ant k 

or not, by checking its tabu list in equation (6). So, the 

receiver node r has a choice about completing the receiving 

process by listening and buffering the entire packet. If the 

receiver node has received the packet earlier, it informs the 

transmitter node by issuing an ignore message, and switches 

itself to idle mode until a new packet arrives. 



   International Journal of Computer Sciences and Engineering                                    Vol.6(9), Sept. 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        870 

After all ants have completed their tour, each ant k deposits 

a quantity of pheromone    (t) given by equation (7), where 

  
  ( )is the length of tour w

k
 (t) , which is done by ant k at 

iteration t. The amount of pheromone at each connection 

(l(r, s)) of the nodes is given by equation. In WSNs,   
  ( ) 

represents the total number of nodes visited by ant k of tour 

w at iteration t: 

 

   (t) = 1/   
  ( ) 

 

 (   )( )   (   )( )    (   )( )              ∀ (   )  
  (t), k=1,…, m 

                                                                      ………(7) 

 

In pheromone values are stored in a node’s memory in an 

effective manner. Each node has information about the 

amount of pheromone on the paths to their neighbor nodes. 

After each tour, an amount of pheromone trail     is added 

to the path visited by ant k. This amount is the same for each 

arc(r, s) visited on this path. This task is performed by 

transmitting ant k back to its source node from the base 

along the same path, at the same time as transferring an 

acknowledgement signal for the associated data package. 

Increasing pheromone amounts on the paths according to 

lengths of tours, J w 
(t)

, would constantly cause an increasing 

positive feedback. In order to control the operation, the 

operation of pheromone evaporation after the tour is also 

accomplished by equation. A control coefficient      (0, 1) 

is used to determine the weight of evaporation for each tour 

[19]: 

 

    ( )  (   )   ( )         ……….(8) 

                                                            

IV. ACO-MWS ALGORITHM 

 

In multihop networks, the MaxWeight type algorithms do 

stabilize the system and have better buffer-usage 

performance than the other algorithm. The MaxWeight 

algorithm assigns a weight of (queue-length X channel-rate), 

and schedules a collection of links that maximizes the total 

weight (max-weight independent set). Given a rate vector   

interior to the capacity region  , a stationary, randomized, 

queue-independent policy could in principle be designed to 

stabilize the system, although this would require full 

knowledge of the traffic rates and channel state 

probabilities. However, it is well known that the following 

queue-aware max-weight policy stabilizes the system 

whenever the rate vector is interior to  , without requiring 

knowledge of the traffic rates or channel statistics: Each slot 

t, observe current queue backlogs and channel states Qi(t) 

and Si(t) for each link i, and choose to serve the link i
*
(t)   

{1, . . . ,N} with the largest Qi(t)Si(t) product. This is also 

called the Longest Connected Queue policy (LCQ) [2], as it 

serves the queue with the largest backlog among all that are 

currently ON. In this paper in section II already explain 

the Max-Weight policy, the scheduling vector S (t) belongs 

to the set: 

 ( )        (    )  
  ∑  ( )      ( )  

 

   

 

For multihop networks, for arrival rate vectors strictly in the 

interior the stability region of the system that satisfy some 

additional constraints, if the system scale is large enough, 

the algorithm keeps the system stable. Max-weight policy 

requires more statistical knowledge to implement. In the 

following the proposed work that aims to combine Max-

Weight with ACO algorithms that decide how much data 

is to be injected into the network. The aim of this research is 

to maximize the total utility of traffic injected into the 

network, and obtains higher throughput optimality then 

minimizes the delay performance in multihop heavy tailed 

networks. 

 

The ant colony optimization algorithm has been successfully 

applied to many optimization combinatorial problems. The 

ant foraging process is very similar to the routing problem of 

ad hoc networks. The ant colony algorithm can be used in ad 

hoc networks through the pheromone mechanism; the ants 

search for and maintain optimal scheduling. The mechanism 

of evaporation updates the pheromone of each node, which 

can quickly adapt to the needs of the dynamic changes of ad 

hoc networks. ACO approach in wireless networks use 

adaptive learning of routing tables. Each node k in the 

network stores some data structures within itself which are 

responsible for keeping local traffic statistics, and routing 

table. Local traffic statistics defines a simple parametric 

statistical model for traffic distribution over the network as 

seen by node k. In fact, it keeps track of the amount of 

traffic flows towards each possible destination. Routing 

table, for each possible destination d and for each node n, 

stores a probability value Pnd which expresses the 

desirability of selecting n as the next node when the 

destination node is d. In fact it shows amount of pheromone 

deposited on the link (k, n). When an ant at node k heads 

toward a destination node d, it selects the next neighbor 

node n with the probability P′nd where we have 

 

   
   

         

    (      ) 
    where      

  

∑   
     

    

 

                                                                               ……(9) 

Where |Nk| is the number of the neighbors of node k, qn is 

the length of the queue associated with the link connecting k 

to n and α is the weight of the importance of the heuristic 

function with respect to the pheromone deposit. When an ant 

reaches the destination node, it can then evaluate the 

goodness of the path. The goodness of the path can be 

defined according to an application’s requirement. 

 

Algorithm: 

The network topology model is the wireless graph, ( ,  ), 

where   is a network node and   is the link between two 
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nodes. At time  , there are ( ) ants. The total number of ants 

in the network is     ∑   ( )
 
   ;   𝑗( ) is the probability 

of choosing link   𝑗 for ant 𝐾 at time  . 
 

   
 (t)=   

[   ( )]
 
[   ]

 

∑ [   ( )]
 
[   ]

 
          

 , j          

 , 

  0    else

  

                                                                        ……..(10) 

where   𝑗( ) is the strength of the pheromone in the link   𝑗; 

  is a parameter to measure the trajectory of pheromones;   𝑗 

is visibility between node   and node 𝑗, which is generally 

defined as 1/  𝑗 (  𝑗 is the distance between node   and node 

𝑗);   is a parameter that measures visibility; and allowed𝑘 is 

a collection of nodes that have not been visited. The 

pheromone update formula on each path in ad hoc networks 

is as follows: 

   (   )  (   )   ( )         ….(11) 

where   is the pheromone volatilization coefficient, which is 

a constant between 0 and 1, and Δ  𝑗 is the increment of the 

pheromone of ants passing through links   and 𝑗.  

      ∑     
    

                              .......(12) 

In ad hoc networks, there are two main reasons for path 

breaking. One is the movement of nodes on the 

communication path, and the other is the nodes withdrawing 

from the network because of energy depletion. Thus, we 

select relatively reliable nodes and links. Then the path 

stability (PS) factor is introduced to judge the stability of the 

path. The max-weight policy is very important because of its 

simplicity and its general stability properties. 

 

Stability Region: An arrival rate vector   (         ) is 

in the stability region   of the multi-hop switched queueing 

network described above if there pre-existing             , f 

  F, i, j     such that the following set of constraints is 

satisfied: 

 Flow efficiency constraints 

 

               
 =                                ∀               ∀       

 Routing constraints  

 

                    ∀(  𝑗)              ∀                   

 Flow conservation constraints 

∑                    ∑           ∀                ∀       

      

 

 Link capacity constraints 

∑                 ∀(  𝑗)    

   

 

 

If an arrival rate vector is in the stability region, after that 

pre-exists a policy that stabilizes the network, in the sense of 

stability Definition. The stability region depends on the 

routing constraints, the link capacities and the network 

topology; however, it does not on higher order statistics of 

the arriving traffic. In single-hop networks, the two metrics 

are equivalent progress: a traffic flow is delay stable if and 

only if the queue buffering the traffic of that flow is delay 

stable. However, in multi-hop networks the situation could 

be more difficult. For instance, a traffic flow can be delay 

unstable at the same time as some queues of that flow are 

delay stable. 

 

Lemma 1: The multi-hop switched queuing network 

described above under a stabilizing policy. If queue (f, i) is 

delay stable, for all i      , then traffic flow f   F is delay 

stable. 

 

Lemma 2: Let f be a traffic flow with fixed routing. If 

queue (f, i) is delay unstable, for some i   Nf , then traffic 

flow f is delay unstable. 

 

V. SIMULATION RESULTS 

 

In simulation result, to analyze the performance of this 

work, the event-driven network simulator is performed (NS2 

version 2.34). Evaluate the performance of all the 

approaches in a larger grid network topology with 40 links 

and 25 nodes as shown in Figure 1, even if links and nodes 

are represented by circles and lines, respectively, with link 

capacity. The capacity of each link has beside the link and 

carefully assigned to avoid traffic symmetry, to establish 9 

multi hop flows are represented by arrows. 

 

 
Figure 1: Grid network topology consists of 25 nodes 

with 40 links 

 

Let consider, uniform traffic in which each flow has 

independent packet arrivals at each time-slot following 

Poisson distribution with the same mean rate        to 

select        for ACO, MWS and ACOMWS. Each 

scheduling approach along with the ACOWMS, we measure 

average packet delays under different offered loads to 

analyze their performance limits. 
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Average Queue Length 

Average queue lengths under different offered loads to 

examine the performance limits of scheduling schemes in 

Figure 2. In simulation result, it represents an average of 10 

simulation runs with independent stochastic arrivals, each 

run lasts for 10
6
 time slots. Because the optimal throughput 

region is defined as the set of arrival rates under which the 

queue lengths remain finite, to consider the traffic load, 

under which the queue length increases speedily, as the 

boundary of the optimal throughput region. ACOWMS and 

ACO accomplish the same throughput region as MWS, 

therefore supporting the theoretical results on throughput 

performance in Figure 2. 

 

 
Figure 2: Performance (Average Queue Length) of 

scheduling algorithms for multihop traffic. 

 

Figure 2 illustrates ACOWMS Average Queue Length 

minimizes compare MWS and slightly differ from ACO. 

 

Average packet delay 

 The ACOMWS approach have lower packet delays to 

compare than the ACO and WMS algorithms even if traffic 

load is light (e.g.,     ) as shown in Figure 3. Since the 

scheduling decisions depends upon the shadow queue 

lengths rather than the actual queue lengths, queues with 

very small (or even zero) queue length can be activated. On 

the other hand, the effect tends to reduce with heavier traffic 

load because the queue lengths are likely to be large. The 

results also illustrate that the proposed scheme consistently 

outperform the WMS, ACO algorithms when        . 

Note that with       , the shadow traffic rate vector is 

outside the optimal throughput region when        / (1+ 

0.07)  0.45, however, interestingly, the schedules chosen 

based on the shadow queue lengths can stabilize the data 

queues even if (which is still feasible). 

 

 
Figure 3: Performance (Average Packet Delay) of all the 

scheduling schemes in a grid network. 

 

End-to-end delay 

The total latency handles between the source and destination 

experienced by a legitimate packet is provided by end-to-

end delay performance to evaluate the time periods 

experienced as processing, queuing, transmission, 

propagation and packet delays. The ACOWMS simulation 

results in 10% less delay than the ACO model and 20% 

less delay than the WMS model in Figure 4. The end-to-

end delay slowly reduces if the number of nodes increases. 

Due to the 25 -nodes scenario the nodes are spread over a 

750 X 750 m
2
 area and is a possibility of increase in distance 

between adjacent nodes. Even if the network size is high 

scaling, more adjacent nodes are available to perform as 

intermediate nodes. If the size increases beyond 100, a 

chance of more packets drops because of collision. 

 

Figure 4: Number of nodes vs. average end-to-end delay 

(s). 
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Delivery Ratio and Bandwidth 

Graphs vary number of nodes with packet delivery ratio and 

bandwidth utilization, in Figure 5 and 6, respectively. The 

proposed ACOMWS has staged developments if compared 

to the other two models.  For that reason the improved 

bandwidth utilization can be that the other two models were 

not taking the bandwidth into consideration while 

computing the route. Even if the number of nodes is 75 we 

can see the maximum utilization, and it could slightly reduce 

after that. 

 
Figure 5: Number of nodes vs. Packet delivery ratio 

 

 
Figure 6: Number of nodes vs. available bandwidth 

 

 

Routing Overhead 

The routing overheads computed under varying pause times 

and varying number of nodes as shown in Figure 7 

respectively. In view of the fact that more control packets 

are needed at the route discovery of the ACO phase and 

periodical update so that the extra control packets needs to 

perform route selection in the MWS phase. The routing 

overhead of the ACOWMS is slightly higher than that of 

other protocols. The routing overhead recognizes how to be 

reduced through piggybacking the pheromone information 

on data packets, even if appropriate traffic exists in the exact 

opposite direction. Due to the periodic updates, the 

ACOWMS needs a certain amount of routing overhead, but 

when the pause time increases, finally the overhead is 

reduced due to the relatively static nature of the topology. 

Figure 7: Node pause time (s) vs. routing overhead 

 

To compare and evaluate the scheduling performance of 

MWS, ACO and the ACOMWS algorithm implement in a 

simple linear network. It consists of 6 links and 7 nodes in 

Figure 8, where nodes represent by links and circles are 

represented by dashed lines with link capacity in respective 

manner. The seven flows signify by arrows in which each 

flow is from node 1 to node i+1 through all the nodes in 

between. An uniform traffic performs between all flows 

contain packet arrivals at each time-slot next Poisson 

distribution with the same mean rate      and to run our 

simulations with modifying traffic load with        is 

feasible.  

 

 

 

 

 

 

 

Figure 8: Linear Topology 

 

Average Delay 

The average delays under different offered loads to observe 

the performance limits of different scheduling approaches in 

Figure 9. The simulation result represents that lasts for 10
7 

time-slots. As the optimal throughput region   is described 

as the set of arrival rate vectors under which queue lengths 

and therefore delays remain finite, consider the traffic load, 

under which the average delay increases quickly, as the 

boundary of the optimal throughput region. The entire 

schemes achieve the same boundary (i.e.,         ), and 

that maintains our theoretical results on throughput 

optimality in Figure 9. Additionally, the proposed schemes 

achieve considerably better delay performance than the 

other algorithms (MWS and ACO) as well as back-pressure 

10 4 9 5 3 7 
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2 
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algorithm. In the back-pressure algorithm, the queue lengths 

must build up along the route a flow obtains from the 

destination to the source, and generally, previous hop link 

has a larger queue length so that it leads to poor delay 

performance. 

 
 

Figure 9: Average delay of MWS, ACO, and ACOMWS 

in a linear network topology. 

 

Average Queue Length 

In that MWS, ACO and ACOMWS have finite average 

queue length for 0 ≤   < 
 

 
 = 0.143 and therefore attain the 

maximum throughput in figure 10. Alternatively, the 

average queue length enhances linearly with   under 

ACOMWS starting from   = 0 and   = 0.04, in respective 

manner. This involves that ACOMWS are throughput-

optimal in this setting, at the same time as ACOMWS 

achieves better throughput (  < 0.04) with other 

algorithms. 

 

 
Figure 10: Average Queue Length comparison of MWS, 

ACO and ACOMWS 

 

End-to-End Delay 

The values of end- to- end delay for the scheduling 

algorithms ACO, MWS and ACOMWS simulated at 

different number of nodes shown in Figure 11. Higher end- 

to –end delay values imply that the routing protocol is not 

fully efficient and causes a congestion in the network.  To 

compare other two algorithms considered ACOMWS 

exhibits lesser values of end-to-end delay. The ACOMWS 

shows a better performance than ACO and MWS and this 

implies for wireless networks. By means of different number 

of nodes circumstances also examined while the number of 

nodes enhanced, even if end-to-end delays are also 

increased. 

 
Figure 11: End-to-End Delay under various nodes 

 

Delivery Ratio and Bandwidth 

Bandwidth utilization and delivery ratio of ACO, 

ACOMWS and MWS scheduling algorithms show in figure 

12 and 13. ACOMWS performs in results phase as well at 

different nodes. As bandwidth considers being a limited 

resource in the network, so that ACOMWS will 

automatically develop the revenues of the service providers. 

The packet delivery ratio is a comparative view for ACO, 

MWS and ACOMWS shown in Figure 13. ACOMWS 

demonstrates an enhanced delivery as compared with the 

other two algorithms. For that reason the higher PDR ratio 

of ACOMWS know how to be attributed to its first-rate 

performance in large networks with low traffic. It finds 

scheduling on-demand, and effectively uses available 

bandwidth.  

 

 
Figure 12: No of nodes vs. bandwidth 
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Figure 13: Packet Delivery Ratio vs. No of nodes 

 

Routing Overhead 

Routing overhead intended for ACOMWS was comparing 

with other MWS and ACO algorithms, as illustrate in figure 

14. The routing overhead used for ACOMWS was 

performed better than the MWS and ACO. The routing 

overhead was low at less number of nodes. Its value was 

approximately equal with less number of nodes. The 

overhead enhanced with number of nodes, to compare the 

increasing value of routing overhead was performed more 

than the other two algorithms. 

 

 
Figure 14: Routing Overhead Vs No. of node for ACO, 

MWS, ACOMWS 

 

VI.CONCLUSION 

 

Max-Weight is a familiar scheduling algorithm to perform in 

the presence of light-tailed traffic, in single-hop queuing 

networks. In Max-Weight scheduling policy, it is badly 

performed in the presence of HT traffic. To improve 

combined scheduling policies using an ACO based method 

Max-Weight scheduling, namely ACOMWS, to maximize 

the throughput optimization in wireless multi hop 

networks. To combine scheduling algorithm accomplish 

highest throughput rate in low complexity. From this paper, 

the throughput performance of ACO, MWS, and ACOMWS 

schedulers evaluate using ns-2. In simulation results, it 

illustrate that ACOMWS perform better than other 

scheduling algorithms including ACO and MWS. The 

proposed scheduling algorithm is proved the optimal 

solution and generate efficient throughput at low complexity 

and to achieve throughput optimality. 
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