

 © 2018, IJCSE All Rights Reserved 888

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-7, July 2018 E-ISSN: 2347-2693

Performance Enhancement of Edge Detection Methods for Human Bone

Fracture X-Ray Image Using Graphical Processors

Saima Iram

1*
, Jabir Ali

2
, Pradeep Kumar

3

 Computer Science and Engineering, Noida Institute of Engineering & Technology, Greater Noida, Uttar Pradesh, India
1

Computer Science and Engineering, Noida Institute of Engineering & Technology, Greater Noida, Uttar Pradesh, India

2

Computer Science and Engineering, Noida Institute of Engineering & Technology, Greater Noida, Uttar Pradesh, India

3

*Corresponding Author: saima.iram01@gmail.com, Tel.: +91 9990657656

Available online at: www.ijcseonline.org

Accepted: 10/Jul/2018, Published: 31/Jul/2018

Abstract— Edge detection is a crucial step in medical imaging and in a no. of other image processing applications, such as

face-identification or recognition, and other classification problems. Various methods have been developed for edge detection

based on applications and edge types. Some of the most common techniques used are Sobel, Prewitt, Robert, LoG and Canny

etc. However, most of these methods for edge detection of various images (including x-rays image) is a computationally

expensive process in terms of both time and space. Because of this delay the patients and the doctors do not get instant

information or imaging reports (for example regarding fractured bone in case of x-rays). This ultimately leads to delayed

diagnosis and treatment of the patient. In this work we present our findings of research related to an important edge detection

technique which involve finding image gradient. We emphasize that our approach is equally valid for many different kinds of

edges in an image and not just for fractured bone. To eliminate latency issue we used a graphical processor with CUDA API to

implement an image gradient. The graphical processors are massively parallel processors that come inside a graphics card and

have become a standard piece of hardware on all modern day computing systems including portable hand-held device. We

emphasize that alternate solutions such as FPGA (Field Programmable Gate Array) and ASIC (Application Specific Integrated

Circuit) based solutions are much costlier and take much longer time for development as compared to a graphical processor

which is programmable using C-CUDA. We compared our implementation’s performance with respect to a CPU-only

implementation. To prove our idea we used an algorithm which is a parallel version of naïve serial algorithm. Thanks to GPU’s

enormous amount of computational units, our GPU-implementation shows several fold speed ups with respect to a standard

CPU-only implementation. Our proof-of-concept (PoC) developed as part of this research, thus establish that the GPU stands a

very good candidate for such edge detection problems where we need faster results, i.e. in real time or in near real-time.

Keywords— Digital Image, Edge detection, GPU, CUDA, X-ray, gradient

I. INTRODUCTION

Medical Image processing or imaging is an important means

for early detection of various diseases, including Cancer etc.

One of the main tasks in such imaging is inspection of a

region of inertest by doctors. This involves edge detection as

a crucial step which is a crucial step in medical imaging.

Edge detection is the heart of many image processing

applications including face recognition, and various

classification problems. Edge detection algorithms are often

developed based on type of edge and the application where it

will be used. Among all the techniques of edge detection

most famous techniques include: Sobel, Prewitt, Robert, LoG

and Canny etc. However, due to nature of the problem these

methods of edge detection of various images (including x-

rays image) is a highly computationally expensive task. Due

to this delay, the patients and the doctors have to wait for

long time to get the report and subsequently start the

treatment. This is an undesirable solution.

In this work we describe our approach to speed up edge

detection process related to an important edge detection

method that involves finding image gradient using image

convolution. In particular to eliminate delay issue discussed

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 889

above we proposed using a graphical processor and

programming it using C-CUDA API to implement an image

gradient. CUDA is an extension to C programming that

enables a C knowing programmer to exploit the resources of

a GPU or Graphical Processing Unit for general applications.

The remainder of this paper discusses the above ideas and

has been further organized in several sections and

subsections. Section II presents a summary of the literature

survey that we conducted. The introduction to the GPU and

CUDA API, and motivation for using a GPU has been

discussed in Section III. Our main approach has been

discussed in Section IV. In this section we described system

architecture and our algorithm. In this work we have

compared our GPU implementation’s performance with

respect to a CPU implementation. The results of such

performance comparisons are presented in Section V

followed by an in-depth analysis of the results in the same

section. Our results show that at least for larger size images

the gain by using GPU is around 8 times. This ultimately

means that a report that is generated normally in 60 minutes

will now be available in 8 min. Finally, in section VI we have

discussed important conclusions drawn from this research.

II. LITERATURE REVIEW

A number of related works has been sighted in literature by

researchers in the area of edge detection, including those for

X-rays. We present here most important researchers

conducted recently.

In digital Image processing research many edge detection

techniques have been proposed. Among the various

developed algorithms which are meant to extract edges from

digital images, Gradient based operators like Robert, Prewitt,

Sobel are very common. The algorithm proposed by Canny

in 1986 is considered as one of the ideal edge detection

algorithm. It is one of the best choices for images that have

noise. Canny's edge detection algorithm aims at reducing the

likely-hood of detecting false edge, and has been designed to

give sharp edges [1-6].

In [7] the authors have presented a modified Canny Edge

Detection algorithm with an aim to detect the boundaries of

spine disc image from the noisy image, which is normally a

very difficult task. The authors have verified the results with

medical database and are found to be an optimal result.

The authors in [9] have presented a technique for

reduction of blur which is more computationally efficient.

Such blur is normally caused when the images are shaken

due to hand movements, which are registered by mobile

and other portable units. Based on the various quantitative

measures of image quality, the authors have proven that

their technique outperforms similar techniques used for

image deblurring. Further, they proved that the technique

is more efficient in terms of computations. They have

presented a GPU implementation of their own technique.

 GPU have been applied in a many areas apart from

medical imaging. Such as in [10], the authors have

demonstrated a successful application of GPU for solving

a computation related problems in Ad-hoc networks.

Cache coherence is one of the common features in shared

memory multiprocessors including GPUs. But

implementing such techniques is quite difficult, especially

in systems with discrete CPUs and GPUs. Such systems

are produced by different vendors and may give rise to

many compatibility issues. The authors in [11] have

proposed a selective caching mechanism to solve this

problem of hardware cache coherence implementation

III. INTRODUCTION TO GPU AND CUDA

A. Introduction

 In this present age of technology and innovation, with the

market driven to deliver at the most competitive price, it is

quite safe to assume that virtually, almost every person owns

a desktop. Using a computer has now become a lot easier;

every aspect of an operation is now being done through

Graphic User Interfaces. Apple and Microsoft are going head

to head in trying to the deliver the best possible, fluid and

seamless user interface in their operating systems, and at the

same time, the transition from serial to parallel computing

has made modern processors a lot more powerful, meeting

the needs of several applications including the fields of

scientific research and entertainment.

B. Motivation

On one hand Moore’s law is still technically valid. But on

the other hand for all practical intents and usefulness it is no

longer as meaningful as it was. Of course, we can still double

the number of transistors that can be cost effectively put on a

chip or IC. It continues to double every two years or so as

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 890

per the Moore’s postulation of 1965. However, the

performance gains that this has traditionally promised\, has

stopped many years ago. In fact from the year 2002 onward

CPU manufacturers started producing dual core CPUs. So

instead of increasing clock speeds (a traditional way of

increasing speed of CPU in line with Moore’s Law) , that

enables software to automatically execute faster, CPU

manufacturers have now started putting more number of

cores, or CPUs, in the single chip. Since a long time now,

most home computers have come with at least 2, and recently

even 4, and 8 cores of CPUs.

But despite having these extra cores or processors have not

been able to speed up computers. It does not give much gain

in the way of appreciable benefits to computer users. It is

also not clear if they could be of much use in coming future.

The main point about multiple cores CPU is that the

programmer has to write software in such a way that it takes

advantages of the multiple cores or processors provided on

the CPU chip. So this put lot of pressure on the programmer,

because in contrast of doing programming in a traditional

step by step process, or serially, programmers now need to

ensure that their apps are developed in such a way that it

works many jobs or tasks in parallel (a kind of

multithreading). However, this is proving to be a very

difficult and complex job for an average programmer.

A direct consequence of Moore’s Law is the Speed vs. Power

Dissipation factor. With clean and green computing taking

prime importance, chip manufacturers are ensuring their

products consume less power, without sacrificing

performance. It can be seen that chip makers have stopped

increasing the clock speed. For example both Intel & AMD

are not increasing clock speed appreciably. These chip

makers are in fact increasing computational units per chip to

increase the computational power of the CPU.

In essence, from the above facts we understand two

important observations:

1. CPU chips annual speed up is not growing every year

now

2. CPU (multiple) cores or processors are becoming

more in number but are largely under-utilized.

We need an alternative, one that fills most of these loop-

holes efficiently, and promises to sustain itself in the years to

come: the Graphics Processing Unit, or simply, the GPU.

C. Cuda Fundamentals

There is a fairly minimal amount of terminology that is

needed to help understand the programming model used in

the CUDA framework.

 An individual GPU will be referred to as a device.

 The CPU will be referred to as a host.

 With respect to NVidia’s G80 GPU chip, it appears the

computation of a grid, block and thread is distributed as

follows:

 Grid → GPU: An entire grid is handled by a single

GPU chip.

 Block → Multiprocessor: The GPU chip is

organized as a collection of multiprocessors (MPs),

with each multiprocessor responsible for handling

one or more blocks in a grid. A block is never

divided across multiple MPs.

 Thread → Stream Processor: Each MP is further

divided into a number of stream processors (SPs),

with each SP handling one or more threads in a

block

The GPU differs from a CPU in its ability to process dozens

of thousands of threads simultaneously. Each thread is scalar;

and does not require packing data into 4-component vectors,

which is more convenient for most tasks. The number of

logical threads and thread blocks surpasses the number of

physical execution units, which gives good scalability for the

entire model range.

 Each thread uses IDs to decide what data to work

on:

 Block ID: Blocks can be either one-dimensional or

two-dimensional.

 Thread ID: Threads can be referenced either in one,

two or three dimensions.

This feature of allowing the programmer to visualize the

arrangement of threads greatly simplifies memory addressing

when processing multidimensional data. This finds itself a

particularly useful feature in applications such as:

 Image processing

 Solving PDEs on volumes

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 891

IV. OUR APPROACH

The basic approach in coding for the host part is as given

below:

1. Define the functions for Convolution.

2. Input the image in the form a random matrix to be

convolved. We call this image matrix

3. Define pointers to the kernel, image matrix and the

resultant convolved image matrix.

4. Allocate memory dynamically on the Host using

malloc() function,

5. Convert image matrix data into a 2D array whose

contents can be manipulated.

6. Define the Kernel.

7. Perform Convolution on each component.

8. Measure the time taken for the calculation, and

display the total time taken for the entire image

data.

9. Write the convolved data in into output Image

Matrix array.

10. Free the pointers to kernel, source image, and

resultant arrays from the CPU memory for other

activities.

A. How does our system work?

The following figure shows the system diagram for our idea.

Figure 1. System diagram for GPU based Edge detection technique

Our system is a heterogeneous system since it has two

different kinds of processor: CPU and GPU. Building

application on Heterogeneous architecture using CUDA

includes the application’s data flow in both CPU and

Graphics card. The figure explains the complete architecture.

As can be seen from this figure we can offload expensive

operation in Gradient calculation on the GPU, while all less

costly jobs are performed on a CPU. Of course we need to

tweak the algorithm so that it matches that of the GPU and

becomes compatible to it.

B. The approach

The basic approach in coding for the host part is as given

below:

1. Define the functions for Convolution.

2. Input the image in the form a random matrix to be

convolved. We call this image matrix

3. Define pointers to the kernel, image matrix and the

resultant convolved image matrix.

4. Allocate memory dynamically on the Host using

malloc () function,

5. Convert image matrix data into a 2D array whose

contents can be manipulated.

6. Define the Kernel.

7. Perform Convolution on each component.

8. Measure the time taken for the calculation, and

display the total time taken for the entire image

data.

9. Write the convolved data in into an output Image

Matrix array.

10. Free the pointers to kernel, source image, and

resultant arrays from the CPU memory for other

activities.

C. The parallel approach

In general, GPUs solve to 2D image processing problem as a

special case of 3D image processing task. In graphics

everything is handled as polygons and in case of 2D

processing a quadrilateral polygon is aligned to the desired

image-screen rectangle and rendered. This rendering could

be onto the screen or into the frame buffer. There are

millions of transistors on the NVIDIA GPUs, which can be

dynamically allocated for various graphics related

operations. Such operations include geometry and pixel

computation

D. The algorithm

Our basic approach has been shown on the following figure:

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 892

1. First we put a portion of the image into a device

memory data structure,

2. Then we do a point-wise multiplication of a portion

of the data which is equal to the size of the filter.

This is what we do in parallel by many threads.

3. The final step is then to put this addition into the

output image matrix in DRAM of card.

It may be noted that as per the above scheme individual

thread block handles 1 block in the matrix. Thus every

individual thread is responsible for generating a single

output pixel.

V. RESULTS AND ANALYSIS

A. Results

In this section we present some of the results obtained so far

in our research. Our implementation of the gradient via

convolution process on the GPU (GT 640) yields the results

as given in Table 1:

Table 1. Timing in ms for GPU implementation for different 3 image sizes

and radius

In Figure 1 we show the performance of a GPU

implementation for Kernel Size=8.

Table 2. Timing in ms for GPU implementation for 3 different image size
and radius

B. Analysis

Table 1 show that as we increase the size of the image or the

size of the kernel, the computation time on even a GPU is

increasing almost exponentially. We infer from the Table 2,

however, that the GPU can process data approximately 8

times faster than the Dual Core CPU, courtesy – the

massively parallel architecture. We observed that at least for

larger size images the gain is quite appreciable. This

ultimately means that a report that is generated normally in

60 minutes will now be available in 8 min. For small size

kernel and images it looks like there is large overhead and

the gain is not much.

We observe certain limitations in our kernel for gradient

calculation that we have written for a GPU. (We have not

used shared memory in our implementation, but we believe

can be used for improving performance). We list some of

these based on our observation:

1. It can be observed that for a practical given filter

kernel size, the points on the boundary of the shared

memory (SM, if we use shared memory at all) array

will depend on points not available in the

memory segments considered. As can be seen

around the image portion inside a thread block, we

must have an extra portion of the points with width

of the r i.e. kernel radius. This is a must have for

filtering the particular image block. Therefore,

every individual thread block has to load extra

pixels in such situations. Our implementation has

not taken this into account this consideration.

2. If we account for those extra pixels as discussed

above, we need to launch extra threads. These extra

threads will not participate in calculations post

loading of the data. Thus, it will be wastage of

resources.

3. CUDA provides optimized specialized

mathematical operations to run in less clock cycles.

We have not used these operat ions in our

code. For e.g., the mul24() multiplies the lower

Kernel

Radius

Time (ms)

(Size=256)

Time (ms)

(Size=512)

Time (ms)

(Size=1024

)

1 0.48 1.447 4.64

2 1.488 2.89 11.335

4 3.97 8.842 36.14

8 9.25 32.11 120.8

Size CPU time(ms) GPU

time(ms)

Speed-up

256 53.96 9.7 5.56

512 223 33 6.75

1024 908 120 7.6

Figure 2. Performance of GPU implementation (KSize=8).

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 893

24 bits of the 32 bit integers, in 4 clock cycles,

instead of the normal 16 clock cycles for 32 bit

integer multiplication. However, care has to be

taken so that, the numbers being multiplied occupy

less than 24 bits, otherwise valid data is lost, with the

multiplication yielding incorrect results. An

implementation with such special operations

optimized for GPU architecture is expected to give

more performance advantage as compared to without

using it.

VI. CONCLUSION

This paper introduces our method for edge detection by

employing a GPU. The edge detection is a time consuming

operation, especially in case of high resolution medical

images. Edge detection is studied as a multi-stage process, in

which the compatibility between boundary and edge is

emphasized. We conducted a study based on image edge

detection methods which provide insight into more widely

used as edge detection techniques. We have described edge

detection techniques such Gradient-based Laplacian Robert,

Prewitt, Sobel, Canny detection methods. The gradients in

such algorithms can be approximated using convolution

operation and is often implemented using the same.

However, since such gradient or convolution operations are

computationally complex and computationally costly we

proposed using a GPU to achieve our real-time goal. A real

time or a faster response is of great help to a doctor for a

faster diagnosis. A GPU is basically a massively parallel

processor and consist of thousands of cores. It was originally

meant for graphics applications, but thanks to CUDA

platform, it became possible to use it for non-graphical

applications such as ours. Our algorithms run in parallel on

these GPU cores (to increase performance) in parallel. The

alternatives to the GPU include FPGA and ASICS, but these

are 100s of time costlier and also involve very time

consuming tasks for developing even a very simple system.

 To prove our point we implemented this time consuming

operations i.e. gradient calculations using image convolution

on a GPU. While doing so, we first studied the architecture of

the GPU in detail and then changed the algorithm of trivial

serial operation and made it a parallel one, compatible to GPU

architecture. Finally, we compared the GPUs performance

with a CPU implementation and found several times speedup

(around 8 times for large images) as compared to the normal

serial CPU implementation. A faster response means a

quicker availability of reports for the Doctors inspection and

diagnosis. In our case a 60 minute report will now be

available in 8 minutes, thereby considerably saving the time

of the doctor and patient. Total time saved for a large number

of patients and thereby the gains can be accordingly

estimated.

REFERENCES

[1] Marr and E. Hildrith, “Theory of Edge Detection,” Proc. Royal

Society of London, B207, pp. 187–217, 1980.

[2] James Clerk Maxwell, DIGITAL IMAGE PROCESSING

Mathematical and Computational Methods.

[3] R .Gonzalez and R. Woods, Digital Image Processing, ,Addison

Wesley, 1992, pp 414 - 428.

[4] S. Sridhar, Oxford university publication. , Digital Image

Processing.

[5] Shamik Tiwari , Danpat Rai & co.(P) LTD. “Digital Image

processing”

[6] J. F. Canny. “A computational approach to edge detection”. IEEE

Trans. Pattern Anal. Machine Intell., vol.PAMI-8, no. 6, pp. 679-

697, 1986 Journal of Image Processing (IJIP), Volume (3) : Issue

(1)

[7] Geng Xing, Chen ken , Hu Xiaoguang “An improved Canny edge

detection algorithm for color image” IEEE TRANSATION ,2012

978-1-4673-0311-8/12/$31.00 ©2012 IEEE.

[8] Punarselvam, E., & Suresh, P. (2011). Edge Detection of CT scan

Spine disc image using Canny Edge Detection Algorithm based on

Magnitude and Edge Length. 3rd International Conference on

Trendz in Information Sciences & Computing (TISC2011).

doi:10.1109/tisc.2011.6169100

[9] Nikolic, M., Tuba, E., & Tuba, M. (2016). Edge detection in

medical ultrasound images using adjusted Canny edge detection

algorithm. 2016 24th Telecommunications Forum (TELFOR).

doi:10.1109/telfor.2016.7818878

[10] Chang, C., & Kehtarnavaz, N. (2015). Computationally efficient

image deblurring using low rank image approximation and its

GPU implementation. Journal of Real-Time Image Processing,

12(3), 567-573. doi:10.1007/s11554-015-0539-x

[11] Sher Jung, Rajendra Kumar Sharma, GSZRP: Graphics-hardware

based Optimized Secure Zone Routing protocol, IJARSE (ISSN:

2319-8354),Volume No.06, Issue No. 12, December 2017

[12] Agarwal, N., Nellans, D., Ebrahimi, E., Wenisch, T. F., Danskin,

J., & Keckler, S. W. (2016). Selective GPU caches to eliminate

CPU-GPU HW cache coherence. 2016 IEEE International

Symposium on High Performance Computer Architecture

(HPCA). doi:10.1109/hpca.2016.7446089

[13] “Convolution,” Wikipedia, 20-May-2018. [Online]. Available:

http://en.wikipedia.org/wiki/Convolution. [Accessed: 23-May-

2018].

[14] R. Farber, “CUDA, Supercomputing for the Masses: Part 1,” Dr.

Dobb's. [Online]. Available: http://www.drdobbs.com/high-

performance-computing/207200659. [Accessed: 23-May-2018].

[15] “Weather, Atmospheric, Ocean Modeling, and Space Sciences,”

NVIDIA. [Online]. Available:

http://www.nvidia.com/object/weather.html. [Accessed: 23-May-

2018].

[16] “The AI Computing Company | NVIDIA.” [Online]. Available:

https://www.bing.com/cr?IG=746A37FE329B48A9922870D343D

AB2B1&CID=0CAFD34A11B26EA30FA3D8B2104F6F1E&rd=

1&h=FZfALwVHxE_S9H2WNKhtElNoV47kgQDk68vgEU4&v=

1&r=https://www.nvidia.com/en-us/about-nvidia/ai-

computing/&p=DevEx.LB.1,5549.1. [Accessed: 23-May-2018].

Authors Profile

Ms. Saima Iram received the Bachelor of Technology degree in
computer science and engineering from Priyadarshini College of
Computer Sciences, Greater Noida, G.B.Nagar, Uttar Pradesh in
2013 and currently pursuing Master of Technology in Computer
Science & engineering from Noida Institute of Engineering &
Technology, Greater Noida, Uttar Pradesh .Her research area is
digital image processing.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 894

Mr. Jabir Ali received the B.Tech degree in Information
Technology from Invertis Institute of engineering & technology,
Bareilly in 2009, and M.Tech degree in Computer Science &
engineering from Jaypee University of Information Technology,
Solan, India, in 2011 and he joined Translam institute of technology
& management in 2011 and Sunderdeep Group of colleges as an
Assistant Professor in 2012. In 2013, he joined the Jaypee
university of information Technology, as a research scholar and
submitted his Ph.D. in 2018. Currently he is working in Noida
Instititute of Engineering & Technology. His current working
domain is in Image and Video copyright protection. His research
interest includes image security, Video watermarking, Signal
Processing and Network Security.

