

 © 2019, IJCSE All Rights Reserved 851

International Journal of Computer Sciences and Engineering Open Access

Review Paper Vol.-7, Issue-1, Jan 2019 E-ISSN: 2347-2693

 A Review of Hybrid Exploratory Testing Techniques

 Manas kumar Yogi

1*
, Y. Jnapika

2
, Bhanuprakash Peddireddy

3

1
Computer Science & Engineering,Pragati Engineering College,Surampalem,Kakinada, India

2
 Computer Science & Engineering,Pragati Engineering College,Surampalem,Kakinada, India

3
 Computer Science & Engineering,Pragati Engineering College,Surampalem,Kakinada, India

*Corresponding Author: manas.yogi@gmail.com, Tel.: 09966979279

 Available online at: www.ijcseonline.org

Accepted: 14/Nov/2018, Published: 31/Jan/2019

Abstract—Wildcat testing contains a mess of strategy related to it. It is a decent combination of structured thinking and race

exploration that may be terribly powerful for locating bugs and substantiate correctness. This paper shows however the wildcat

testing mentality is often combined with additional ancient scenario-based and scripted testing. This hybrid technique relaxes a

lot of the rigidity unremarkably related to scripting and makes smart use of the wildcat testing steering bestowed. It

additionally permits groups that square measure heavily unconditional in existing scripts to feature wildcat testing to their

arsenal. Ancient state of affairs testing is incredibly seemingly to be a well-known idea for the reader. Several testers write or

follow some type of script or end-to-end state of affairs once they perform manual testing. State of affairs testing is well-liked

as a result of it lends confidence that the merchandise can faithfully perform the state of affairs for actual users. The additional

the state of affairs reflects expected usage, the additional such confidence is gained. The additional part that wildcat testing

lends to the current method is to inject variation into the state of affairs in order that a wider swath of the merchandise gets

tested. Users can't be unnatural to merely execute the software package the manner we have a tendency to intend, therefore our

testing ought to expand to hide these extra state of affairs variants.

Keywords— Hybrid, exploratory, scenarios, testing, tour

I. INTRODUCTION

Scenario-based exploration can cowl cases that

straightforward state of affairs testing won't and additional

accurately mimics real users, UN agency typically stray from

the most scenarios[1]: finally, the merchandise permits

several attainable variations. We must always not solely

expect that they get used; we must always check that they're

going to work.

The idea behind scenario-based wildcat testing is to use

existing situations (we remark wherever to induce situations

during this paper) very much like real explorers use a map to

guide themselves through a geographical region or different

unfamiliar piece of land. Scenarios, like maps, square

measure a general guide regarding what to try and do

throughout testing, that inputs to pick, and that code methods

to traverse, however they're not absolutes. Maps could

describe the situation of your destination however supply

multiple ways that to induce there[2]. Likewise, the wildcat

tester is obtainable alternate routes and even inspired to think

about a large vary of attainable methods once death penalty a

state of affairs. In fact, that’s the precise purpose of this

manner of wildcat testing: to check the practicality delineate

by the state of affairs, adding the maximum amount variation

as attainable. Our “map” isn’t supposed to spot the shortest

route; it’s supposed to seek out several routes. The additional

we will check, the better; this results in additional confidence

that the software package can perform the state of affairs

robustly once it's within the hands of users UN agency will

and can deviate from our expectations.

There is no formal definition of eventualities that we do

know of that very helps testers. Some scenarios are like

maps, providing only general guidance, and others are more

like printed driving directions with step-by-step instructions

for every turn and intersection. In general, scenarios are

written prose that follow no fixed format but describe how

the features and functionality of the software under test work

to solve user problems.

A state of affairs will describe inputs, information sources,

setting conditions (things like register settings, obtainable

memory, file sizes, then forth) further as UI components,

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 852

outputs, and specific information about how the software

under test is supposed to react when it is used. The scenarios

themselves often originate from outside the tester’s domain.

They can be gleaned from artifacts inherited from design and

development. Requirements documents and specifications

typically describe their purpose in the form of scenarios.

Some forms of agile development require the creation of user

stories; requirements are often documented with example

scenarios of expected usage. In many cases, testers don’t

need to write the scenarios as much as gather them. In fact,

recordings made (using capture/replay tools, keystroke

recorders, and so forth) during testing are also legitimate

scenarios, and thus the tours of the previous paper can be the

source of a great number of high-quality scripts and

scenarios[3]. Any and all such scenarios can be used as the

starting point for exploration.

In general, a useful scenario will do one or more of the

following:

Figure 1.Allocation of jobs to processors

Exploratory testers ought to push to make sure they gather as

several eventualities as doable from all of those classes. It is

then our task to follow the eventualities and inject variation

as we have a tendency to see work. It is however we decide

to inject this variation that produces this task exploratory in

nature which is that the subject we have a tendency to

intercommunicate next[4].

II. PRINCIPLE

1. Applying Scenario-Based Exploratory Testing
State of affairs testing works as a result of it mimics the

means a true user would behave and therefore it finds bugs

that, if they survived testing, would plague actual users.

However rarely do real users confine themselves to usage of

the package as represented by the state of affairs. User’s area

unit liberated to vary from the state of affairs by adding steps

or taking them away, and those they do therefore consistent

with their own schedules and timetables. it's our task to

second-guess such variation and guarantee they get tested as

a result of they represent a number of the foremost possible

ways in which during which the package are used when it's

been free[5].

Injecting variation into eventualities is what this manner of

exploratory testing all is concerning. One written state of

affairs may be became several individual check cases by

methodically considering selections in input choice, data

usage, and environmental conditions. 2 main techniques area

unit won’t to accomplish this: state of affairs operators and

tours.

 2. Introducing Variation through Scenario Operators

Exploratory testing may be combined with state of affairs

testing to assist a tester explore minor and even major state

of affairs[6]. Wherever a state of affairs describes specific

actions for a tester to require, the techniques represented next

may be wont to transpose those actions and make deviations

from the scenario that will test different states and code

paths. Where a scenario describes general activity, these

techniques can be used to select among the possible choices

and allow a tester to consider alternate paths in a more

methodical manner.

We introduce the concept of scenario operators to achieve

this goal. State of affairs operators are constructs that treat

steps at intervals a state of affairs to inject variation into the

state of affairs. After we apply a state of affairs operator to

associate existing state of affairs, we have a tendency to get a

replacement state of affairs that we have a tendency to

decision a derived state of affairs.

 A tester can apply one or more scenario operators to a given

scenario and even apply operators to derived scenarios. The

amount and number of such operators is, in true exploratory

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 853

fashion, up to the individual tester and can be performed in

advance of testing or, my preference, on-the-fly[7].

The scenarios state of affairs operators within the following

subsections are those most testers can realize helpful.

i) Inserting Steps

Adding extra steps to a state of affairs will create them a lot

of numerous and permit them to check a lot of practicality.

Inserting one or more steps into a scenario creates more

opportunity for the software to fail[8]. Code paths may be

executed with different data, and the state of the software

will be varied in ways that are different from what the

original scenario allowed. The additional steps can be

• Adding a lot of data: once the state of affairs asks for, say,

ten records to be additional to a information, the tester ought

to increase that to twenty or thirty records or even more if it

makes sense to do so. If the scenario requires an item to be

added to the shopping cart, add that item and then some

additional items on top of that. It is useful also to add related

data so that if the scenario calls for a new account to be

created, we may also add information to that account over

and above what the scenario calls for.

The tester ought to raise herself, “What information is

employed during this situation and the way would it not add

up to extend the quantity of information I enter?”

• Victimization further inputs: once the situation involves a

series of inputs to be entered, realize a lot of inputs that may

be side. If the situation asks that the tester produce a product

review for a few on-line searching web sites, the tester will

prefer to add ratings for different client reviews, too. The

concept is to know what further options square measure

associated with the options within the situation and add

inputs to check those new options similarly.

The tester ought to raise herself, “What different inputs

square measure associated with the inputs utilized in the

prevailing scenario?”

• Visiting a replacement a part of the UI: once the situation

involves specific screens and dialog boxes to be used, the

tester ought to establish different screens or dialogs and add

those to the situation. If the situation involves a tester to pay

a bill on a monetary services web site, the tester may prefer

to conjointly visit the pages to examine account balances

before submitting the payment.

The tester ought to raise herself, “What different elements of

the UI square measure associated with the elements utilized

in the prevailing scenario?” Eventually, the steps got to loop

back to the original scenario. It helps to keep in mind that the

idea is to enhance the scenario, not to change it from its

fundamental purpose. If the scenario was meant to add

records to the database, which should still be its primary

purpose and that goal should not change[9]. What the tester

is doing in this scenario operator is adding inputs, data, or

variation that makes the scenario longer but does not alter its

core purpose.

ii) Removing Steps

Redundant and optional steps can also be removed with the

idea being to reduce the scenario to its shortest possible

length. The derived scenario may then be missing steps that

set preconditions for other steps, testing the application’s

ability to recognize missing information and dependent

functionality.

A tester can apply this scenario operator in an iterative

fashion, removing one step at a time. In this case, the

scenario actually gets executed against the software under

test each time a step is removed until the mini-mal test case

ends the cycle. For example, a scenario that requires a tester

to log on to a shopping site, search for items, add them to a

shopping cart, enter account info, complete the purchase, and

finally log off would be eventually reduced to just logging on

and logging off (an interesting and important case to test!)

with a single step being removed each time the test case is

run.

iii) Replacing Steps

If there is more than one way to accomplish some specific

step in a scenario, this scenario operator is the way to modify

the scenario to accomplish that. It’s really a combination of

the preceding two operators in that replacement is the same

thing as removing and then adding[10].

The tester must research alternate ways of performing each

of the steps or actions in a scenario. For example, instead of

searching for an item to purchase, we might simply use its

item number to look it up directly.

Because the software under test provides both of these as

options, we can create a derived scenario to test the

alternative. Similarly, we might use key- board shortcuts

instead of the mouse or choose to bypass creating an account

and just purchase an item without registering on the site.

Testers need to be aware of all the different options and

functionality that exists within their application to be truly

effective at applying this scenario operator.

iv) Repeating Steps

Scenarios often contain very specific sequences of actions.

This operator modifies such a sequence by repeating steps

individually or in groups to create additional variation. By

repeating and reordering steps, we are testing new code paths

and potentially finding bugs related to data initialization. If

one feature initializes a data value that is used by another

feature, the order in which the two features is executed

matters, and reordering them may cause a failure.

Often, certain actions make sense to repeat. For example, if

we are testing a financial services website for the general

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 854

scenario of log in to an account, check the balance, pay bills,

make a deposit, and then log out, we may repeat the “check

the balance” action after we pay the bills, and then again

after making the deposit. The general scenario is the same,

but we have repeated an action that a user is also likely to do.

The same can be said of actions such as “view the shopping

cart,” which could happen over and over during a scenario

for an online shopping site. Repetition can also occur with

multiple actions, so that we pay one bill, check the balance,

pay another bill, check the balance, and so forth. The tester’s

task is to understand the variability and create repetitive

sequences as appropriate.

v) Data Substitution

It is often the case that a scenario will require a connection to

some database, data file, or other local or remote data source.

The scenario then specifies actions that the tester performs to

cause that data to be read, modified, or manipulated in some

way. Testers need to be aware of the data sources that the

application under test interacts with and be able to offer

variations.

Are there backup databases, alternate test databases, real

customer databases, and so forth that are accessible to

testers? If so, use those when testing the scenarios instead of

the default. What if the data source is down or otherwise

unavailable? Can we create or simulate that situation so that

we can test how the system under test reacts? What if the

data source holds ten times as many records? What if it only

holds one record?

The idea here is to understand the data sources the

application connects to or uses and to make sure that

interaction is robust.

vi) Environment Substitution

Testing is necessarily dependent on the environment in

which the software resides when we run our test cases. We

can run billions of tests successfully when the software is in

one environment only to have them all fail when the software

is put into a different environment[11]. Therefore, this

operator is used to ensure those alternate environments

receive testing. The simple part of this operator is that the

scenarios themselves don’t actually change, only the system

on which the software is running when the scenario is

applied. Unfortunately, understanding which parts of the

environment to change, and actually enacting that change, is

very difficult. Here are some considerations:

• Substitute the hardware: The easiest part of the

environment to vary is the hardware on which the application

under test case runs. If we expect our users to have a range of

hardware from fast and powerful to antiquated and slow, we

need to acquire similar machines for our test lab and ensure

that we have beta customers willing to help us with testing

and pre-release validation. Of course, this is an excellent use

of virtual machines as well.

• Substitute the container: If our application runs inside a so-

called container application (like a browser), we need to

ensure that our scenarios run in all the major containers we

expect our user to have access to.

Browsers like Internet Explorer, Firefox, Opera, and Chrome

or platforms like Java or .NET or even animation tools like

Flash and Silver light will impact the way our applications

run.

• Swap out the version: All the previous containers also have

earlier versions that still enjoy market share. How does your

app run in the earlier versions of Flash?

• Modify local settings: Does your application use cookies or

write files to user machines? Does it use the local Registry?

What happens when users modify their browser settings to

limit these types of activity? What happens if they change

your application’s Registry settings directly (without going

through your app)? If you don’t test these things, your users

likely will, and their doing so may bring a nasty post-release

surprise to your engineering team. It’s better to find out for

yourself before the app ships how it will handle these things.

When using any of these operators to create derived

scenarios, it is generally the case that we try to stay as true to

the original scenario as possible.

Using too many operators or using operators in such a way as

to make the origin of the derived scenarios unrecognizable is

usually not useful. But don’t take my word for it. If you try it

and it finds good bugs, then it’s a useful technique!

However, such broader based modification of tours is the job

of the second technique to inject scenario.

3. Introducing Variation through Tours

At any point in the execution of a scenario, one can stop and

inject variations that will create derived scenarios. The

scenario operators described above are one way to do this,

and using the tours is another. We like to think of this use of

tours as side trips.

The idea is simple: A tester reviews the scripts looking for

places where decisions can be made or places where it is

possible to fork the logic within the. We like to use the

analogy of a car tour or even a hike in the woods on foot. It’s

often that on such a trip there is some scenic overlook at

which one can park the car and take a short walk to some

monument or beautiful view before returning to the car and

continuing the voyage. That short side trip represents the

tour, and the longer car ride is the scenario. This is a useful

technique for adding variation to scenarios[12]. The key

difference between scenario operators and tours is that tours

end up creating longer side trips, in general, than operators.

Operators focus on small, incremental changes and optional

steps in a scenario, and tours can actually create derived

scenarios that are significantly longer and broader in scope.

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 855

Just as some side trips can turn into a destination all their

own, it may be that the tours overwhelm the original

scenario, and this can actually be a very desirable effect. It’s

good to always remember that exploratory testing is about

variation, and when scenarios are combined with tours, the

result can add significant variation. It’s up to the tester to

determine whether the variation is useful, and it is often the

case that one has to build up some history to determine

which tours are most effective for a given application.

Here is a list of tours that are effective as side trips during

scenario- based exploratory testing. The tours a few times,

you should be able to determine how to best follow this

advice for your particular situation.

1. The Money Tour:

Can any major features not already used in the scenario be

easily incorporated into the scenario? If so, modify the

scenario to include the use of a new feature or features.

Assuming that the original scenario already included some

features, this will help test feature interaction in a scenario-

driven way. If the scenario was a realistic user scenario, it’s

even better because we are mimicking the user including

another feature into his existing work habits (as represented

by the scenario). There are many users who will learn a

feature, master it, and then move on to new features as their

familiarity with the application grows. This technique

mimics that usage pattern.

2.The Landmark Tour:

Start with a scenario and pick specific feature landmarks out

of the scenario. Now randomize the order of the landmarks

so that it is different than the original scenario. Run some

tests with the new order of landmark features and repeat this

process as often as you think is necessary. Obviously, that

will depend on how many landmarks you are dealing with;

use your own judgment. This combination of the Landmark

tour within a structured scenario has been very valuable at

Microsoft.

3.The Intellectual Tour:

Review the scenario and modify it so that it makes the

software work harder. In other words, ask the software hard

questions. If the scenario requires the software to open a file,

what is the most complicated file you can give it? If the

software asks for data, what is the data that will make it work

the hardest? Would very long strings do the trick? What

about input that breaks formatting rules (for example, Ctrl

characters, Esc sequences, and special characters)?

4.The Back Alley Tour:

This is an interesting variation on the Money tour. Both tours

suggest we inject new features into the scenario, but the Back

Alley tour suggest the least likely or least useful features

instead. Granted, this variation will find more obscure bugs,

but if an application is widely used, there may be no such

thing as least likely because every single feature will get used

by someone, and all paying customers are important.

5.The Obsessive-Compulsive Tour:

This one is straightforward: Repeat every step of the scenario

twice. Or three times. Be as obsessive as you like!

Specifically, any step in a scenario that manipulates data is a

good one to repeat because it will cause internal data to be

manipulated and internal state to be set and then changed.

Moving data around the software is always an effective way

to test and to find important bugs.

6.The All-Nighter Tour:

This one is best when a scenario can be automated or even

recorded and then played back. Just run the scenario over and

over without ever exiting the application under test. If the

scenario specifies that the software be shut down, remove

that clause and keep the scenario running over and over

again. Choose scenarios (or derived scenarios) that make the

software work hard, use memory and the network, and

otherwise consume resources that might over time cause

problems.

7. The Saboteur:

Scenarios are a great start for sabotage. Review the scenario

or derived scenario and make a note every time it uses some

resource (another computer, the network, file system, or

another local resource) that you have access to, and then

when you execute the scenario, sabotage that resource when

the scenario calls for it to be used.

For example, if a scenario causes data to be transmitted over

a network, unplug the network cable (or disconnect it via the

OS or turn off the radio switch for wireless connections) just

before or while you are executing that particular step of the

scenario. Document all such sabotage points and execute as

many of them as sensible or prudent.

8.The Collector’s Tour:

Document every output you see as you execute scenarios and

derived scenarios. You can even score scenarios based on the

number of such outputs they force. The more outputs, the

higher the score for that scenario. Can you create (or derive)

new scenarios that cause outputs that are not in any of the

other scenarios? Can you create a super scenario that causes

the absolute maximum number of outputs possible? Make a

game out of it and let your testers compete to see who can

generate the most outputs, and give prizes to the winners.

9.The Supermodel Tour:

Run the scenario but don’t look past the interface. Make sure

everything is where it is supposed to be, that the interface is

sensible, and watch particularly for usability problems.

Choose scenarios that manipulate data, and then cause it to

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 856

be displayed on the UI. Force the data to be displayed and

redisplayed as often as possible and look for screen-refresh

problems.

10. The Supporting Actor Tour:

I think of this as the Nearest-Neighbour tour, in that instead

of exercising the features as described in the script, the

testers find the nearest neighbouring feature instead. For

example, if a scenario specifies an item on a drop-down

menu, choose the item above or below the one specified.

Whenever a choice is presented in the scenario, choose not

the one suggested but one right next to it (either by proximity

on the interface or close in semantic meaning). If the

scenario specifies using italics, use boldface; if it wants you

to highlight some text, highlight other text instead, always

choosing that which is “nearest” in whatever way makes the

most sense.

11.The Rained-Out Tour:

This is the tour that not only makes good use of the cancel

button (press it whenever you see it while running the

scenario) but also in starting and stopping execution. Review

the scenarios for time-consuming tasks such as complicated

searches, file transfers, and the like. Start those features, and

then cancel them using provided cancel buttons, hitting the

Escape key and so forth.

12.The Tour-Crasher Tour:

This tour is new for this paper and didn’t appear earlier when

the tourist metaphor was first described. Indeed, it is specific

to scenario-based testing. The concept is based on those

people who don’t pay for the tour when it begins, but join it

in progress by simply melting into the crowd and acting like

they’ve been there all the time. They not only crash a tour,

but they also may even hop from tour to tour as they

encounter other groups (in a museum or some historical

building where tours are continuous) of tourists. We’re going

to adopt this process for hopping from scenario to scenario as

a way of combining two or more scenarios into a single

scenario of mixed purpose. Review your scenarios and find

ones that operate on common data, focus on common

features, or have steps in common. Just like the guy who

peels himself away from one tour and melts into the crowd of

another. He’s able to do it because for some small period of

time, the two tour groups are sharing the same space on the

museum floor. We’re able to do it as testers because the

scenarios both go through the same part of the application.

We’ll follow one scenario to that place but then follow the

other when we leave it.

III. CONCLUSION

Static scenario testing and exploratory testing do not have to

be at odds. Scenarios can represent an excellent starting point

for exploration, and exploration can add valuable variation to

otherwise limited scenarios. A wise tester can combine the

two methods for better application coverage and variation of

input sequences, code paths, and data usage.

REFERENCES

[1]. C. Agruss and B. Johnson. Ad hoc software testing, a perspective

on exploration and improvisation. Technical report, Florida Institute

of Technology, USA, April 2000.

[2]. J. J. Ahonen, T. Junttila, and M. Sakkinen. Impacts of the

organizational model on testing: Three industrial cases. Empirical

Software Engineering, 9(4):275–296, 2004.

[3]. P. Ammann and J. Offutt. Introduction to software testing.

Cambridge University Press, Cambridge, 2008.

[4]. C. Andersson and P. Runeson. Verification and validation in

industry – a qualitative survey on the state of practice. In

International Symposium on Empirical Software Engineering

(ISESE 2002), pages 37–47, 2002.

[5]. J. Bach. Session-based test management. Software Testing and

Quality Engineering Magazine, 2, 2000.

[6]. J. Bach. Exploratory testing. In E. V. Veenendal, editor, The

Testing Practitioner. UTN Publishers, 2005.

[7]. E. Barnett-Page and J. Thomas. Methods for the synthesis of

qualitative research: a critical review. BMC medical research

methodology, 9(1):59, 2009.

[8]. A. Bertolino. Software testing research: Achievements, challenges,

dreams. In Proceedings of the Workshop on the Future of Software

Engineering (FOSE 2007), pages 85–103, 2007.

[9]. P. Bourque and R. Dupuis. Guide to the software engineering body

of knowledge (swebok). Technical report, IEEE Computer Society,

Los Alamitos, California, 2004.

[10]. L. C. Briand, Y. Labiche, and Q. Lin. Improving the coverage

criteria of uml state machines using data flow analysis. Softw. Test.,

Verif. Reliab., 20(3):177–207, 2010.

[11]. N. Britten, R. Campbell, C. Pope, J. Donovan, M. Morgan, and R.

Pill. Using meta ethnography to synthesise qualitative research: a

worked example. Journal of Health Services Research & Policy,

7(4):209–215, 2002.

[12]. L. Copeland. A practitioner’s guide to software test design. Artech

House, Boston, Mass., 2004.

Authors Profile

Mr. Manas Kumar Yogi pursued Bachelor of
Technology from VR Siddhartha Engineering
College,Vijayawada,A.P. in 2006 and Master of
Technology From Malla Reddy College Of
Engineering And Technology in year 2012. He is
currently working as Assistant Professor in
Department of Computer Science Engineering ,
Pragati Engineering College (Autonomous), Surampalem, East
Godavari District, since 2014. He is a member of IEEE & ACM
since 2014. He has published more than 40 review,research papers
in reputed international journals ,conferences including IETE
sponsered conferences. His main research work focuses on
Software Engineering, Distributed Computing, Cloud Security and
Privacy, Big Data Analytics, , IoT and Computational Intelligence
based optimisations. He has 8 years of teaching experience and 2
years of software industry Experience.

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 857

Mrs.Y.Jnapika has received her B.Tech in
Computer Science & Engineering from Godavari
Institute of Engineering and Technology, JNTU,
Hyderabad, Andhra Pradesh, India in 2007 and
her M.Tech in Software Engineering from
Godavari Institute of Engineering and
Technology, JNTUK, Kakinada, Andhra Pradesh,
India in 2011. She is currently working as Assistant Professor,
Computer Science and Engineering, Pragati Engineering College,
Surampalem, East Godavari District, Andhra Pradesh, India. She
has 02 years of Industrial experience at WIRPO technologies and
8.6 years of experience in teaching undergraduate students. Her
research interests are in the area of Network Security, Software
Engineering, Big Data Analytics, Machine Learning.

