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Abstract— Nowadays remote sensing image classification process has been most commonly used for object identification. It 

identifies the object in the remote sensing images by assigning the land cover classes to pixels. In this paper, a review on 

conventional and advanced remote sensing image classification techniques such as supervised, unsupervised, per pixel, sub 

pixel and object based image analysis processes has been provided. Further, a brief description about the effective features of 

different image classification algorithms like Fuzzy classifier, classification based on Artificial Neural Network (ANN), 

classification based on Support Vector Machine (SVM), Evolutionary Algorithms (EA) and Optimum Path Forest classification 

algorithms were also given. In the next section of paper various classification methodologies with their characteristics and 

examples of classifiers are explained. Moreover, this study compares the frequently used image classification algorithms and 

suggests the remote sensing image classifier to choose the best image classification technique based on the performance of 

classification that improves the accuracy range. 

 

Keywords—Remote sensing,  Image classification, ANN, SVM, Optimum Path Forest. 

I.  INTRODUCTION  

Remote sensing has become one of the best approaches for 

earth observation. It has the ability to collect images and 

obtain data’s about the object using sensors on unmanned 

aerial vehicle, satellites, aircrafts or without having any 

physical connection . Some of the real world applications 

used by remote sensing are global mapping, plantation 

observation, monitoring the quality of water, climatic studies 

about environment and urban areas, identification of fires in 

forest, exploration of minerals, detection of oil spills, and 

accuracy in horticulture identification [1]. Remote sensing 

images cover a wide geographic zone with high time-based 

frequency and it provides a chance for obtaining information 

from required place by using classification method. At the 

time of 1980 to 1990, most of the classification methods 

utilized the image pixel as fundamental unit of analysis, 

where each and every pixel is marked as single. Image 

classification is denoted as the technique of classifying the 

data from vast satellite images by sorting the image pixel 

values. Main concept behind the image classification is that 

various attributes on the earth’s surface have different 

spectral reflectance [2]. With the help of pixel as 

fundamental analysis unit, a sequence of classification 

methods have been developed, some of the classification 

methods are supervised, hybrid classification and 

unsupervised [3], [4]. 

Mostly in modern classification methods high resolution 

(HR) and very high resolution (VHR) remotely sensed 

images has been used which is obtained with the help of 

World View, IKONOS and QuickBird. The present issues, 

practices and views of image classification and the major 

developments in classification algorithms are analyzed in [5]. 

The methods of digital image processing for extracting 

features from HR satellite images are studied [6]. Brief 

theoretic information about various image classification 

algorithms are sketched [7]. Different studies on satellite 

image classification approach are described [8].  The highly 

utilized classification methods which are mainly used to 

advance the classification accuracy, also, it deemed different 

remote sensing characteristics features like multi temporal, 

spectral, multi sensor information, spectral, in addition 

ancillary data are depicted [9]. Several post classification 

methods, spectral contextual classification and supervised 

classification algorithms are investigated [10]. Continual 

development of innovative classification algorithm and 

methods in modern years requires a brief study for directing 
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or choosing an appropriate classification process. This study 

offers a detailed description of the merits, competence and 

confines of these classification methods. 

Major inspiration behind this study is to support the analyst, 

particularly for those who are fresh to the remote sensing 

field for selecting an appropriate classification method to 

analyze remotely sensed satellite imagery. This study 

provides the recent improvements in classification algorithm 

and also discussed about the frequent issues related with 

them. 

The rest of this paper is organized as follows. Section II 

provides an introduction about image classification. A review 

on Remote sensing image classification techniques are given 

in Section III. Section IV and Section V analyze various 

conventional and advanced image classification approaches. 

Different classification algorithms are presented under 

Section VI and Section VII concludes this paper. 

II. IMAGE CLASSIFICATION PROCESS 

Basically image classification is a process of pixel 

classification which obtains a set of labels. For humans, 

classifying the object is an easy task but it is complicated for 

machines.  Development of high power computers in 

accessibility of low cost and high quality output has created 

attention on image classification approaches. Figure 1 shows 

the flow diagram of image classification process. Object 

classification, image pre-processing, feature extraction, 

image sensors and object segmentation are the steps involved 

in image classification process. This image classification 

system contains database which includes various predefined 

patterns to identify a particular object and categorize it. 

Image classification acts as a unique demanding task in 

different application domains such as remote sensing, 

Navigation process, industrial visual inspection, surveillance 

purposes, medical application and robot navigation. 

III. REMOTE-SENSING CLASSIFICATION METHODS 

A. Data Pre-processing 

Before moving into the classification phase, it is essential to 

examine the standard of remote sensed information. 

Atmospheric and topographic corrections, geometric 

rectification, radiometric calibration and restoration of bad 

lines are involved in image pre-processing. No atmospheric 

correction is essential, if one information source is exert in 

classification. A topographic correction is required when the 

review area belongs to rugged or mountainous regions and 

further an extensive range of correction methods are also 

presented [11], [12]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flow diagram of Image classification process 

B. Feature extraction and selection 

Classification accuracy can be enhanced by using attributes 

or features of images as input information to classification 

techniques.  Large number of variables are existing which 

includes surface roughness, vegetation indices, ancillary data 

(for non-spectral geographical information), transformed 

images, textual information, height texture or multi-temporal 

images, spectrum signature, multi-sensor images, shape and 

size of objects. Preference of attribute sets for a classification 

method is essential in order to minimize dimensionality of 

datasets without scarifying accuracy. On the other side, some 

general issues related with HR data like shadows and 

variations in spectral values of the land surface are required 

to compensate them. For feature extraction, numerous 

techniques are exerted such as non-parametric weighted 

feature extraction (NPWFE), feature extraction (FE), 

principle component analysis (PCA), decision boundary 

(DP), wavelet transform (WT), transform discriminant 

analysis (TDA), spectral mixture analysis (SMA) and 

minimum noise fraction (MNF). 

C. Selection of training samples  

The selection of an appropriate algorithm together with 

adequate amount of training samples should provide better 

classification of samples. The training samples are often 

obtained from fieldwork or from other data sources like 

aerial or satellite images with fine spatial resolution that 

depends upon single pixel, seed or polygon. The selection of 

training samples in coarse resolution data is difficult because 
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of the presence of mixed pixel region. The mixed pixel 

regions are formed due to the occurrence of various classes 

in single pixel. The training samples are generated to locate a 

group of statistics that determines the spectral behavior for 

each land cover class to be categorized in the image data. 

Later, the algorithm is trained well with the help of training 

samples. According to Hughes phenomenon, during 

parametric classification, the dimensionality of stable sized-

sample could increases beyond certain limit and the precision 

of model parameter decreases. Thus, the amount of training 

pixel is not significant and parametric classification is not 

suitable to incorporate ancillary data [13]. Based on the 

difficulties of problem under consideration, the range of 

training sample sets is [30 * Xi *(Xi + 1)] and [60 * Xi *(Xi 

+ 1)], in that, Xi represent the input layers or features [14]. 

IV. CLASSIFICATION APPROACHES 

A number of classification techniques have been established 

and employed. The satellite image classification techniques 

are broadly categorized into: (a) unsupervised (b) supervised 

and (c) hybrid. These methods have their own merits and 

demerits. For efficient classification of satellite images, the 

analyst manually detects each cluster labels on land cover 

class since multiple clusters denotes individual land cover 

class. Then the analyst combines the clusters into single land 

cover class. Unsupervised classification is used under such 

situations if there is no training samples are available [15]. 

ISODATA (Iterative Self-Organizing Data Analysis 

Technique) and K-means are the two frequently utilized 

clustering approaches. These two approaches depend upon 

pixel- statistics and integrate no prior knowledge of theme 

characteristics under investigation.  

On the other hand, in supervised classification the analyst 

describes small representative samples for individual land 

cover class known as training samples [16]. The 

classification accuracy highly relies on the samples utilized 

for training. Image classification approach takes the training 

data sets to detect the land cover classes in the whole image. 

Some common supervised classification algorithm are 

minimum distance (MD), Mahalanobis distance (MhD), 

parallelepiped (PP), maximum likelihood classifier (MXL), 

K-nearest neighbor (KNN), SVMs, and spectral angle 

mapper (SAM) [17]. The major steps of image classification 

in supervised and unsupervised approaches are shown in 

Figure 2. 

The supervised technique has some benefits over the 

unsupervised technique. In supervised classification, initially 

the valuable information are separated and then the spectral 

separability is inspected whereas in unsupervised 

classification, a computer defines the spectrally seperable 

classes and then determines the valuable information. 

However, it is easy to implement unsupervised classification, 

though it does not need any analyst-dependent training 

samples and is extensively present in statistical software and 

image processing packages. Furthermore, it achieves higher 

classification accuracy by spontaneously transforming the 

raw image data sets into valuable information [18]. But one 

of the limitations of unsupervised approach is that the entire 

classification is to be repeated while adding new data sets. 

Both the supervised and unsupervised classifications are 

alternative approach to each other but they are often 

integrated with more than one method to develop a hybrid 

system [19]. With supervised and unsupervised approaches, 

still it is challenging to attain satisfactory outcomes for 

higher spatial and spectral resolution characteristics based 

new generation images [20]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Processing steps of a) Unsupervised method and b) Supervised 

method 

 

V. ADVANCED CLASSIFICATIONS APPROACHES  

 

A. Image classification based on pixel-wise approach

  

In a typical remote sensing image classification method, 

pixel-based image classification strategy assumes that each 

pixel is labelled as single land use cover type [21-23]. 

According to this method, the remote sensing images are 

considered to be a collection of pixels with spectral 

information; spectral variables and their transformations are 

given as input to the per-pixel classifiers. Pixel-based image 

classification approaches are categorized into two sets: 

supervised classification and unsupervised classification. The 

supervised classification is further divided into: Maximum 

Likelihood Classifier (MLC), Minimum Distance-to-Means 

Classifier, Mahalanobis Distance Classifier, Parallelepiped 

and K-Nearest Neighbors Classifier, etc. [24-28]. The 

comparison of SVM with other methods showed assured 

better/ improved classification accuracy [29]. Nowadays, 
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machine learning methods are established to enhance the 

knowledge learning process [30-33]. 

 

B. Image classification based on sub-pixel based approach 

 
The pixel based image classification approach in remote 
sensing assumes that there is only a single land use land cover 
type in individual pixels of image. Nevertheless, this 
assumption is unacceptable for coarse and medium resolution 
images due to landscape diversity as compared to spatial 
resolution remote sensing imagery. Therefore, the use of 
pixel-wise hard classifications reduces the classification 
accuracy of land use cover maps [34]. An alternative method 
of pixel based image classification is sub-pixel classification 
that accurately determines the areal part of individual land use 
land cover type [35]. Major sub-pixel classifications like 
fuzzy classification, neural networks, regression modelling, 
regression tree analysis and spectral mixture analysis are 
designed to report the mixing pixel problem. In fuzzy 
demonstration, each pixel that obtains partial membership of 
all classes as well as the equivalent areal proportion of the 
classes is estimated accordingly [36-40]. 

Sub-pixel analysis technique is established to measure the 

quantity of urban impermeable surfaces and urban vegetation 

[41]. A multiple end member spectral mix investigation 

method to map chaparral, a shrub land plant communal in the 

Santa Monica Mountainous region is suggested in [42]. A 

four-end member spectral mix investigation process to 

evaluate the sub-pixel percent urban impervious surfaces is 

created in [43]. A fuzzy-spectral mix analysis framework is 

offered in [44]. Compared to traditional SMA techniques, 

fuzzy spectral mix analysis framework achieved fuzzy mean 

and fuzzy covariance using training data sets derived via 

SMA, and applied with conventional fuzzy classifiers. Table 

1 gives the comparison of both conventional and advanced 

classification methods. 

 

C. Object based image classification 

 

When comparing sub-pixel and per-pixel classification 

strategies with object based image classification, object based 

image classification affords a new way to categorize remote 

sensing images [45-47]. Other than considering the image as a 

distinct pixel, geographical objects are found to be the major 

source of analysis in object-based image classification 

approaches. Object-based techniques create an image object 

via image segmentation and classify the images according to 

objects rather than pixels [48]. Using image segmentation, the 

image objects are generated with contextual, spatial, spectral 

and textural data. The objects generated with these data are 

classified on the basis of spectral and other related decisive 

factor. Object based processes are found to be more suitable 

for VHR remote sensing imagery. Numerous studies have 

proven the higher classification accuracy of object-based 

methods [49]. An advanced version of object-based method is 

used to recognize the radius of the remotely sensed data [50]. 

A resource-limited AIS supervised classifier with Artificial 

Recognition Balls (ARBs) concept is also presented to deal 

with the remote sensing images to perform classification more 

effectively [51]. 

VI. ADVANCED CLASSIFICATION ALGORITHM 

 
The advanced classification algorithms used in the image 
classification techniques ensure better accuracy and improves 
the quality of remote sensing images. Major advanced 
classification algorithms that are commonly used in remote 
sensing image processing are SVMs, ANN and CTs, which 
outdates the conventional classifiers with their high 
performance. So modified algorithms are well suited for 
incorporating non-spectral data into the classification process. 
Table 2 specifies the advantages and disadvantages of both 
conventional and advanced classification Algorithms 

 
A. ANN based classification 
 

The approach starts with providing the training samples as 
input, pixel by pixel in order to train the ANN, thereby 
acquiring the conditional probability of a certain pixel in the 
output layer. It shows better results and performance, than 
other classifiers used in image classification process [52-54]. 
It achieves lower computational cost when dealing with ANN 
based semi-supervised classifier than the two kernel-based 
methods such as Transductive SVM (TSVM) and Laplacian 
SVM (LapSVM) [55], [56]. ANN is supposed to suffer by 
over-fitting because of the high dimensionality of remote 
sensing images and the difficulties experienced during the 
acquisition of training samples. To resolve the inconsistencies 
faced with ANN, Evolutionary Artificial Neural Network 
(EANN) is adopted [57]. EANN is a well-trained network 
structure, which has the ability to acclimatize complex remote 
sensing data with high robustness. Furthermore, Evolutionary 
Programming (EP) is used to develop ANN architecture as 
well as the connection weights. Nowadays EANN is 
commonly used to identify the crops from the remotely 
sensed data. Pareto Differential Evolution (PDE) algorithm is 
used in multi-objective evolutionary neural network to 
achieve efficient feed-forward Multilayer Perceptron (MLP) 
neural network [58].       
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Table 1. Comparison of conventional classification methods with advanced classification methods 

Classification 

Methodologies 

Characteristics Examples of classifiers 

Parametric  ● Normal distribution of data 

● Prior Knowledge of class density functions 

● Maximum Likelihood classification  

● Unsupervised classification  

Non-Parametric ● No need of any prior assumptions 

 

 

● Nearest-neighbour classification 

● Fuzzy classification  

● Neural networks  

● SVM 

Supervised ● Analyst detects the training sites to represent in 

classes 

● Each pixel is categorized on the basis of statistical 

analysis 

● Maximum Likelihood,  

● Minimum Distance 

●  Parallelepiped classification  

Unsupervised ● Earlier ground information is unknown.  

● Pixels with same spectral properties are clustered 

according to exact statistical criteria 

● ISODATA and K-means etc. 

Pixel based ● Each pixel is assumed pure and typically labelled as 

a single land use land cover type 

● Unsupervised, example: k-means, clustering 

● Supervised example: Maximum likelihood 

●  Machine learning example: ANN, SVM etc 

Sub pixel based ● Pixel quantity of each class is calculated ● Fuzzy classification 

● Neural networks  

● Regression modelling 

● Spectral mixture analysis 

● Fuzzy spectral mixture analysis 

Object based ● Geographical objects are considered as the basic unit.  

● Additional characteristics such as object texture, 

shape and relations to adjacent regions can be used. 

● Appropriate for HR imagery applications. 

● Classification accuracy is decreased due to over and 

under segmentation. 

● Image segmentation  

● Object based image analysis  

Hybrid 

Approaches 

● Includes expert systems and artificial intelligence. 

● Combine the advantages of multiple classifiers  

● Set of laws for voting 

● Bayesian formalism   

● Multiple ANN. 

B. EA based classification 

 
EA based classifiers are non-parametric methods usually 
doesn’t made supposition on the allocation of remote sensing 
data. Coupled Simulated Annealing (CSA) with Simulated 
Annealing (SA) is employed to enhance the range of 
population in the remote sensed data [59]. EAs are used to 
optimize the traditional artificial immune network, but in later 
days it starts focusing on the classification of remote sensed 
data [60]. Furthermore, Genetic Fuzzy Rule Based 
Classification System (GFRBCS) is applied to develop 
classification rules for the remote sensing images [61], [62]. 
Genetic Programming (GP) is used to generate new 
vegetation indices including Normalized Difference 
Vegetation Index (NDVI) and the Soil Adjusted Vegetation 
Index (SAVI) [63]. 

 

C. Classification based on Support vector machine and 

fuzzy concept 

A new SVM technique is designed and used in the 

classification process of the remote sensing satellite images in 

[64-66]. It works based on the principle of statistical learning 

theory [67]. SVM exhibits better results for hyper-spectral 

remote sensing data and also it is well applicable for various 

types of data include Landsat multispectral data [68-70]. 

While on dealing with fuzzy classifiers, for each and every 

pixel in a class it generates a fuzzy set membership [71]. 

 

D. Classification based on Optimum path forest 

 

OPF classifiers are used as a modern image classification 

tool, whereas it represents a graph-based framework [72], 

[73]. The function of OPF in the field of image processing is 

described as Image Foresting Transform (IFT) in [74]. Here 

IFT works based on the concept of Dijkstra's shortest path 

algorithm with minor modifications. Additionally OPF 

provides better results when used by both the Supervised and 

Unsupervised Learning variations. Recently OPF is used to 

identify the kind of disease in medical field, forest monitoring 

etc [75-77]. 
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Table 2. Advantages and Disadvantages of both conventional and advances classification Algorithms 

Classification methods Advantages Disadvantages 

ISODATA Processing speed is high and easy to handle Requires more number of parameters. 

K-Means Fast and easy approach Initiates by the number and the position of initial 

cluster. 

K-Nearest Neighbour Simple to process For larger training set, the computation cost is 
high 

Minimum Distance Processing speed is high and easy to handle Process based on mean value 

Parallel pipelining Fast and simple approach to process Results accuracy will low, if overlapping occurs. 

Maximum Likelihood Sub pixel classifier a) Consumes more time 

b) Can’t use unless the dataset is probably 

distributed 

c) Inadequate ground truth data 

ANN a) Handles noisy inputs effectively 

b) High computational cost 

c) Ability to represent functions including ANDOR 

and NOT 

a) Overfitting problem occurs 

b) Hard to select the network architecture type. 

c) It is semantically poor 

SVM a) Reduce the problem of overfitting 

b) Computational complexity also get reduced 

c) Ease to handle the decision rule complexity. 

a) Complex to understand the concept of 

algorithm 

b) Difficult to find the optimal parameters 

c) Requires more time to train the training set. 

Fuzzy Measure a) Handles uncertainties effectively 

b) Stochastic relationships are identified 

Requires prior knowledge to obtain good and 

exact results 

 

OPF a) Executes the training phase at high speed 

b) Decision making is done based on global decisive 

factor 

 

VII. CONCLUSION 

In the field of remote sensing image classification, more 

advanced progress has been made over the last few decades 

with the recent advancement of different classification 

approaches and algorithms. However, this review provides an 

idea about numerous conventional and advanced image 

classification approaches. Furthermore, we provide guidance 

about various classification approaches like ANN, EA, SVM 

and OPF. Recently, the remote sensing image classification 

field has become an important topic for research work. But 

the researchers often found it difficult to select the suitable 

image classification approach because of insufficient 

guidance. Thus, this review brings out the efficiency of using 

different image classification approaches and helps the 

researches to choose a best approach according to their 

application. Moreover, a comparison has been made for better 

understanding, which helps to select the proper choice of 

image classification approach.  
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