
 © 2018, IJCSE All Rights Reserved 873

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-10 Oct 2018 E-ISSN: 2347-2693

Regression Test Suite Management using Data Clustering Technique

Fayaz Ahmad Khan

Dept. of Computer Science and Applications, Barkatullah University Bhopal (M.P)

*Corresponding Author: kfayaz1012@gmail.com

Available online at: www.ijcseonline.org

Accepted: 25/Oct/2018, Published: 31/Oct/2018
Abstract- To test the modified code, we employ regression testing procedures with an aim to provide assurance that modified

code behaves correctly and those modifications have not adversely affected the existing behavior or functionality of the code.

Retest-all regression testing is the basic approach in which all the test cases in the initial test suite are re-executed to validate

the changes. But re-running all the test cases from an existing test suite in order to test the code that is undergone minor change

may be expensive as it requires an unacceptable amount of time and resources to perform it. An important problem found

during regression testing is how to select a subset of test cases from an existing test suite in order to retest the modified code.

Therefore, in this study we propose an efficient test suite management technique that utilizes data clustering approach for

regression testing in order to effectively partition an initially random and large test suite to re-test the modified section of the

code that has been modified within resource and time constraints.

Keywords- Software testing, Regression testing, Test Case Selection, Data Clustering, K-Means.

I. INTRODUCTION

Regression testing is an important activity performed on

modified code to provide assurance that the modified code

works correctly and that modifications have not affected the

previous functionality of the code. Regression testing is

expensive software maintenance activity [1]: as it requires

to re-run all the test cases in a existing test suite in order to

re-test the code that is modified to provide confidence that

modified code behaves correctly. For software maintenance,

developers usually create an initial test suite and re-use it for

regression testing. The traditional technique for conducting

regression testing is retest-all in which every test case in the

test suite is re-run to re-test the modified code. This

approach is expensive as it requires unacceptable amount of

time and resources to re-run all the existing test cases in the

initial test suite. An alternative strategy would be to select

and re-run only a subset of the test cases from the initial test

suite to test the modified code. So most of the research on

regression testing [2] focuses on (1) how to select a subset of

test cases from an existing test suite for regression testing

(the regression testing selection problem), and (2) how to

identify the segment of the code that undergoes modification

and should be re-tested for quality and functionality

assurance. In [2], the regression testing is defined as follows:

“Let P be an original version of a program and P
/
 be its

modified version. Also, let T be the initial test suite

developed for testing P. The role of regression testing

selection technique is finding a subset of test cases T
/
 of T in

order to execute P
/
”.

The use of regression testing selection technique according

in [1] reduces the cost of software testing compared to

retest-all approach by running only a subset of the test cases

from the initial test suite. The other useful technique is

random selection approach which randomly selects a subset

from the initial test suite and uses the subset for carrying out

regression testing. But the randomly selected sample or

subset may or may not be effective in terms of the modified

code. The regression testing selection approaches try to

overcome the draw-backs present in the existing techniques

(like retest-all and random) and make regression testing

feasible and economical by running only a subset of few

effective test cases to retest the modified code. A substantial

amount of research results are reported on regression test

selection and minimization techniques in literature, but

according to studies [3] very less number of software

industries have actually deployed the support for automation

during regression testing. The most commonly used

approaches for the selection of regression test cases are

either based on manual code analysis or based on expert

judgment, but both results in unnecessarily high regression

testing cost.

A number of regression test selection techniques have been

proposed to target different programming paradigms such as

procedural programming [4,5,6], object-oriented

programming [7,8,9,10], component-based programming

[11, 12, 13] and web applications [14, 15, 16]. A great

number of approaches have also been proposed using

different techniques including data flow analysis based [17,

18], slicing based [19, 20], firewall based [21, 22], control

flow based [23, 24] and differencing based [25, 26]. There

are also certain studies on regression test selection

techniques which have been reviewed by the authors in [27,

28, 29, 30]. In [29], a set of metrics are proposed for the

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 874

evaluation of regression test selection techniques. In [27,

28], an experimental investigations are performed on the

effectiveness of some regression test selection techniques

targeting procedural programming. Based on the empirical

results, it was found difficult to select any technique as a

solution because the studies were performed on different

kind of programs and also in different environment

conditions. Also, the authors in [30] observe that it is very

difficult to design a new generic and superior regression test

suite management technique that will be applicable to a wide

range of application programs. Therefore regression test

suite management is still an open problem where further

work could be done in order to improve the existing

techniques or propose new techniques that will reduce the

effort and cost of the software maintenance activity either by

reducing the number of test cases or by selecting a subset of

test cases efficiently from an initial test suite. This study is

an effort in this direction as all the existing studies [5, 9, 11,

13, 15, 25, 29] try to select a subset of test cases for

regression after software undergoes change, but with the

proposed study, it is possible to select a subset before

software undergoes change and as well as after the change

when the software is regression tested. Thus, with the

proposed approach, we can run the entire test suite or the

selected test cases from each portioned segment or only a

single partition or cluster for carrying-out testing activity.

The flow chart of the proposed approach is shown in figure.

1.

The entire paper is organized as follows, Section I highlights

the introduction and related work done. In Section II, the

discussion on different types of regression testing types are

provided. In Section III a brief overview about data

clustering is given and in Section IV, the steps of K-Means

Algorithm are mentioned. In Section V describes the

implementation of the proposed approach on a sample

program and results of the study. And finally, Section VI

describes the application of the proposed study on a large

study and Section VII provides the conclusion and future

scope of the study.

Figure. 1: The Flow Chart of the Proposed Approach

II. CATEGORIES OF REGRESSION TESTING

TECHNIQUES

According to the study reported in [31], three techniques are

commonly used for test suite management in order to reduce

the cost of regression testing. They are

 (1) Regression test selection techniques.

 (2) Regression test suite minimization techniques.

 (3) Test case prioritization techniques.

Regression test selection techniques [32, 33] attempt to

reduce the cost of regression testing by selecting only a

subset of test cases from the initial test suite according to the

original and modified program. Test suite minimization

techniques [34, 35] attempt to minimize the cost of

regression testing by selecting a subset of test cases that

provide the same coverage as provided by the existing test

suite according to the specified coverage metric. Test suite

minimization techniques form an effective minimized subset

by permanently discarding the test cases which are found

redundant and obsolete in the initial test suite according to

the requirement coverage criteria defined. Test case

prioritization techniques [36, 37] are also very useful as

they help a tester to order the test cases by assigns the

priority to each test case so that those test cases with higher

priority can be executed before than those with lower value

according to the need [36].

III. DATA CLUSTERING

Data clustering is a method used for the segmentation of

data objects into groups (or clusters) in such a way that

objects in one group are similar to one another in

comparisons to the other objects present in other groups

(clusters). According to [38], cluster analysis is used for two

important purposes (1) understanding and (2) utility. Cluster

analysis for understanding means applying clustering

analysis for finding the meaningful groups from the data

objects that share common properties [38]. Clustering plays

an important role in analyzing, describing, and utilizing the

hidden information present in the data. Clustering for utility

attempts to abstract the prototypes or the representative

objects from the clusters that serve as the basis for the

number of data processing techniques like summarization,

compression, and nearest neighbor finding [38]. The other

important application domains of cluster analysis include

machine learning, business intelligence, information

retrieval, and pattern recognition.

IV. K-MEANS ALGORITHM

The K-Means algorithm is one of the simple, oldest, and

widely used clustering algorithms [39, 40]. This algorithm is

ranked second among top-10 data mining algorithms [41].

K- Mean’s algorithm belongs to the class of hard or

partitional based algorithms that attempts to find K non-

overlapping clusters from the specified data. K is an external

specified value that indicates the number of clusters that

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 875

needs to be formed after clustering the data. The basic steps

of K-Means algorithm for finding k clusters are as follows:

I. Select ‘k’ as the number of number of initial centriods.

II. Calculate the distance of all the objects from the centriods

and assign the objects accordingly to the closest centriods.

III. Recalculate the centriods of each cluster.

IV. Continue steps II and III until the centriods of each cluster

do not change.

V. IMPLEMENTATION OF THE PROPOSED

APPROACH

The graphical representation of the proposed approach is

shown in figure. 1. We have implemented the proposed

approach for the regression testing of the sample program

shown in fig. 2. To test the sample program we have

generated a suite of random test cases using a free online

available tool known as generatedata.com [42]. The

genratedata.com tool utilizes the random search technique

for the generation of test cases and is commonly used for

database and software testing. But the tool has certain

limitations as it generated the test cases based on random

approach that is (1) it generates a lot of redundant test cases

and (2) cannot generate some combinations of effective test

cases that are vital in order to cover certain components of

the code and hence results into less percentage of the code

coverage. Therefore, in order to remove these

inconsistencies, we have seeded few effective combinations

of test cases to the test suite generated with the tool using the

study reported in [43]. In our previous studies [44, 45,46],

we have also proposed some studies to handle the test suite

size and randomness issues with respect to test suite

minimization perspectives. But, here in this study the goal is

to select a subset of test cases from the entire test suite with

respect to modifications done to the code and to test the

modified portion of the code without discarding the other

test cases. The suite of test cases generated for testing the

sample program is shown in figure. 3.

Figure. 2. Program under Testing

Figure. 3. The Initial Test Suite

For unit testing the sample code, we have used JUnit testing

framework. JUnit is an open source as well as automatic unit

testing framework for java code. And for code coverage

measurement, EclEmma tool is used which is also an open

source java code coverage tool for Eclipse. After executing

all the test cases, the test cases except (T12) in the initial test

suite execute all the statements of the code and hence

achieve the 91.5% instruction, 88.5% line, 50% method, and

100% type code coverage as shown in figure. 4, but could

not achieve an acceptable branch and complexity coverage

due to some missing functionality or an error in the code.

The code when executed with the test case t12 (4, 3, 3,

Isosceles) fails because there is some missing functionality

or the condition in the code as shown in figure 2. Therefore,

it is important to rectify the error by adding the statements

(C==B) to the existing code as shown in figure. 5 and then

regression test it in order to handle all the combinations of

test cases. Here, in order to regression test the code either we

need to re-run all the test cases to re-test all the segments of

the code or we need to select a subset of test cases to test the

segment of code that is modified.

Figure. 4. Coverage of different structural components

achieved by the initial test suite

Test Case ID Side A Side B Side C Expected Output
t1 0 1 1 Invalid

t2 10 10 10 Equilateral

t3 5 5 3 Isosceles

t4 8 7 4 Scalene

t5 9 6 8 Scalene

t6 9 9 9 Equilateral

t7 0 0 0 Invalid

t8 3 1 1 Invalid

t9 6 7 6 Isosceles

t10 6 5 3 Scalene

t11 -1 -2 -3 Invalid

t12 4 3 3 Isosceles

t13 -4 -4 8 Invalid

t14 5 10 7 Scalene

t15 6 -3 3 Invalid

t16 12 12 12 Equilateral

t17 2 2 0 Invalid

t18 2 0 2 Invalid

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 876

Figure. 5. The modified Program.

Therefore regression testing and particularly regression test

case selection techniques are most commonly used after the

software undergoes change in order to make assurance that

the bugs or errors previously encountered have been fixed

and the existing functionality of the code has not been

altered. Hence, for quality assurance, we need to re-run all

the test cases in order validate the changes happened to the

code. But running all the test cases for validation when the

changes are minor will consume extra effort, time and

resources. The better alternative would be to use only few

test cases that are related to the change not the whole test

suite. For this reason, we have applied K-means algorithm

for segmenting the test suite into different profiles or clusters

so that when the need arises it become possible to use any

particular segment or cluster of test cases for re-testing the

segment of the code that has been modified not the whole

test suite. Hence, after implementation of the proposed

approach, we have segmented the test suite into four clusters

C1, C2, C3, and C3 using K-means algorithm in WEKA, an

open source machine learning and data mining toolkit. The

segmented test suite is shown in figure. 6.

Figure. 6. Segmented Test Suite

After segmentation, each cluster contains the test cases

which execute the same number as well as same type of

structural components of the code. The structural

components of the code executed by the clustered test suite

is shown in Table 1.Thus with the proposed approach it

become possible that if any component or statement of the

code is modified or changed than only that particular cluster

of test cases needs to be re-run to save the time and validate

the changes not all the test cases present in other clusters.

Here, in this case only the test cases in cluster 3 are needed

to be re-run for validation. Also with the implementation of

the proposed approach, it was observed that the redundancy

that exists in the test suite is reduced by partitioning it into

different segments or clusters based on the similarities in the

test cases. The code coverage after re-running the test cases

from the cluster 3 is shown in figure. 7. Therefore, a

considerable amount of time, effort and resources can be

saved during regression testing by the application of the

proposed approach.

Table 1. Different Sections of the Code Covered by Each

Cluster
Different Segments or

Clusters formed using the

Proposed Approach

Area of the code shown in figure 5 that is

Covered by each Segment or Cluster

C1 Turquoise and Bright Green portion

C2 Pink portion

C3 Yellow portion

C4 Gray portion

Figure. 7. The code coverage of the test suite after

maintenance

VI. APPLICATION OF THE PROPOSED APPROACH

ON DIFFERENT SET OF PROGRAMS

For the determination of applicability of the proposed

approach, we use four well-known programs (Modified

Versions) with different characteristics as shown in table 2.

Table 2: Sample Programs and their characteristics.

public class Traingleclass {
public static void main(String [] args){

 Scanner S =new Scanner(System.in);
 int A,B,C;
 System.out.println("ENTER THREE SIDES OF TRIANGLE");
 A= S.nextInt();

B= S.nextInt();
 C= S.nextInt();
 S.close();
 if(A>0 && B>0 && C>0){

 1 if(A >= (B+C) || C >= (B+A) || B >= (A+C))
 System.out.println("Not a triangle");

 else if (A==B && B==C)
 2 System.out.println("Equilateral");

 else if(A!=B && B!=C && C!=A)
 3 System.out.println("Scalene");

 else if((A==B) || (C==A) || (C==B))
 4 System.out.println("Isosceles");
 }
 else{
 5 System.out.println("Not Valid inputs");
 }
 }

}

Test Suite

t1, t7, t8,

t11, t13,

t15, tt17,

t18

t2, t6,

t16

t3, t9,

t12

t4, t5,

t10, t14

K-Means

C1 C2 C3 C4

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 877

S.

No

.

Progra

m

Name

No. of

Instructio

ns

No.

of

Line

s

No. of

Branch

es

Complexi

ty

Tes

t

Suit

e

Size

P1 Roots
of

Quadrat

ic Eq.

54 16 6 7 50

P2 Largest
of

Three

Number
s

64 17 18 11 50

P3 Number

is
Prime

or Not

45 17 8 6 50

P4 Number

of
Digits

in a

Given
Number

42 14 4 4 50

For an effective management of the test suites (initially

random and un-minimized) for an initial testing as well as

regression testing, we have segmented each of them into an

appropriate number of segments or clusters. The number of

partitions or clusters (or the value of k) plays an important

role in successful implementation of the K-Means algorithm.

Therefore, to divide each test suite of the sample programs

shown in table 2, the value of k for each test suite is chosen

based on the number of requirements that are needed to be

satisfied by each test suite. For example, the ideal value of k

for segmenting the test suite of program P1 would be 4

because upon its execution it should classify the roots into

equal, or imaginary, or unequal or invalid as shown in fig.8:

Figure.9: Requirements of the Program P1.

Therefore based on these facts, we have segmented each test

suites of P1, P2, P3, and P4 into a different number of

partitions or clusters as shown in figure 9, 10, 11, 12 for

carrying out an effective regression testing activity.

Figure. 9: Clusters formed after Clustering

Figure. 10: Clusters formed after Clustering

Figure. 11: Clusters formed after Clustering

Figure. 12: Clusters formed after Clustering

 Test Suite Upon Execution On

Program
P1

1. Equal Roots 2. Unequal 3. Imaginary 4. Invalid

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 878

Thus with the proposed approach all the test suites that are

initially random and un-minimized are now minimized and

partitioned into different segments for effective utilization in

regression testing. The other benefits of the proposed

approach are that it provides the tester a choice in selecting

an appropriate cluster or portion of the test suite (a single

test case from each cluster) for execution during an initial as

well as in regression testing process. Therefore for

regression testing the sample programs shown in table 2, an

appropriate cluster or clusters of test cases from each

partitioned test suite can be selected as shown in fig.9, fig.

10, fig.11 and fig.12. Also, with the help of the proposed

approach, the time, effort and cost case be reduced as it

become possible to selectively run few test cases instead of

re-running the entire test suite for regression testing.

VII. CONCLUSION AND FUTURE SCOPE

Regression testing is an important activity used to validate

the modified software in order to gain assurance that no

errors are introduced into the previously tested code. But

regression testing is an expensive activity as it involves

repeatedly running the entire test suite whenever the code

changes. To reduce some of this expense, researchers have

proposed various regression test selection methods that

attempt to reduce the cost by selecting and running only a

subset of test cases from an existing test suite. With the same

aim we have also proposed a regression test cases selection

approach in which K-means clustering algorithm is

implemented on the test suite in order to partition the test

suite into a different clusters or profiles according the

requirement they satisfy. Later on if any modification is

done to the code we may be able to select only the particular

group or cluster of test cases for retesting the code that is

modified. The experimental results proved that the proposed

approach is very effective and also a useful technique that

will reduce the cost of regression testing by running only a

subset or cluster of test cases for retesting the modified code.

The future work in the direction would be to propose some

approaches so that test cases in each cluster are

automatically selected and executed for retesting the code

that is changed as the selection and execution of test cases

are currently done manually.

REFERENCES

[1] H. Leung, L. White,” Insights into regression testing”, In

Proceedings of the Conference on Software Maintenance, pages

60–69. 1989

[2] G. Rothermel., M. Harrold., “Selecting tests and identifying test

coverage requirements for modified software”, In Proceedings of

the International Symposium on Software Testing and Analysis,

pages 169–184. 1994

[3] M. Grindal, J. Offutt, J. Mellin, “On the testing maturity of

software producing organizations”. In TAIC-PART ’06:

Proceedings of the Testing: Academic & Industrial Conference on

Practice and Research Techniques, pages 171–180. 2006

[4] J. Guan, J. Offutt, .P. Ammann , “An industrial case study of

structural testing applied to safety critical embedded software”,

In Proceedings of the 2006 ACM/IEEE international symposium

on Empirical software engineering, pages 272–277. 2006

[5] T. Ball, “On the limit of control flow analysis for regression test

selection”, In ISSTA ’98: Proceedings of the 1998 ACM

SIGSOFT international symposium on Software testing and

analysis, pages 134–142. 1998

[6] R. Gupta, M. Harrold, and M. Soffa, “Program slicing-based

regression testing techniques”. Journal of Software Testing,

Verification, and Reliability, 6(2):83–112. 1996

[7] D. Binkley, “Semantics guided regression test cost reduction”,

IEEE Transactions on Software Engineering, 23(8):498–516.

1997

[8] L. Briand, Y. Labiche, and S. He, “Automating regression test

selection based on UML designs”. Information and Software

Technology, 51(1):16–30. 2009

[9] M. Harrold., J. Jones,et,al;, “Regression test selection for Java

software”, In Proceedings of the 16th ACM SIGPLAN

Conference on Object-Oriented Programming, Systems,

Languages and Applications, pages 312–326. 2001

[10] A. Orso, N. Shi, and M. Harrold, “Scaling regression testing to

large software systems”, In Proceedings of the 12th ACM

SIGSOFT Twelfth International Symposium on Foundations of

Software Engineering, pages 241–251. 2004

[11] C. Mao, Y Lu, and J. Zhang, “Regression testing for component-

based software via built-in test design”, In Proceedings of the

2007 ACM symposium on applied computing, pages 1416–1421.

2007

[12] J. Zheng, B. Robinson, L. Williams, K Smiley, “Applying

regression test selection for COTS based applications”. In ICSE

’06: Proceedings of the 28th international conference on Software

engineering, pages 512–522. 2006

[13] J. Gao D. Gopinathan., Q. Mai, “A systematic regression testing

method and tool for software components”. In Proceedings of the

30th Annual International Computer Software and Applications

Conference (COMPSAC’06), pages 455–466. 2006.

[14] M. Ruth, S. Tu, “A safe regression test selection technique for web

services”. In Proceedings of the Second International Conference

on Internet and Web Applications and Services, IEEE Computer

Society. 2007

[15] A. Tarhini., H. Fouchal., N. Mansour., “Regression testing web

services-based applications”. In AICCSA ’06 Proceedings of the

IEEE International Conference on Computer Systems and

Applications, pages 163–170. 2006

[16] L. Feng, M. Ruth, S. Tu ,” Applying safe regression test selection

techniques to Java web services”. In International Conference on

Next Generation Web Services Practices,. NWeSP 2006., pages

133–142. 2006

[17] M .Harrold. , M .Soffa, “mInter-procedural data flow testing”. In

Proceedings of the ACM SIGSOFT ’89 third symposium on

Software testing, analysis, and verification, pages 158–167. 1989

[18] A Taha, S. Thebaut, and S. Liu, “An approach to software fault

localization and revalidation based on incremental data flow

analysis”. In Proceedings of the 13th Annual International

Computer Software and Applications Conference, pages 527–534.

1989

[19] D. Binkle, “Semantics guided regression test cost reduction”.

IEEE Transactions on Software Engineering,23(8):498–516. 1997

[20] S Bates, S Horwitz, “Incremental program testing using program

dependence graphs”. In Conference Record of 20th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 384–396. 1993

[21] H. Leung, L. White, “A study of integration testing and software

regression at the integration level”. In Proceedings of the

Conference on Software Maintenance, pages 290–300. 1990

 International Journal of Computer Sciences and Engineering Vol.6(10), Oct 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 879

[22] H Leung, L.White, “A firewall concept for both control-flow and

data-flow in regression integration testing”. In Proceedings of the

Conference on Software Maintenance, pages 262–270. 1992

[23] G Rothermel, M Harrold, “A safe, efficient regression test

selection technique”. ACM Transactions on Software Engineering

and Methodology, 6(2):173–210. 1997

[24] J. Laski, W. Szermer, “Identification of program modifications

and its applications in software maintenance”. In Proceedings of

the Conference on Software Maintenance, pages 282–290. 1992

 [25] F.Vokolos, P. Frankl. “Empirical evaluation of the textual

differencing regression testing Technique”. In ICSM ’98:

Proceedings of the International Conference on Software

Maintenance, pages 44–53. 1998

[26] F .Vokolos, P. Frankl, Pythia: “A regression test selection tool

based on textual differencing”. In Proceedings of the 3rd

International Conference on Reliability, Quality & Safety of

Software-Intensive Systems (ENCRESS’ 97), pages 3–21. 1997

[27] G. Baradhi , N. Mansour , “A comparative study of five regression

testing algorithms”. In Proceedings of Australian Software

Engineering Conference, Sydney, pages 174–182. 1997

[28] J Bible, G. Rothermel, D. Rosenblum, “A comparative study of

coarse- and fine-grained safe regression test-selection

techniques”. ACM Transactions on Software Engineering and

Methodology, 10(2):149–183. 2001.

[29] E Engström., P Runeson., and M Skoglund, “A systematic review

on regression test selection techniques”. Information and

Software Technology, 52(1):14–30. 2010.

[30] E Engström., M Skoglund., and P Runeson. “Empirical

evaluations of regression test selection techniques: a systematic

review”. In Proceedings of the Second ACM-IEEE international

symposium on Empirical software engineering and measurement,

pages 22–31, 2008.

[31] G Rothermel, H Roland. Untch, Chu Chengyun, and M. J. Harrold.

” Prioritizing test cases for regression testing”. IEEE

Transactions on Software Engineering, 27(10):929-948. 2001

[32] H Do and G Rothermel, “ An empirical study of regression testing

techniques incorporating context and lifetime factors and

improved cost-benefit models”. In Proceedings of the 14th ACM

SIGSOFT International Symposium on Foundations of Software

Engineering. 2, 22.

[33] L. G Todd, M. J Harrold., J.M Kim., A Porter, and G Rothermel,

“An empirical study of regression test selection techniques”.

ACM Transactions on Software Engineering and Methodology,

10:188-197. 2001

[34] M. J. Harrold, R Gupta, and M. L Sofa, “A methodology for

controlling the size of a test suite”. ACM Transactions on

Software Engineering and Methodology (TOSEM), 2(3):270-285,.

1993

[35] H. Hwa-You and A. Orso (2009). Mints: “A general framework

and tool for supporting test-suite minimization”, In Proceedings

of the IEEE 31
st
 International Conference on Software

Engineering (ICSE'09), pages 419-429.

[36] L. Chen, Z. Wang, L. Xu, Hongmin, and Xu Baowen, “Test case

prioritization for web service regression testing”. In Proceedings

of the 5th IEEE International Symposium on Service Oriented

System Engineering (SOSE'10), pages 173-178. 2010.

[37] S. Elbaum, A.G .Malishevsky, and G. Rothermel, “Test case

prioritization: a family of empirical studies”. IEEE Transactions

on Software Engineering, 28(2):159-182. 2002

[38] P. N Tan, , M. Steinbach, V. Kumar,” Introduction to Data

Mining”, Addison-Wesley, Reading .2005

[39] S Lloyd. “Least squares quantization in pcm”. IEEE Trans. Info.

Theory 28(2), 129–137. 1982.

[40] A Jain., R Dubes. “Algorithms for Clustering Data”. Prentice

Hall, Englewood Cliffs. 1988

[41] X. Wu,. V. Kumar, J.R Quinlan, , J Ghosh, Q. Yang, et,al, “Top

10 algorithms in data mining”, Knowl. Inf. Syst. 14(1), 1–37.

2008.

[42] Genratedata.com test data generation tool,

htpp://www.generatedata.com.

[43] A. K. Gupta., F. A. Khan, “An Efficient Test Data Generation

Approach For Unit Testing”, IOSR (JCE), Volume 18, Issue 4,

Ver. V, PP 97-107. 2016.

[44] F. A. Khan., A.K Gupta, D.J Bora, “Profiling of Test Cases with

Clustering Methodology”. International Journal of Computer

Applications, Vol.106 (14), pp. 32-37. 2014.

[45] F. A. Khan ,A.K Gupta, D.J Bora. “An Efficient Heuristic Based

Test Suite Minimization Approach”, Indian Journal of Science and

Technology, ISSN (Print): 0974-6846, ISSN (Online) : 0974-

5645, Volume 10(29), pp. 1-8. 2017.

[46] F.A. Khan, A.K. Gupta, D.J. Bora, “An Efficient Technique to

Test Suite Minimization using Hierarchical Clustering

Approach”, International Journal of Emerging Science and

Engineering (IJESE) ISSN: 2319–6378, Volume-3 Issue-11,

2015.

