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Abstract— OLAP queries perform analytical processing on enterprise warehouse data. These queries are implemented using 

aggregate as well as non-aggregate functions. Result extraction using OLAP queries involves traversal through huge number of   

warehouse records. For repeated queries, processing time can be saved by storing queries along with its result and other 

parameters like timestamp, frequency, threshold in relational database MQDB. With periodic data warehouse refresh, 

incremental results for the frequent queries are processed using data marts and results are combined with existing results. This 

paper depicts the methodology to derive results based on different aggregate functions giving the effect of incremental data. 

Some aggregate functions may require other measures to be stored for compiling results. 

 

Keywords— Data warehouse, Materialized queries, Aggregate functions,  Deriving incremental results 

I.  INTRODUCTION  

For decision making in an enterprise, management performs 

analytical processing on large amount of warehouse data. 

Data analysis is done by OLAP (Online Analytical 

Processing) queries using various aggregate functions such 

as average/ mean, sum, count, minimum, maximum, 

variance, standard deviation.  Generating results using data 

warehouse is relatively time consuming as traversal through 

huge number of records is done. For frequent OLAP queries, 

query execution time can be reduced by storing  queries 

along with its results and  metadata information such as 

timestamp, frequency, threshold etc. [1][2][3].  When same 

query is fired next time, it fetches results from MQDB in 

case of no incremental updates [2].  This results into 

significant reduction in query result retrieval time.  In case of 

incremental updates, only incremental records from data 

warehouse are processed and existing results are combined 

with incremental results [3].  Authors have suggested using 

data marts [4] to store incremental data and process query 

incremental updates. 

When query involves aggregate functions, it requires some 

processing to compute final result using existing and 

incremental results. The method of compiling aggregate 

results varies with the nature of function. Some functions 

need additional measures to be used in computing combined 

results. This paper depicts the process of deriving combined 

results using existing and incremental results for queries 

involving aggregate functions. 

The paper is organized as follows: Section II deals with 

related literature.  Suggested methodology for deriving 

results is explained in Section III while implementation of 

the approach is illustrated with examples in section IV. 

Section V concludes the research work.  

 

II. RELATED LITERATURE  

Dimitri Theodoratos and Timos Sellis [5] state that high 

query performance and low view maintenance cost are in 

conflict with each other. High query performance can be 

obtained by storing in the data warehouse the results of all 

the queries of interest. Here, maintenance cost of 

materialized queries might be high. Authors suggested that 

by materializing appropriately selected set of views in the 

data warehouse, the total query processing cost and the view 

maintenance cost can be kept at an acceptable level. The 

authors discuss as how to  select such set of views where the 

solution is a negotiation between fully materializing all 

queries of interest  and keeping replicas of all base data 

needed for answering the queries on the other hand. They  

formulated the problem by determining  set of views  for a 

given set of queries of interest against the data warehouse 

such that all queries can be answered using this set of view 

and the operational cost is minimal. The problem is modelled 

using a state space search algorithm after representing the 

views using multiquery graphs and with assumption that 

there are no space restrictions in data warehouse. 

Author P.Karthik et. al [6]  discuss ways of tuning an 

SQL query  so that  the time consumed by the query during 

runtime is decreased. The optimizer predicts the cost of using 

alternative access method used for resolving a particular 

query using statistics on tables and indexes and finds the best 



   International Journal of Computer Sciences and Engineering                                     Vol.6(5), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        836 

query plan in terms of I/O cost. The authors highlighted 

certain rules for query tuning used in their project such as 

rewriting the query using UNION instead of OR, replacing 

relational operators using BETWEEN, using formulas 

without attributes, avoiding join if not necessary, avoiding 

DISTINCT keyword, same nested query and temporary 

relations if not necessary and breaking a long query into 

parts. Authors implemented the rules assuming non-parallel 

or non-distributed database environment where database is 

not geographically separated.  

Authors Patrick O'Neil and Dallan Quass [7] observed 

that OLAP queries with aggregates and grouping can be 

evaluated using indexing and clustering. They introduced a 

third index called Group set indexes using Bit-Sliced 

indexing  and Projection indexing.  

Ziyu Lin et. al [8] discuss  about the query contention and 

scalability issue which deploys real time data warehouse 

solutions. The contention between SELECT queries and 

multiple inserts causes limitations to the scalability of the 

data warehouse. The authors deal with this issue using multi-

level cache and depicted architecture called “dynamic multi-

level caches”. For any query arriving the system, it is 

redirected to the corresponding cache for data access 

depending on its requirements.  Though query load is  

distributed  across multi-level cache instead of blocking one 

cache it has to be  updated with different length cycles 

between real time and 24 hours. 

Surajit Chaudhuri [9] quoted that the two key 

components of query evaluation component are query 

optimizer and query execution engine. He states that 

execution of query optimizer is critical since throughput for 

execution plans may vary. To solve query optimization 

search problem, a search space, cost estimation technique 

and an enumeration algorithm for searching through 

execution space must be provided. He discusses the set of 

algebraic transformations to preserve the equivalence in an 

optimizer namely: commuting between operators, reduction 

of multi-block queries to single-block, using semi-join  

techniques for optimizing multi-block queries. He discussed 

about the statistics and cost estimation for each plan in search 

space by using statistical summaries of data but restricted the  

consideration for memory resource. Also, this optimizer 

technology is not discussed for Object oriented systems and 

database systems using multimedia and web context for 

fuzzy queries and decision support systems. 

Prasan Roy et. al.  [10] highlighted that many times 

there are lot of common sub expressions in  complex queries.  

Authors addressed this problem of optimizing queries with 

common subexpressions referred as multi-query optimization 

which is based on AND-OR DAG query representation. 

Greedy strategy picks the subexpression iteratively giving 

maximum benefit  i.e. reduction in cost if the subexpression 

is materialized and reused. Their algorithm is restricted for 

only single query with intra-query common subexpressions. 

They have not considered multi query optimization of  nested 

queries as well as parameterized queries having different 

parameter values.  

Ashish Gupta et. al [11] introduce generalized 

projections (GPs), an extension for eliminating duplicate 

projections. The approach extends algorithms for SQL 

queries using distinct projections to derive algorithms for 

queries using aggregations like sum, min, max, avg and 

count. They addressed a problem in data warehousing as how 

to answer an aggregate query using materialized aggregate 

views on base tables.  Authors derived a transformation rule 

by uniting with previous proposed transformation rules. The 

new rules includes coalescing of multiple aggregate 

computations into single computations, using arithmetic 

inequality selection conditions introducing and eliminating 

aggregate computations and pushing down aggregate 

computations of a join. In this approach authors did not 

consider correlated subqueries. Also they have considered 

aggregates where the aggregate value can be computed from 

aggregates over subsets. Example: average is calculated in 

terms of sum and count.  

Sara Cohen et. al [12] commented that evaluating  a 

view and then rewriting them will yield the same result as 

evaluating the original query. Their proposed approach is 

based on syntactic characterizations of the equivalence of 

disjunctive aggregate queries. For a specific operator, several 

types of queries using views as candidates for rewritings 

have been introduced.  Then the candidate is unfolded by 

replacing each occurrence of a view predicates along with its 

definition hence, obtaining a regular aggregate query. The 

candidate will have more complex operator than the specified 

operator. Authors considered unnested queries or views with 

union, or using operators like min, max, count and sum.  

Their approach is limited to unnested queries and views are 

with union, and those employing operators like min, max, 

count and sum. 

Jonathan Goldstein and Per-Ake Larson [13] commented 

that materialized views involving aggregate functions can 

improve query processing time. They   presented a fast and 

scalable algorithm limited to only SPJG views to determine 

if a part or all of a query can be computed from the 

materialized views. A transformation based optimizer 

generates all possible rewritings of a query expression, then 

estimating their costs, and chooses the one with the lowest 

cost. Rewritten query expressions are generated by applying 

local transformation rules on subexpressions of the query. By 

applying a rule  substitute expression is produced equivalent 

to original expression. One such transformation rule is view 

matching i.e. computing a subexpression from materialized 

views.  

 

III.  SUGGESTED METHODOLOGY 

Executed OLAP queries are stored in relational database 

MQDB (Materialized Query Database) along with other 
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parameters like results, timestamp, frequency, threshold and 

number of records [1][2] [3]. 

For an equivalent query, incremental updates, if required, are 

processed using data marts.  Existing results are combined 

with incremental results to generate updated results. Result 

file and query metadata is updated.    

OLAP queries might implement aggregate functions. The 

behaviour of aggregate functions while compiling existing 

and incremental results varies with aggregate functions. 

Also, to regenerate aggregate measure using existing results 

and incremental results, one may require storing other 

measures as per need.  

The methods using which aggregate results can be computed 

are shown in Table 1. 
Table 1 Methods for computing aggregate results 

 

IV. IMPLEMENTATION 

To understand the method of deriving aggregate results 

using incremental results, we consider an example of an 

organization providing education facilities all over India. 

Data for the example considered here is collected from 

http://censusindia.gov.in.  

Consider the following instances of OLAP query with 

reference  to the collected data. 

Query 1:  Display  total number of graduate females for 

each state. 

 

select dw_states.st_name, sum(dw_zones.graduate_f) 

from dw_zones, dw_states 

where dw_zones.st_code = dw_states.st_code 

group by dw_zones.st_code 

 

Query 2: List  average  number  of  males  and  females  

pursuing  technical  diploma  course  for  different  age 

groups. 

 
select dw_age.age_value , avg (dw_zones.f_diploma), avg 

(dw_zones.m_diploma) from dw_zones, dw_age 

where dw_zones.age_id = dw_age.age_id 

group by age_id 

 

Query 3: Display the town and  the state  to which it 

belongs having minimum number of literate males and 

females. 

 

select dw_states.st_name , min(dw_zones.literate_m), 

min(dw_zones.literate_f) 

from dw_zones,  dw_states 

where dw_zones.st_code = dw_states.st_code 

group by dw_zones.st_code 

 

Query 4: Find  maximum  number  of  illiterate  and  

below primary level males and females for each state. 

 

select dw_states.st_name,  max (dw_zones.m_illiterate), max 

(dw_zones.f_illiterate),   

max (dw_zone.m_belprimary), max 

(dw_zones.f_belprimary) 

from dw_zones, dw_states 

where dw_zones.st_code= dw_states.st_code 

group by dw_zones.st_code; 

 

Query 5: Count the number of towns considered for 

analysis for each state 

 

select dw_states.st_name, count(dw_town.town_name)  

from dw_town, dw_states 

where dwt_town.st_code=dw_states.st_code 

group by dw_town.st_code 

 

Query 6:  Find the deviation in number of females 

pursuing primary education for each state 

 

select dw_states.st_name, stddev(dw_zones.primary_f) 

from dw_zones, dw_states 

where dw_zones.st_code = dw_states.st_code 

group by dw_zones.st_code   

 

Query 7: Find the variance in number of below primary 

education for males in each town. 

 

select dw_town.town_name, var(dw_zones.belprimary_m) 

from dw_zones, dw_town 

where dw_zones.town_code=dw_town.town_code 

group by dw_zones.town_code 
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A.  Initialization 

This phase generates identifiers for the tables, fields and 

aggregate functions. It is executed during application load 

time. Identifiers for tables and fields are application/ domain 

specific. Generation of identifiers are depicted in detail in [1] 

[2]. 

For the application discussed here, the identifiers defined are 

as follows: 

i. Table identifiers (table_name, table_id): 

(dw_states, 01), (dw_town, 02), (dw_age, 03), 

(dw_zones, 04) 

ii. Field identifiers For illustration we depict field 

identifier generation for table dw_states. 

(field_name, field_id): (st_code, 01), (st_name, 02), 

(entry_date, 03) 

iii. Function identifiers (func_name,  func_id): (sum, 

01), (avg, 02), (min, 03), (max, 04), (count, 05), 

(stddev, 06), (var, 07), (group by, 08) 

B. Storing queries  

Using the assigned identifiers as discussed in Initialization, 

the queries are stored in “Stored_query” table of MQDB as 

depicted in Table 2. Corresponding metadata information is 

stored in “Materialized_query” table of MQDB shown in 

Table 3.  
Table 2  “Stored_query” table of MQDB [1][2][3] 

 
sq_id query_id Table_id Field_id Func_id 

sq1 q1 04 22 01 

sq2 q1 01 02 00 

sq3 q1 04 02 08 

sq4 q2 03 02 00 

sq5 q2 04 20 02 

sq6 q2 04 19 02 

sq7 q2 04 04 08 

sq8 q3 04 07 03 

sq9 q3 04 08 03 

sq10 q3 01 02 00 

sq11 q3 04 02 08 

sq12 q4 04 05 04 

sq13 q4 04 06 04 

sq14 q4 04 09 04 

sq15 q4 04 10 04 

sq16 q4 01 02 00 

sq17 q4 04 02 08 

sq18 q5 02 03 05 

sq19 q5 01 02 00 

sq20 q5 02 02 08 

sq21 q6 04 12 06 

sq22 q6 01 02 00 

sq23 q6 04 02 08 

sq24 q7 04 09 07 

sq25 q7 02 03 00 

sq26 q7 04 03 08 

 
Table 3  “Materialized_query” table of MQDB [1][2] 

 

C. Processing equivalent  queries with aggregate functions  

When a query is fired, it is first searched in “Stored_query” 

table of MQDB, for its equivalent query.  Process to 

determine equivalence between two queries is illustrated by 

the authors in [1][2][3].  For processing   incremental updates 

of the query, data mart [4] is used.  Existing results are 

combined with incremental results to generate updated 

results. Methods for   combining    existing results with 

incremental results for queries involving aggregate functions 

varies with the function as described in Table 1.  

We illustrate deriving aggregate results using existing and 

incremental results for Query 2 and Query 7. 

Example 1: Compiling Average value for Query 2 
Average value stored as existing result for Males and 

Females pursuing diploma belonging to age_id = ‘g1’  is 

664.42 and 681.40 respectively.  

Incremental average value calculated using data mart for the 

same criteria  is 993.93 and 1112.83 respectively.  
Hence combined average calculated using method discussed 

in Table 1  is shown in Table 4. 

 
Table 4 Combined average derived for Query 2 

Gender n1   1 n2     Combined average 

Males 722 664.42 43 993.93 682.94 

Females 722 681.40 43 1112.83 705.65 

 

Here, we need to stored n1 for each record in result file for 

calculating combined average value. Result file for the query 

with additional attribute will be as shown in Table 5. 

 
Table 5 Updated result file for Query 2 with additional attribute (n) 

Gender Average number 

pursuing diploma 

Number of 

records (n) 

Males 682.94 765 

Females 705.65 765 

 

Where,  

Number of records (n) = total count of records considered 

for calculating combined average value (n1+ n2) 

 

Example 2: Compiling Variance for Query 7 

Variance calculated 38065.39 for  town name ‘Jaipur’  

considering 30 entries is stored as existing result. 

Incremental variance value calculated considering 20 new 
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entries for the same town from  data mart is 14242.25. 

Hence, deriving combined variance  is shown in Table 6.   

 
Table 6  Combined variance for Query 7 

 
 

Hence, for deriving combined results for aggregate functions, 

majorly for average, standard deviation and variance; 

additional measures are required to be stored. Count of 

records considered for calculating average value and average 

value for calculating combined average in case of variance or 

standard deviation needs to be stored in result file. In this 

case, query result file with additional attributes is shown in 

Table 7. 

Table 7    dated result file for Query    ith additional attribute  n    1   

 
Town 

name 

Variance for 

below primary 

male 

Number of 

records (n) 

   rag  

 a u      1  

Jaipur 29419.24 50 279.436 

 

Where,  

Number of records (n) = total count of records considered for 

calculating average value (n1+ n2) 

Average value    1     ombined avera e calculated    c   

   1 is updated with new combined average every time 

combined variance or combined standard deviation is 

calculated) 

V. CONCLUSION  

Storing queries and then compiling existing and incremental 

results, eliminates the need to traverse through huge number 

of records in data warehouse. This significantly reduces 

query execution time for frequent OLAP queries. For 

deriving combined results related to aggregate functions 

especially in case of calculating average, standard deviation 

and variance, storing additional measures like count and 

average value in result file is required 
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