
 © 2018, IJCSE All Rights Reserved 78

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-9, Sept. 2018 E-ISSN: 2347-2693

An Advanced Coupling Complexity Metric for Evaluating the Quality of

OO Software Modules

N. Vijayaraj
1
, T.N. Ravi

2*

1
Department of Computer Science, Srimad Andavan Arts and Science College, India

2
Department of Computer Science, Periyar E.V.R. College, India

*Corresponding Author: proftnravi@gmail.com

Available online at: www.ijcseonline.org

Accepted: 18/Aug/2018, Published: 30/Sept./2018

Abstract: Software metrics plays a major role in assessing the quality of software in testing process. Software metrics

elucidates the complexity, reusability, maintainability and understandability of the software code. Software complexity metrics

are one of the emerging types of software metrics that focuses on the cognitive analysis of software in terms of

understandability and maintainability. In other words, it can be rephrased as the effort taken to comprehend the program code

for future enhancements. Complexity metrics has a direct impact with the analysis of complexity in software through an

intrinsic study on the object oriented features. This paper proposes a novel Coupling Complexity Metric (IMFC), to highlight

the complexity that incurs with coupling and weighs the complexity of a class.

Keywords: Coupling, CBO, reusability, maintainability, modifiability

I. INTRODUCTION

Software metric is the process of continuous evaluation of

software. Software metrics employ techniques and

algorithms with the primary goal of delivering quality

software product. The term metric denotes a specific set of

evaluation measurements that are to be applied on particular

product or item so as to prove its credibility or usability in

its real time applications. Thus, the goal of software metrics

are to assess, predict and validate the software in terms of

quality. Software metrics are usually incorporated with

testing phase of software development life cycle. Software

testing not only verifies the requirements, design, and

functionalities of code but also to ensure the qualitative

writing of program.

At present, Object-Oriented Programming Language

(OOPL) is the most popular and widely used software

programming paradigm in IT industries since because of its

various advantages of software reuse, ease of maintenance

and extensibility and lets a paradigm shift from procedure

oriented programming (POP) to Object Oriented

Programming (OOP) almost in all computing domains. With

this increased complexity and the multidimensionality of OO

systems, it is inevitable for the programmers to set out the

quality parameters for automatically measuring the quality

of OO software in the development stage itself. Therefore,

the present system necessitates more researches from

different perspective on the assessment of complexity in

software code. There have been continuous efforts made

from numerous researchers for evaluating the complexity of

software code since 1994. The very most foundation of

software metric suite is proposed by Chidamber and

Kemerer (CK) metrics and the other is Metric for Object

Oriented Design (MOOD) from Li and Hendry metric. From

then on, the research on software metric has been emerging

and has been found as a useful practice to be implemented in

software development.

Software complexity has been proven to be one of the major

contributing factors of the cost of developing and

maintaining software. Software complexity is also a key

quality indictor and has an impact on many software

qualities attributes such as efficiency, reliability and

testability. Complex software often challenges the

programmers for future modification or change in the

functionalities of software code. Moreover, the extensibility

of complex software is nightmare and takes much of

programmer’s time for adding new modules in the existing

system. There are lots of complexity metrics proposed for

traditional procedure oriented programming. But, the

proposal of software complexity metrics for the intrinsic

characteristics of object oriented programming is still

diminutive and yet to be proposed for the better development

of OO software.

A software complexity metric is defined as a metric that

specifically measures the complexity involved for

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 79

comprehending, understanding and modifying the software

code. The verification of complexity of code depends on

how well the modularization of the software program is

constructed. The two important factors that can effectively

assess the complexity in modularization of the program code

are coupling and cohesion. Coupling is the measure of the

degree of relationship between modules. The measurement

of coupling over the structured development context was

first defined by Stevens et al. during the year 1974 [1].

Coupling measures the interdependencies between one or

more objects. For example, objects A and B are said to be

coupled if a method of object B accesses or calls a method

or variable in object A. A classic design of the object-

oriented programming necessitates the modules to be

designed with low coupling [2]. As low coupling has a direct

impact with the quality of good program code, it may be

obligatory for the software to be assessed with the

identification of types of coupling in object oriented

programming. The types of coupling called, subclass

coupling and temporal coupling [3] are the two streams of

object oriented coupling where the prior describes the

relationship between a parent and its children and the

posterior bundles two actions into one module as they just

happen to occur at the same time. Cohesion refers to the

degree to which the elements within the module are

integrated within the methods of the identical module. There

are seven probable types of cohesion exists in a module such

as co-incidental, logical, temporal, communicational,

sequential, procedural and functional with which co-

incidental refers to a poor representation of module and

functional cohesion refers to a module design with high

integrity.

Coupling in software has been linked with maintainability

and existing metrics are used as predictors of outside

software quality attributes such as fault-proneness, impact

analysis, ripple effects of changes, changeability, etc. Many

coupling measures for object-oriented (OO) software have

been planned each of them capturing precise dimensions of

coupling.

II. REVIEW OF LITERATURE

A). Coupling Between Objects (CBO)

CBO for a class is a count of the number of other classes to

which it is coupled. CBO relates to the notion that an object

is coupled to another object if one of them acts on the other,

i.e., methods of one use methods or instance variables of

another. As stated earlier, since objects of the same class

have the same properties, two classes are coupled when

methods declared in one class use methods or instance

variables defined by the other class. Excessive coupling

between object classes is detrimental to modular design and

prevents reuse [4]. The more independent a class is, the

easier it is to reuse it in another application. In order to

improve modularity and promote encapsulation, inter-object

class couples should be kept to a minimum. The larger the

number of couples, the higher the sensitivity to changes in

other parts of the design, and therefore maintenance is more

difficult. A measure of coupling is useful to determine how

complex the testing’s of various parts of a design are likely

to be. The higher the inter-object class coupling, the more

rigorous the testing needs to be.

B). Message Passing Coupling (MPC)

The Coupling through Message Passing (CTM) defined as

the number of different messages sent out from a class to

other classes excluding the messages sent to the objects

created as local objects in the local methods of the class.

Two classes can be coupled because one class sends a

message to an object of another class, without involving the

two classes through inheritance or abstract data type.

Theoretical view given was that the CTM metric relates to

the notion of message passing in object-oriented

programming. The metric gives an indication of how

numerous methods of other classes are desirable to fulfill the

class’ own functionality [5].

C). Coupling Factor (CF)

Coupling Factor (CF) Coupling can be due to message

passing (dynamic coupling) or due to semantic association

links (static coupling) among class instances. It has been

known that it is desirable that classes communicate with as

few other classes and even when they communicate; they

exchange as little information as possible [6]. It is formally

defined as:

∑ ∑ [()]

 … (1)

Where, TC is the total number of classes

 () {

… (2)

Couplings due to the use of the inheritance are not included

in CF, because a class is heavily coupled to its ancestors via

inheritance. If no classes are coupled, CF = 0%. If all classes

are coupled with all other classes, CF = 100%.

D). Response for class (RFC)

The response set of a class (RFC) is defined as set of

methods that can be executed in response and messages

received a message by the object of that class. Larger value

also complicated the testing and debugging of the object

through which, it requires the tester to have more knowledge

of the functionality. The larger RFC value takes more

complex is class is a worst case scenario value for RFC also

helps the estimating the time needed for time needed for

testing the class.

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 80

III. METHODOLOGY

This section explains the proposed software metric called

Inverse Module Frequency Coupling (IMFC). The objective

of the metric is to exhibit the quotient of coupling in inter-

module attributes in both conventional and OO software.

The method computes the frequency of each attributes

within software modules and calculates the incidence of

those attributes using the method inverse of frequency of

variables. The idea has been acquired from the concepts of

clustering in data mining. When the documents are

clustered, the term frequency and inverse document

frequency have been computed to cluster similar documents.

The documents that share more number of terms with the

same frequency are grouped in a cluster. Similarly, the

modules that share the common attributes between the

modules are identified and divided by the total number of

modules for measuring the level of coupling in the software.

The following Equation Equ.1 denotes the formulae for the

measuring of inter-module coupling of attributes.

∑ (

 ()
)

 ()
 … (3)

 … (4)

Where,

iis represents an attribute from 1….n

m denotes the total number of modules in the software

NM (i) is the number of modules with attributes ‘i’ in it

For instance, table 1 denotes the description of software with

modules that performs arithmetic operations. Each module

performs a specific arithmetic operation such as addition,

subtraction, multiplication and division. Assume that there is

a parent module that initiates variables v1,v2 and v3. Each

module shown in table 1 is the client of parent module.

Table 1. Description of Modules with High Coupling

Program

Module

Name

Attribute

Names

Method

Name

Addition v1,v2,v3 Add()

Subtraction v1,v2,v3 Sub()

Multiplication v1,v2,v3 Mul ()

Division v1,v2,v3 Div ()

The coupling value of this software can be calculated as

follows:

Variable ‘v1’ has been used in almost all modules in the

software. Thus, the inverse attribute frequency of variable

‘v1’ is computed as the fraction of total number of modules

by the number of modules that uses variable ‘v1’. Total

number of modules in the software is 4. The number of

modules uses the variable ‘v1’ is also 4, hence the fraction is

1. Log (1) is 0. In this way, the inverse frequency of all

variables is calculated. Since, all three variables ‘v1’,’v2’,

and ‘v3’ are shared in all four modules the inverse frequency

is ‘0’. The IMFC of the software is calculated as the sum of

inverse frequency of all variables by the total number of

modules. Thus, the sum is ‘0’ and the fraction of ‘0’ divided

by ‘4’ is ‘0’. The IMFC value is ‘0’ for the software, which

depicts the degree of relationship between the modules are

high.

Another example of software with low coupling is denoted

in Table 2 proposed for the same type of software.

Table 2. Description of Modules with Low Coupling

Program

Module Name Attribute

Names

Number of

Methods

Addition v1 Add()

Subtraction v2 Sub()

Multiplication v3 Mul()

Division v4 Div()

The variable ‘v1’ has been used only in Addition module.

Thus, the inverse attribute frequency of variable ‘v1’ is log

(4/1) which is 0.60205999132. The sum of inverse module

frequency of all variables is 2.40823996531. IMF of

software is calculated as the fraction of 2.40823996531with

log (4) which is 4. The IMF value is again divided by total

number of modules to compute IMFC which is 1. Thus, the

coupling factor of inverse module attribute frequency of the

given software is 1. Since, the modules do not share any

variable the coupling factor of the software depicted in table

2 is 1, which depicts the degree of relationship between the

modules are low. Table 3 denotes the comparison of the

proposed IMFC metric with the traditional Coupling CBO

metric.

Table 3. Comparative Analysis of IMFC with CBO

Program Name IMFC CBO

High Coupling

Program
1 4

Low Coupling

Program
0 0

IV. RESULTS AND DISCUSSION

The result of CBO does not depict the severity of

coupling in the software. However, the empirical studies

show that the software with CBO value more than 50 is

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 81

complex. But, the value 1 in IMFC depicts that the

software is highly complex, means, when the modules

share all the variables among them and 0 if no variable

is shared.

Fig.1. Comparative Analysis of IMFC with CBO

The details of the samples were collected through a

questionnaire. There were two lower and higher complexity

versions of stock market program, where each pair depicts a

perfective and corrective maintenance tasks. The samples

were split into two groups consists of members each and

were asked to yield the results of the programs by

understanding the flow of classes in a module (Perfective),

and also instructed to modify the segment of code

(Corrective). The starting and ending time to understand and

modification of the samples was noted. The proposed metric

makes a clear distinction between high and low couplings.

Thus, has proven to be better than the traditional ones. The

pictorial representation of the comparative study is shown in

Figure 1.

V. THEORETICAL VALIDATION OF IMFC

Many inventions have suggested that the software metric

should satisfy certain properties for their real time usability

in software testing. Basili and Reiter [8] suggested that

software metrics should be sensitive to external observable

differences in development process, and should correspond

to intuitive notions about the characteristic differences

between the software artifacts being measured. Weyuker’s

has also proposed an authorized list of properties for

software metrics that could be evaluated on the existing

software metrics [9]. The notions of the Weyuker’s

properties include permutation, interaction, monotonicity,

non- coarseness. Many researchers have recommended

various properties uniqueness and so on. The challenge in

this section is to evaluate the proposed IMFC against the

nine properties of Weyuker’s to prove its usefulness.

Though, several Weyuker’s properties are considered to

be most significant to classify the complexity of a measure.

Weyuker’s properties state that

Property1

Non-coarseness:

Not all class can have the same complexity. If there are

‘n’ numbers of modules in the software, IMFC does not rank

all ‘n’ modules as equally complex.

Property 2

Granularity:

Let ‘r’ be a non-negative number and there could be

only finite number of modules have the complexity r. If the

number of modules in large scale system is finite, the

complexity value of IMFC is also finite. Hence this property

is satisfied.

Property 3

Non-uniqueness:

This property implies that there may be number of

modules have the same complexity. IMFC abides this

property, if the hierarchies of class in the modules are

similar.

Property 4

Design details are important:

The property affirms that though if two classes have the

same functionality, they may differ in terms of details of

implementation. If the design implementation of two

modules is different, IMFC produces different complexity

values for each module.

Property 5

Monotonicity:

Let the concatenation of two modules R and S be R+S.

Hence, this property states that complexity value of the

combined class may be larger than the complexity of the

individual classes R or S. IMFC abides this property if there

is a possibility of inheritance between the modules R and S

while concatenation.

Property 6

Non-equivalence of interaction:

This property states that if a new module is added to the

two existing modules R and S which has the same module

complexity, if a new module T is added with both modules,

the module complexities of the two new combined modules

may be different or the interaction between R and T may be

different than the interaction between S and T resulting in

different complexity values for R + T and S + T. IMFC for

sure yields different complexity values for both modules R

and S since T is dependent on the fitness of inheritance with

the existing modules R and S.

1

4

0

1

2

3

4

5

IMFC CBO

M
et

ri
c

V
a

lu
e

(i
n

 n
u

m
b

er
 u

n
it

s)

Metric Name

COMPARATIVE ANALYSIS OF

IMFC WITH CBO

High Coupling
Program

Low Coupling
Program

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 82

Property 7

Permutation:

There are program bodies I and J such that J is formed

by permuting the order of the statements of I and (|I| = |J|).

This property is not taken into the consideration of object

oriented metrics.

Property 8

Renaming:

If module R is renamed as S then |R| = |S|. This property

requires that renaming a module should not affect the

complexity of the module. IMFC does not have any impact

over the change of name of module, hence IMFC satisfies

property 8.

Property 9

Interaction increases complexity:

The property says that the class complexity measure of

a new class combined from two classes may be greater than

the sum of two individual class complexity measures. This

property is not satisfied with IMFC as the complexity of

combined modules could be possibly equal to the individual

complexity but not greater. Summary of the IMFC validation

is described in Table 3.

Table 3. Evaluation of IMFC Metric with Weyuker’s

Properties

Metric P1 P2 P3 P4 P5 P6 P7 P8 P9

IMFC Y Y Y Y Y Y N Y Y

CONCLUSION

Coupling plays a vital role in assessing the quality of

software modules. Coupling also reflects in the cognitive

analysis of program since a module with low coupling is

easily interpretable and understandable than the module with

high coupling. This paper proposed a new software coupling

metric called IMFC for assessing level of coupling by

assigning cognitive weights of variables inside a class. .

Moreover, the higher complexity in software leads to more

cost expensive and less maintainability of software. The

assurance of less complexity software is of been great

interest to researchers since the early days of development.

Hence, the proposed IMCF metric will be helpful for the

developers to identify the flaws in their program in the

development stage itself.

REFERENCES

[1]. S.R. Chidamber and C.F. Kemerer. Towards a metrics suite for

object-oriented design. In Object Oriented Programming Systems

Languages and Applications, pages 197-211, Phoenix, Arizona,

USA, November 1991.

[2]. Christodoulou. D and Qi.X,“Difficulties in Software

Measurement”,http://www.dcs.shef.ac.uk/~m3xq/om6660/diff_sm

.pdf.

[3]. Henderson-Sellers. B, “Object-Oriented Metrics: Measures of

Complexity”, Prentice Hall, New Jersey, 1996.

[4]. Chidamber, Shyam and Kemerer, Chris, “A Metrics Suite for

Object Oriented Design”, IEEE Transactions on Software

Engineering, June, 1994, pp. 476-492.

[5]. W.Li,“Another metric suite for object-oriented programming,

“Journal of Systems and Software, vol. 44, no. 2, pp. 155–162,

1998.

[6]. Abreu F.B. and R.Carapuca “Object-Oriented Software

Engineering: Measuring and Controlling the Development Process

“Proceedings of the 4th International Conference on Software

Quality, McLean, Virginia, USA, and October, 1994.

[7]. Cheolhyun Park, Junhee Kim, and Eunseok Lee. Using Page Rank

Algorithm to Improve Coupling Metrics. ACEEE Int. J. on

Information Technology, Vol. 02, No. 01, March 2012

[8]. Basili, Victor R., and Robert W. Reiter Jr. "Evaluating

automatable measures of software development" In Proceedings

on Workshop on Quantitative Software Models, pp. 107-116.

1979.

[9]. Michael, James Bret, Bernard J. Bossuyt, and Byron B. Snyder.

"Metrics for measuring the effectiveness of software-testing

tools." In Software Reliability Engineering, 2002. ISSRE 2003.

Proceedings. 13th International Symposium on, pp. 117-128.

IEEE, 2002.

