
 © 2018, IJCSE All Rights Reserved 94

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-7, July 2018 E-ISSN: 2347-2693

Analysis of Radio Resource Energy Consumption Pattern in Cellular

Network

S. Pandikumar

1*
, G. Sujatha

2
, M. Sumathi

2

1
Research Scholar, Madurai Kamaraj University, India

2
Department of Computer Science, Sri Meenakshi Govt Arts College for Women, Madurai, India

*Corresponding Author: spandikumar@gmail.com

Available online at: www.ijcseonline.org

Accepted: 18/Jul/2018, Published: 31/July/2018

Abstract —In the wireless communication especially in cellular network, energy efficiency is a major concern among other

issues, specifically in high-speed data network i.e. 3G/4G. A Smartphone is a widely used handheld device to surf data in

3G/4G. Unfortunately, one of the constraints of Smartphone is having limited battery backup, which always makes the user

inconvenience. Increasing of battery backup is not merely a solution to increase the user experience, because the growth of

mobile technology is 25% per year but at the same time battery capacity increases 10% per year; it‘s not a balanced. So that the

researchers essentially focus on energy efficient development to extend battery life. This paper analyzes various factors

influences of power consumption and their characteristics (like RRC state transitions, inactivity timer setup and screen On/Off)

and the paper also reviews the proposals of energy-aware developments through real-time measurements.

Keywords—RRC State Transition, Inactivity Timers, Keep-Alive Messages, Energy Efficient Strategies, Energy aware

3G/4G.

I. INTRODUCTION

In the 21
st
 century, energy efficiency is almost the slogan of

every field. Smartphone has become a very popular gadget

today; not only a gadget but also the people consider this as

their PA (Personal Assistant). Most of the consumer services

like banking, internet, multimedia etc. are availed in

Smartphone‘s. In high speed data network like 3G/4G

requires high energy cost than the previous one [1] and so the

user‘s equipment lost their battery very often .The entire

network efficiency and user‘s experiences are fully

depending on battery backup. So, energy efficiency is the

very important factor for Smartphone development. The

increase of battery backup is not a suitable option for

improving Smartphone‘s operational time because high end

software and high speed network drain power enormously.

3G networks consume more significant energy than 2G

network and give the user better experience than the other

one. In WCDMA technology, Total transmission energy is

entirely related to its resource allocation, because radio

resources are controlled by RRC (both 3G/4G networks).

The RRC (Radio Resource Controller) is the main entity for

radio resource management and it controls other entities of

RNC (Radio Network Controller) like RLC, MAC, PDCP

and BMC [1] (Figure 1). Based on the traffic, RRC creates a

radio bearer with UE (user equipment) using logical channels

and maintain a connection states and this state maintains both

in UE and RNC. Each state consumes significant amount of

energy. CELL_DCH consumes higher energy than

CELL_FACH and PCH channels [3]. The state of the UE

directly depends on the user traffic and also the characteristic

of generated and received traffic of the UE is directly

coupled with RRC state transition on the UTRAN (Figure 2

and Figure 3).

Figure 1. Relationship of RRC with radio interface entities

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 95

Figure 2. RRC states during data transmission

Figure 3. RRC states with related power consumption

This paper analyzes various parameters, which influences the

network‘s power consumptions like inactivity timers, fast

dormancy and screen On/Off status. This paper reviews four

researches, based on the energy circumstances and highlights

the results of their experiments. All these papers insist,

should configure inactivity timers effectively and manage

keep-alive messages. All methodologies and working

procedures of the 3G and 4G network quoted in this paper

are given or proven by real time measurements and images.

Rest of the paper is organized as follows, Section I contains

the technical foundation of high-speed mobile network like

3G and 4G , Section II contain the technical background of

smartphone apps and states with real time measurements

Section III contain the architecture of 3G network and

correlation between the always-on apps and mobile network.

This part elaborately discusses all the aspects of inactivity

timers, state transition and how always-on apps control the

states with results. Section IV contains the experimental

setup and its details and Section VIII concludes research

work with future directions.

II. INFLUENCE OF ALWAYS-ON APPLICATIONS

The major energy consuming unit of the mobile phone is

categories into

 Display Unit
 Core Processing Unit
 Network Unit

Those three are the logical categories of energy consuming

units. Display and processing units are apart from our

research area. The network unit of the mobile phone is the

most energy consuming unit [2, 3]. The core network

operations are Call Management, Cell Updates, and Paging

etc. All of the above operations are performed by mobile

operating system and service provider by default without the

user influences. Apart from this the network unit is utilized

or controlled by Mobile Apps for their transactions.

Apps are most important one in smartphone. The Apps is

nothing but the special program for smartphone designed for

particular operations. All the Apps should respond to the user

instruction and perform but at the same time it does

something by its own. For example Apps update themselves,

send data to servers, and messenger apps always connect

with their server etc [4].

The study [3] exposes 61% of the apps usage energy is

spending in their IDLE states. This data confirms the mobile

apps are consuming energy un-necessarily without the

knowledge of the users. The data collected from 403

applications from 23 different categories (entertainment,

sports, utility, life style etc). These apps size have ranged

from 1.6 KB to 18 MB. The idle time energy consumption is

measured by the mechanism of splitting the App state into

three categories (Figure 3) and they are

Figure 4. Apps State

PureIdle state means the app is waiting for user input or

asynchronous sensor data. During this time no app code is

running, but the app is still consuming energy.

APIIdle means app waiting due to sleep or wait for API

calling.

The result of PureIdle, APIIdle and NonIdle consumes

energy of 36.6%, 25.0%, and 38.4% respectively [3] (Figure

4). The results insist mere code optimization of the

applications is not sufficient to reduce the overall app energy

consumption.

Calculation on each of these three categories as follows:

First, we calculate APIIdle as the sum of the energy for all

java.lang.Thread.sleep and java.lang.Object.wait series of

APIs. The energy of an API is the sum of energy samples

PureId

le

NonIdl

e

Apps

State

APIIdl

e

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 96

between its starting and ending timestamps. Second, we

calculate the NonIdle energy as the sum of the energy of all

execution paths minus the APIIdle energy. The energy of a

path is the sum of all energy samples between the entry and

exit timestamps of the path. This includes the energy of

sleeping APIs called along the path so we subtract their

energy from the summed value to get NonIdle. Lastly, we

calculate PureIdle as the total energy minus APIIdle and

NonIdle. PureIdle represents all the energy that has been

consumed while the application is running but not caused by

any code of the application.

Figure 5. Profiling Youtube while its running and IDLE state

Figure 6. Profiling Cricbuzz while its running and IDLE state

The IDLE state energy consumption is not entirely related to

network communication but in some way the App consumes

energy unnecessarily (Figure 5 and Figure 6). The

experimental data collected from two frequently used Apps

YouTube and CricBuzz and it clearly says the average

energy consumption of Youtube and Cricbuzz is 810 mW

and 905 mW respectively. But both the Apps Youtube and

Cricbuzz consume 420 mW and 460 mW respectively at the

IDLE state that means one third of active state energy.

III. RADIO STATES AND ALWAYS-ON APPLICATIONS

Energy consumption of always–on application in WCMA

networks is more significant. The keep-alive messages of

always–on applications highly interact with RRC and this

process leads to unacceptably short battery life of mobile

phones [4, 5].

The cloud-based mobile applications rely on the Internet

connectivity in order to keep their contents up-to-date

and present them to the users through notifications.

Therefore, the cloud-based applications require toggling the

cellular radio module to the active state occasionally to

transmit/receive data during the update intervals (Figure 12

and Figure 13). In order to reduce the number of

oscillations between the states, the radio module preserves

its state for a certain amount of duration after being

toggled ON, even if the flow of packets in a user session is

completed. Therefore, upon activation, the radio module

consumes power at least for a constant period of time. As it

is common to run a high number of cloud-based

applications in the background simultaneously, high

number of requests for toggling the radio module to the full

active (i.e., the most power-consuming) state

asynchronously would toggle the radio interface ON and

OFF at different times, which in sum might increase the

total energy consumption.

However, a mechanism that can control the cellular

network interface of the smartphone in a way to toggle

the mobile data state at particular periodicity with

various durations would let all the applications' network

activities to be accomplished at fixed and predefined time

intervals. In other words, this would generate small bursts

that are spaced out with some intervals into rather fewer

number of large bursts (a burst is defined as a complete data

transfer of any size). If small bursts are spaced out at regular

intervals, the device must constantly ramp up and then down,

not only draining the battery but introducing a two-second

delay for each new connection (Figure 9.). Large bursts are

more efficient since they entail fewer promotions and fewer

demotions (Figure 14).

The state transition process are occur based on traffic volume

and inactivity timers (T1, T2 and T3), each timer set in

between state (Figure 7.).

Figure 7. RRC State Transition and Inactivity Timer

Active State

Inactive

Power

CPU Load

Active

Inactive

State

CPU Load

Power

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 97

The time period of the inactivity timer is set based on

network operators and RRC configurations.

T1 is an inactivity timer that is used in the CELL DCH state,

and is reset whenever there is traffic. The T1 value may rely

on the DCH data rate. In the RNC the default values were 5

seconds for 8–32 kbit/s, 3seconds for 64 kbit/s, and 2

seconds for 128 kbit/s and faster.

T2 is an inactivity timer in the CELL FACH state; the state

machine will enter either the CELL PCH state (if used) or

idle state after being inactive for T2 seconds. In the same

RNC implementation, the default value for T2 was 2 seconds

(Figure 10.).
T3 is a timer used in CELL PCH. After staying in the CELL
PCH for T3 seconds, the RRC connection will be released.
This is typically a very long timer (several minutes or even
tens of minutes).

Figure 8. Overall Session Log

Figure 9. Transmission of packets in the Session

Figure 11. RRC State Transitions

Small payloads

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 98

Figure 12. Periodic data transmission and state change of WhatsApp Application

Figure 13. Periodic data transmission and state change of CricBuzz Application

Figure 14. Packet counts and payloads

Figure 10. Typical RRC Configuration

During the periodic Always-On messages, the RRC state

transitions are

1) If CELL_PCH state enabled in RNC, then the state

sequence is IDLE CELL_FACH CELL_PCH

CELL_FACH CELL_PCH etc (Figure 11. a)

If CELL_PCH is not enabled the RRC connection will

created directly to the CELL_FACH then the sequence is

CELL_FACHIDLEFACH etc (Figure 11.b)

2) If the RRC does not support 1 and 2 the sequence is

CELL_DCH CELL_FACHIdle CELL_DCH

CELL_FACH etc (Figure 11.c)

Figure 15. Transmitted packet details

While testing the WhatsApp itself was sent periodic data—

each constituting only 35 bytes or nearby—were being

transmitted at 80-second intervals (Avg). Every single KB of

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 99

data Consumes 17.2 joule energy. During test period, the

application sends 40 packets with 2,756 bytes data (Figure

14 and Figure 15).

Energy consumption of single Always-On message

transitions varied between 0.15 mAh and 0.6 mAh in 3G and

between 0.11 mAh and 0.13 mAh in 2G [6]. In the above

measurements environment is,
 PCH state was enabled
 Inactivity timer values are RRC default and

 Intervals of keep-alive messages between 20 sec to
300 sec (Table 1).

Table 1. Power consumption of Keep-Alive messages

Interval

(Sec)

Avg Power in 3G

(mA)

Avg Power in 2G

(mA)

20 34 29

40 24 16

150 16 9.1

300 14 7.3

infinite 6.1 5.2

The second result produced by changing the values of T2

then the result are highlights that (Table 2) shorter T1 and T2

timers produced better the battery performance of always-on

applications. It proves that state transition to PCH state

through shorted inactivity time consumes less power than

DCH and FACH states [9].

Table 2. Power consumption of different T2 values

T2

(Sec)
CELL_PCH

Avg Current In 3G

(mA)

Cost of a single

keep alive (mA)

2 Enabled 20 0.15

5 Enabled 30 0.27

10 Enabled 45 0.43

2 Disabled 61 0.61

5 Disabled 74 0.75

10 Disabled 98 1.0

The parameters of RRC state machine not only impacts UE

energy consumptions, also network managements and user

experiences. State machines are static nature and it treats all

traffic with same inactivity timer, making it very difficult to

trade-off among radio energy consumption, network

management overhead, user efficiency and performance. We

use two algorithms for inferring state promotion and

demotions [6]. The state promotions are happened based on

traffic volume which is measured in RLC buffer and state

demotions are happened based on inactivity timers.

Algorithm 1: State Promotion

Step 1: Keep UE on IDLE.
Step 2: UE sends min bytes. Server echoes min bytes.
Step 3: UE sends max bytes. Server echoes min bytes.
Step 4: UE records the RTT ∆t for Step 3.
Step 5: Report P1 if ∆t ≫ normal RTT. Otherwise report P2

Algorithm 2: State Demotion

Step 1: for n = 0 to 30 do
Step 2: UE sends max bytes. Server echoes min bytes.
Step 3: UE sleeps for n sec.
Step 4: UE sends min bytes. Server echoes min bytes.
Step 5: UE records the RTT ∆t1(i) for Step 4.
Step 6: end for
Step 7: for n = 0 to 30 do
Step 8: UE sends max bytes. Server echoes min bytes
Step 9: UE sleeps for n sec.
Step 10: UE sends max bytes. Server echoes min bytes.
Step 11: UE records the RTT ∆t2(i) for Step 10.
Step 12: end for
Step 13: Report D1 if ∆t1() and ∆t2() are similar, else report
D2.

Through these algorithms one can trace power consumptions

and performances of UE. Power consumptions of RRC states

vary from network to network. Usually DCH consumes high

power and transfer high bandwidth. FACH consumes low

power low bandwidth (Table 3). IDLE state consumes almost

neutral.

Table 3. RRC States and its power consumption

States Power Consumption

DCH 800 mW

FACH 460 mW

IDLE 0

The experimental result shows the state transition of

DCHFACHIDLE consumes more power and network

overhead than DCHFACHPCHIDLE. The RRC

connection establishment and release exchange ten of signals

between UE and UTRAN, every signaling message

consumes certain energy and time delay even every RRC

connection establishment take 2 sec delay [7]. This affects

user experience and increase network overheads. The paper

recommends the various modes for different application data

to ensure high UE battery life (Table 4).

Table 4. Data level wise state change

Application Data Level State

Email > 2 KB DCH

Keep Alive < 1 KB FACH

Instant Messaging (IM) < 1 KB FACH

Web browsing > 10 KB DCH

Even the energy consumption not only depends RRS states

and Apps states, its rely on screen states also. Normally

Smartphone‘s screen is having two statuses called Screen On

and Screen Off, in 3Gand 4G network and the IP data are

sent both Screen Off and Screen On states. In this research

experimental data were collected from 20 smartphone users

over 5 moth duration, through this data (118 GB) the

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 100

UMICH data set [8] was built and specify measurement

entities like BT (burst threshold) and IBT (inter-burst time).

Foremost the mobile apps are categorized into gathered and

scattered. If the application sends small packets and frequent

short time keep-alive messages, it group as scattered ex.

Facebook, skype, otherwise gathered ex. Gmail, google

music. Totally 131.49 million packets are transmitted (both

uplink/downlink) in that 55.13% packets are send in Screen

On stats and 35.84% send in Screen Off State. In Screen Off

transmission the packet payload is very small and it‘s

transmitted more often (Table 5).

Screen On state commits less burst than Screen Off state

because in Screen Off state, small keep-alive messages are

sent more often by the applications. It outlets burst are

smaller in size and duration. This behavior commit longer

channel occupation time in high energy RRC state and

therefore incur high energy consumption. Especially the

scattered group of applications commits small burst in more

often (Table 6). The result (Table 6) shows that some of the

applications transfers more payload during their Screen Off

session for ex Genie Widget, likewise 85.45% of all yahoo

sportacular payloads are transferred in their Screen Off state.

Facebook transfer totally 2,00,000 keep alive message send

in Screen Off state and these packets occupy avg of 0.86 sec

burst time and avg uplink and downlink payload is 318.83 B

and 1.98 KB respectively.

Table 5. Application wise data transmission

a
 Payload refers to the total screen-on/off payload, and % is relative to the total payload of all traffic.

b
 % relative to the total number of packets of all traffic.

c
 Off payload refers to the screen-off payload of the specific application, and % is relative to the total payload of this
application.

d
 % of downlink screen-off payload of the specific application relative to the total screen-off payload of that application.

f
 % of downlink screen-off packet count of the specific application relative to the total screen-off packet count of that
application.

Traffic Type
Payload

(GB) /%a

% of

downlink

payload

% of

packets (×

106)/%b

% of

downlink

packets

Avg

downlink

packet

payload

size (B)

Avg

uplink

packet

payload

size (B)

Screen-On 51.47/64.31% 96.31% 72.50/55.13% 60.71% 1126 67

Screen-Off 21.82/27.26% 93.52% 47.14/35.84% 52.60 % 823 63

Process Name
Off payload
(GB) /%c

% of
downlink off
payloadd

% of off
packets
(×106) /%e

% of
downlink
off
packetsf

Avg
downlink
off packet
payload
size (B)

Avg
uplink off
packet
payload
size (B)

Genie Widget 1.76/72.21 % 97.01% 3.80/73.16% 49.97% 901 28

Google Music 3.13/57.14 % 99.91% 3.30/57.02% 68.60% 1384 3

Epicurious

Recipe
1.65/70.05 % 99.22% 2.69/69.29% 50.46% 1212 10

mediaserver 2.39/10.09 % 99.77% 2.66/11.05% 66.95% 1342 6

android.proces

s.media
2.35/28.42 % 99.98% 2.37/29.06% 71.55% 1388 1

skypekitg 0.04/25.54 % 48.44% 2.07/46.73% 48.32% 22 22

Facebook 0.46/32.96 % 86.13% 1.95/40.67% 42.55% 487 58

yahoo

Sportacular
0.23/80.45 % 83.53% 1.94/81.05% 41.98% 238 34

Gmail 0.39/46.00 % 63.65% 1.33/54.46% 47.70% 400 208

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 101

Table 6. Application wise burst time

Table 7. Comparison of fast dormancy and batching performance

a
 Each ‗avg‘ in this table stands for the average value per burst

a
 ΔE, S,D are relative to the E,S,D of all traffic for the specific application

b
 Ti,On is the inactivity threshold of fast dormancy for screen-on traffic and Ti,Off is for screen-off traffic.

c
 For these two application rows, we consider the traffic of only one specific application, excluding that from other applications

The screen off study can be optimized by two traffic

optimization technique called Fast Dormancy and Batching.

The objective of these two methods is to give better solution

to tradeoff of UE network Energy (E), Signaling Overhead

(S) and Channel Scheduling Delay (D). In fast Dormancy,

set different tail time (Ti) [10] for Screen On (Ti,On) and

Screen Off (Ti,Off) sessions. Set conservative setting for

Screen On session, that means long Ti,On and set aggressive

setting for Screen Off state that means short Ti,Off., then the

combinational values are denote by <Ti,On,Ti,Off >. The

Traffic type
of

burst

Avga # of

uplink

packets

Avga # of

downlink

packets

Avga uplink

payload(B)

Avga

downlink

payload(KB)

Avga burst

length(sec)

Avga IBT

following

(sec)

Screen-On 650941 43.75 67.62 2910.44 76.17 2.92 335.13

Screen-Off 1910939 11.69 12.98 739.78 10.68 1.37 113.60

Process Name
of

burst

Avga #

of uplink

packets

Avga # of

downlink

packets

Avga uplink

payload (B)

Avga

downlink

payload(KB)

Avga burst

length(sec)

Avga IBT

following

(sec)

Genie Widget 5952 319.73 319.36 8852.48 287.88 17.87 3892.87

Google Music 5297 195.69 427.56 505.54 591.92 4.53 5111.50

Epicurious

Recipe
63236 21.07 21.46 202.22 26.01 0.67 159.34

mediaserver 8163 106.44 215.53 669.82 289.35 5.01 14451.70

android.proces

s.media
1442 461.88 1156.93 246.99 1605.84 19.83 123565.00

skypekit 42744 25.08 23.46 555.38 0.52 1.93 832.79

Facebook 203535 5.49 4.07 318.83 1.98 0.86 547.23

yahoo

Sportacular
133785 8.39 6.07 285.44 1.45 1.52 261.78

Gmail 105478 6.60 6.02 1375.30 2.41 1.17 2002.60

Process Name Optimization Setting ΔEa ΔSa (%) ΔDa

All

Applications

Fast Dormancy

Ti,On b = 8s, Ti,Off
b=8s -16.39% 16.95 13.14%

Ti,On = 4s, Ti,Off = 8s -20.60% 28.29 21.26%

Ti,On = 8s, Ti,Off = 4s -34.44% 47.04 35.21%

Ti,On = 4s, Ti,Off = 4s -38.66% 58.38 43.31%

Batching

only for screen-off, α=50s,β=10s -22.33% -6.24 -11.27%

only for screen-off, α=50s,β=5s -27.15% -6.24 -10.67%

only for screen-off, α=100s,β=10s -36.72% -30.00 -33.43%

only for screen-off, α=100s,β=5s -40.79% -30.00 -34.25%

Fast Dormancy +
Batching

Ti,On =8s, Ti,Off = 4s batching only

for screen-off traffic, α=100s,β=5s
-60.92% -25.33 -30.59%

FacebookC
Fast Dormancy +
Batching

Ti,On =8s, Ti,Off = 4s batching only

for screen-off traffic, α=100s,β=5s
-60.19% -36.27 -34.93%

Google

MusicC

Fast Dormancy +
Batching

Ti,On =8s, Ti,Off = 4s batching only

for screen-off traffic, α=100s,β=5s
-57.30% 7.12 -21.11%

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 102

research suggest <8, 4> for better tradeoff among ∆E, ∆S and

∆D.

Batching is another optimization technique which is applies

only Screen Off state. These techniques send packets for

particular time interval. It uses source window size (α) in sec

and destination window size (β) in sec. The combinations of

α = 100 sec and β =5sec is a better tradeoff, which saves upto

40.79% Energy, 30% of Signaling overhead, 34.25% in D

(Table 7).

IV. EXPERIMENTAL SETUP

During this experiments, we used Redmi 3S with Android

version 6 and MicroMax A089 with a rooted Android

version 4.2.2, kernel version 3.4.5. The test used 2 different

mobile applications to collect data. The first application is

Application Resource Optimizer which used to collects real-

time network activity of each application including detailed

number of bytes sent by applications and the appropriate

timestamp [11]. The second application is Trepn profiler

which records Mobile data states, CPU state and power

utilization in mW.

V. CONCLUSION

This paper investigates and reviews various factors that

directly influence the energy consumption of Smartphone

and analyze all the perspective of energy consumed

parameters by real time measurements. In the previous

researches all authors suggested that the network operators

must focus fine tune inactivity timer‘s i.e. short interval

consumes less energy than long intervals. Fast dormancy

intervals also impacts energy drain, minimum intervals of

dormancy save 80% of network energy.

This research confirms the keep-alive messages consume

more energy anonymously and the long interval of keep-alive

message consumes less energy than short interval messages.

In future the author will propose a novel architecture to

reduce energy consumption of 3G/4G data transmission.

REFERENCE

[1] Perala, P., Barbuzzi, A., Boggia, G., & Pentikousis, K.. ―Theory

and Practice of RRC State Transitions in UMTS Networks.‖ 2009

IEEE Globecom Workshops, pp.1-6, 2009.

[2] Perrucci, G.P., Fitzek, F.H., & Widmer, J. “Survey on Energy

Consumption Entities on the Smartphone Platform”. 2011 IEEE

73rd Vehicular Technology Conference (VTC Spring), pp.1-6.

2011.

[3] Li, D., Hao, S., Gui, J., & Halfond, W.G. “An Empirical Study of

the Energy Consumption of Android Applications”. 2014 IEEE

International Conference on Software Maintenance and Evolution,

121-130, 2014.

[4] Qian, F., Wang, Z., Gao, Y., Huang, J., Gerber, A., Mao, Z.M.,

Sen, S., & Spatscheck, O. ―Periodic transfers in mobile

applications: network-wide origin, impact, and optimization‖.

WWW, 2012.

[5] Kononen, V., & Paakkonen, P. Optimizing power consumption of

always-on applications based on timer alignment. 2011 Third

International Conference on Communication Systems and

Networks (COMSNETS 2011), pp. 1-8, 2011.

[6] Haverinen, H., Siren, J., & Eronen, P. Energy Consumption of

Always-On Applications in WCDMA Networks. 2007 IEEE 65th

Vehicular Technology Conference - VTC2007-Spring, pp. 964-

968, 2007.

[7] GSMA, “Fast Dormancy Best Practices”, GSMA Official

Document TS.18, 2011.

[8] Huang J, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O.

Spatscheck. “A Close Examination of Performance and Power

Characteristics of 4G LTE Networks”. In MobiSys‘12. pp. 225-

238, 2012.

[9] Qualcomm Engineering Services Group, “System Parameter

Recommendations to Optimize PS Data User Experience and UE

Battery Life”, Technical Document, 2007.

[10] Wang, Z, Qian, F., Gerber, A., Mao, Z.M., Sen, S., & Spatscheck,

O. “TOP: Tail Optimization Protocol for Cellular Radio Resource

Allocation”. The 18th IEEE International Conference on Network

Protocols, pp. 285-294, 2010.

[11] Pandikumar, S, and Sumathi, M. “Analysis of Energy Profilers in

Smartphone Environment”, International Journal of Advanced

Research in Science and Engineering, Vol.06 Issue 02, pp. 20-29,

2017.

[12] Qian, F., Wang, Z., Gerber, A., Mao, Z.M., Sen, S., & Spatscheck,

O. “Characterizing radio resource allocation for 3G networks”.

Internet Measurement Conference. pp. 137-150, 2010.

